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Abstract

Knots appear in a wide variety of biophysical systems, ranging from

biopolymers, such as DNA and proteins, to macroscopic objects, such as

umbilical cords and catheters. Although significant advancements have

been made in the mathematical theory of knots and some progress has

been made in the statistical mechanics of knots in idealized chains, the

mechanisms and dynamics of knotting in biophysical systems remain far

from fully understood. We report on recent progress in the biophysics

of knotting—the formation, characterization, and dynamics of knots in

various biophysical contexts.
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Knot: a topological
state of a closed 3D
curve, also a knot-like
conformation of an
open chain
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INTRODUCTION

Knots are fascinating topological objects that

have captured human imagination for centuries.

They find a plethora of useful applications,

from tying shoelaces to securing surgical su-

tures. But knots can also be a nuisance, crop-

ping up in long hair, electrical cords, and other

inconvenient places. Equally important, knots

are interesting subjects for scientific inquiry and

have attracted increasing attention from physi-

cists and biophysicists: Various physically rel-

evant systems have an undeniable capacity to

become entangled. Notable examples include

biopolymers such as DNA and proteins. An

understanding of these knots beyond the con-

fines of mathematical topology and theoretical

physics is essential to bring about new discov-

eries and practical applications in biology and

nanotechnology.

Here we describe some recent experimen-

tal and theoretical efforts in the biophysics

of knotting. We begin with a brief introduc-

tion to knot classification. We then explore a

variety of topics related to the biophysics of

knotting. The organization of these topics re-

flects our attempt to address the following gen-

eral questions: Where and how do knots form?

How likely are knots to form? What are some

properties of knots and knotted systems? In

what processes do knots play a role? When and

how do knots disappear? In addressing these

questions, we aim for a qualitative presentation

of recent works, emphasizing the diversity of

methods and results without delving extensively

into technical details. A more comprehensive

treatment of specific topics can be found in

books (1, 19) and in the various cited reviews.

TYPES OF KNOTS

The ability to discern and classify different

kinds of knots is an essential requirement for

understanding biophysical processes involving

knots. The mathematical field of Knot theory

offers powerful tools for detecting and classify-

ing different knots (1). A knot is a topological

state of a closed, nonintersecting curve. Two

closed curves contain knots of the same type

if one of the curves can be deformed in space

to match the other curve without temporarily

opening either curve. In practice, a 3D knot-

ted curve is mathematically analyzed by first

projecting it onto a 2D plane and then exam-

ining the points, known as crossings, where

the curve crosses itself in the 2D projection

(Figure 1a). Note that when we talk about

knots in open curves, such as a linear string or

DNA molecule, we are imagining that the ends

of those curves are connected using a sensible,

well-defined procedure to yield corresponding

closed curves (Figure 1b).

The absence of a knot is called the unknot

or trivial knot. It can always be rearranged to

yield a projection with zero crossings. Knots, in

contrast, give rise to projections with nonzero

numbers of crossings. The minimum number

of crossings, C, is an invariant for any arrange-

ment of a closed string with a given knot. C

is often used to classify knots into different

types. Specifically, each knot type is denoted

as CS, where S is a sequence number within
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a

Figure 1

Knot types and features. (a) Knots formally exist only in 3D curves (left). Knot projections are 2D
representations of knots (right). (b) Knot-like conformations in open curves are often encountered in
biophysics (left). To analyze such knots, their loose ends must be connected, according to some procedure, to
obtain a closed curve (right). (c) Projections of the four simplest nontrivial knot types, with the corresponding
CS denominations and Jones polynomials (see text for definition of CS) (adapted from http://katlas.math.
toronto.edu/wiki/Main Page). (d ) The size of a knot, SK , in a polymer may be less than the size of the
polymer, SP , containing the knot. (e) In a slip link arrangement, entropic competition between the knotted
loops causes the ring to squeeze one of the knots. The size of the latter can be deduced from the position of
the ring. Adapted from Reference 64. ( f ) The size of a tight knot can be estimated from the volume of the
enclosing ideal knot representation: SK ∼ (D2L)1/3, where D and L are the diameter and length of the outer
tube. Adapted from Reference 39. ( g) Square and granny knots can tie ropes together but unravel easily at
the molecular scale. Slipknots in proteins have been studied to assess the effects of knots on stability.

the family of knot types having the same C

(Figure 1c). Some common knots are also re-

ferred to by name: 31 and 41 are called trefoil

and figure-eight, respectively. The number of

different knot types having the same C increases

rapidly with C: There are only 3 knots with 6

crossings, but 1,388,705 knots with 16 cross-

ings (42). The number C serves as a measure of

knot complexity.

Simple knots can be distinguished visually

by comparison with published tables, but ex-

tensively knotted systems require mathematical

methods of knot classification. One ingenious

strategy for classifying knots is to transform

a knot projection into a special polynomial

formula, which depends on the knot type but

not on any particular projection. Comparing

this polynomial with those enumerated in
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Jones polynomial:
a mathematical
expression that can be
computed by analyzing
the crossings in
any particular 2D pro-
jection of a knot, and
serves as fingerprint
to uniquely identify
the type of the knot

dsDNA:
double-stranded DNA

DNA
topoisomerases:
enzymes that allow
single or double
strands of DNA to pass
through other single
or double strands of
DNA to change the
topology of a closed
dsDNA molecule

knot tables enables the identification of the

knot type from a given projection. Examples

of such polynomials include the Alexander,

Jones, and HOMFLY polynomials (1). V.F.R.

Jones was awarded the famous Fields Medal in

mathematics in 1990 for his groundbreaking

discovery of the Jones polynomial. These

polynomials occasionally fail to distinguish

different knots and become computationally

prohibitive with projections of many crossings,

but they are invaluable tools for analyzing the

vast majority of simpler knots.

KNOTTING IN BIOPHYSICAL
SYSTEMS

Knots can form via two general mechanisms:

threading of loose ends or breaking and re-

joining of segments. Linear double-stranded

DNA (dsDNA) molecules undergoing random

cyclization in solution exemplify the first mech-

anism. Cyclization is possible when the ends

of a linear dsDNA molecule have comple-

mentary single-stranded overhangs. A knotted

molecule results whenever the molecule’s ends

pass through loops within the same molecule

before joining (90, 95).

Knots can arise from cyclization of viral ge-

nomic DNA from tailless P2 and P4 phages

(57, 58) and intact P4 deletion mutants (119)

(Figure 2a,b). At least half of the knots form

while the DNA is still in the capsid (6). Pro-

duction of knotted DNA from P4 phages (45) is

useful for assessing the activity and inhibition of

enzymes such as DNA topoisomerases, which

can change the topology of DNA. Mutant P4

phages generate knots even in nonnative DNA

molecules. The genomic DNA of phage P4 is

11.2 kbp long, but these capsids produce knots

in plasmids as short as 5 kbp (106). The yields of

knotted DNA were >95%, much greater than

yields from random cyclization of DNA in so-

lution (95). Although the specific mechanism

of knot formation in viruses remains unclear,

both confinement and writhe bias seem to play

an important role (5).

The second DNA knotting mechanism,

which relies on the breaking and rejoining of

chain segments, is facilitated by enzymes such as

topoisomerases and recombinases. Fundamen-

tal insights into the mechanisms of these and

other enzymes have resulted from detailed anal-

yses of knots in DNA (13, 59, 98, 115).

DNA topoisomerases are classified as type I

or type II (93). Type I DNA topoisomerases

temporarily break a single DNA strand and

allow it to pass through the complementary

strand (7). Knotted dsDNA results when cir-

cular dsDNA is nicked or gapped and the en-

zyme breaks a strand at a location opposite

the nick (23). In contrast, type II topoisom-

erases temporarily break both strands in one

segment of dsDNA, allowing one segment to

pass through another intact segment before the

strands are chemically rejoined (72, 93). Type

II DNA topoisomerases introduce knots into

supercoiled circular DNA in vitro (114), pro-

viding a way to assess the DNA supercoiling

activity of other enzymes, such as condensins

(79). In vivo, type II DNA topoisomerases re-

move knots from DNA. Such knots arise nat-

urally during replication, as evidenced by the

presence of knots in partially replicated plas-

mids (73, 96).

Recombinases are responsible for site-

specific genetic recombination of DNA. Like

topoisomerases, they operate by breaking and

rejoining single or double strands. Their func-

tion, however, is to insert, excise, or invert a seg-

ment delimited by appropriate recombination

sites (37). When the substrate is supercoiled

DNA, recombinases yield knotted DNA (13).

The latter was used to assay the unknotting ac-

tivity of Escherichia coli topoisomerase IV (26).

Besides DNA, long peptides may also

become knotted. Several proteins exhibit a

knotted conformation in their native state

(Figure 2g), which only becomes evident

when the backbone is closed and smoothed by

numerical methods (103). Presumably, these

proteins become entangled while they fold into

their native structures (62). Thus, the ability of

protein backbones to form knots complicates

the already difficult problem of explaining

how proteins fold (62, 104, 120). Nevertheless,

recent studies on knotted proteins are rapidly
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Figure 2

Knotted biophysical systems. (a) Negative stain electron micrograph of P2 virions. Adapted with permission from Reference 21.
(b) Conformations of packed P4 genome as determined by coarse-grained molecular dynamics simulations. Reprinted with permission
from Reference 89. (c) Atomic force microscopy images of knotted DNA, isolated from P4 phage capsids and strongly (left column) or
weakly (right column) adsorbed on mica surface. Reprinted with permission from Reference 34. (d ) Optical tweezers tying a trefoil knot
in a fluorescently labeled actin filament. Adapted with permission from Reference 3. (e) Left panel: electrophoretic mobility of knotted
DNA plasmids in agarose gel increases with minimum number of crossings, C. Lane 1: unknotted DNA; lanes 2–7: individual knotted
DNA species isolated by prior gel electrophoresis. I and II are the positions of markers for circular and linear DNA, respectively. Right
panel: electron micrographs of knotted DNA molecules isolated from gel bands (left column), interpretation of crossings (middle column),
and deduced knot types (right column). The molecules were coated with Escherichia coli RecA protein to enhance visualization of DNA
crossings. Adapted with permission from Reference 23. ( f ) Knotted DNA from bacteriophage P4 capsids separated by agarose gel
electrophoresis at 25V for 40 h (dimension I) and at 100V for 4 h (dimension II). Adapted with permission from Reference 105.
( g) Structure of the chromophore-binding domain of the phytochrome from Deinococcus radiodurans (left) containing a figure-eight knot
(right). Reprinted with permission from Reference 12. (h) An umbilical cord (diameter ∼2 cm) with a composite knot. Reproduced with
permission from Reference 20. (i) 3D image, obtained by 4D ultrasonography, of a knotted umbilical cord next to the fetal face.
Adapted with permission from Reference 18.
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Molecular dynamics
(MD): a simulation
technique in which the
Newtonian equations
of motion for a system
of many particles are
approximately, but
efficiently, integrated
over time to observe
the evolution of the
system and to
determine its statistical
mechanical properties

Minimum crossing
number: the
minimum number of
points where a knotted
curve crosses over
itself when viewed in
any 2D projection

gathering new clues. For example, a 52 knot

is present in the human protein ubiquitin

C-terminal hydrolase UCH-L3, which is

involved in the recycling of ubiquitin. After

denaturation, this protein folds back into

its native knotted conformation without any

help from chaperones, suggesting that knot

formation in UCH-L3 is encoded by the amino

acid sequence (2). Molecular dynamics (MD)

simulations of the homodimeric α/β-knot

methyltransferases YibK and YbeA, both

of which feature a trefoil knot, and of the

proteins AFV3–109 and thymidine kinase,

both of which feature a slipknot (100), have

suggested that knots form through a slipknot

intermediate, rather than by threading one

terminus through a backbone loop.

Although they arise naturally, nanoscale

knots can also be tied directly by humans. In

particular, polystyrene beads attached to the

ends of actin filaments or dsDNA molecules

were maneuvered with optical tweezers to con-

struct trefoil knots (Figure 2d ) (3). Using simi-

lar techniques, Bao et al. (8) tied the more com-

plex knots 41, 51, 52, and 71 in dsDNA. Trefoil

and figure-eight knots can be created also in

single-stranded DNA and RNA by exploiting

self-assembly of nucleic acids (94). A refined

approach, based on annealing and ligation of

DNA oligonucleotides with stem and loop re-

gions, yielded knots with three, five, and seven

crossings (15).

As interesting as the knots found in

biomolecules are those encountered in

biomedical contexts. For example, following a

ventriculoperitoneal shunt operation to relieve

excessive buildup of spinocerebral fluid, the

surgically implanted catheter tube has been

found in some cases to become spontaneously

knotted, thus blocking drainage (33). Also

notable is the knotting of umbilical cords

during human pregnancy, a phenomenon re-

ported in about one percent of live births (35)

(Figure 2h). Although these knots are not

always harmful (20, 61), they can sometimes

be fatal (22, 97). Recent advances in under-

standing the dynamics of knotting in agitated

strings (83) as well as technological advances in

ultrasound imaging (18) (Figure 2i) promise to

facilitate the study and diagnosis of umbilical

knots.

To understand the mechanisms of knot-

ting, physicists have studied macroscopic model

systems that are easier to implement and con-

trol than their molecular counterparts. For in-

stance, a hanging bead chain shaken up and

down at constant frequency occasionally pro-

duces trefoil and figure-eight knots (10). Re-

cently, our group investigated tumbling a string

in a rotating cubic box, which rapidly produced

knots (83) (Figure 3a). Determination of the

Jones polynomial for the string after only ten

1-Hz revolutions of the box revealed a vari-

ety of complex knots with a minimum cross-

ing number C as high as 10. The resulting knot

distribution was well explained by a model that

assumed random braid moves of the ends of a

coiled string (Figure 3c).

PROBABILITIES OF KNOTTING

As knots arise in several biophysical systems,

one may wonder how likely are such knots to

form. This basic question was posed in 1962 by

the famous biophysicist Max Delbrück (27) and

since then has been frequently investigated by

polymer physicists. Grosberg (38) recently re-

viewed some key results on the probability of

knotting in polymers. Most notably, the prob-

ability of finding a knot of any type K, includ-

ing the unknot, in an N-step self-avoiding ran-

dom walk is predicted to be PK ∼ e−N/N0 ,

where the constant N0 is model dependent,

and the prefactor depends on the knot type.

The overall probability of finding a nontriv-

ial knot and the average complexity of knots

are thus predicted to increase with increasing

polymer length, and the probability of find-

ing the unknot is predicted to approach zero as

N → ∞. Besides N, other parameters, such as

solvent quality, temperature, and confinement,

affect knotting probability. These nontrivial ef-

fects have been investigated theoretically or

through computer simulations and are summa-

rized in several excellent reviews (46, 75, 102,

118).
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The knotting probability depends strongly

on the space available to the polymer. Early

numerical studies of self-avoiding random

walks found the knotting probability of ring

polymers to increase with increasing confine-

ment by a sphere (70). More recent Monte

Carlo (MC) simulations of phantom polymer

rings, which are free from topological con-

straints, found that knot formation is inhib-

ited when the radius of the confining sphere

becomes too small (68). Also, in the case of um-

bilical cords, confinement of the growing fe-

tus in the amniotic sac was theorized to hinder

knot formation (35). Thus, effects of confine-

ment depend on the specific physical context or

theoretical assumptions.

Spatial confinement also affects knotting of

DNA in phage capsids. MC simulations of P4

phage DNA, modeled as a semiflexible cir-

cular self-avoiding random walk in a confin-

ing sphere, reproduced the experimentally ob-

served prevalence of chiral knots over achiral

knots (69). However, contrary to experimental

results, 52 knots outnumbered 51 knots, pos-

sibly owing to insufficient confinement or to

inaccurate modeling of DNA dynamics within

the capsid. In another study, the packaging of

DNA in viral capsids, which has been studied

experimentally (84), was modeled using random

spooling polygons without excluded volume or

electrostatic interactions (4). This work repro-

duced qualitatively both the chiral bias and the

distribution of knot types observed with tailless

mutants of P4 bacteriophages.

Effects of spatial confinement on knotting

probability were evident in our experiments

with macroscopic strings in a rotating box (83).

As the string length was increased, the knot-

ting probability did not approach the theoret-

ical limit of 1 expected for self-avoiding ran-

dom walks (Figure 3b). The lower probability

observed was due to finite agitation time and

to the restricted motion experienced by long

strings of nonzero stiffness within a box of fi-

nite size. In preliminary work (D. Meluzzi &

G. Arya, unpublished data), we reproduced and

further quantitatively studied these effects us-

ing MD simulations of macroscopic bead chains
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Figure 3

Macroscopic string knotting. (a) Examples of initial (left) and final (right)
configurations of a string tumbled in a 30-cm cubic box rotated ten times
at 1 revolution per second. Adapted with permission from Reference 83.
(b) Measured knotting probability versus string length, L, in the rotating
box. Reproduced with permission from Reference 83. (c) Simplified model for
the formation of knots in the random tumbling. Top: End segments lie parallel
to coiled segments. Bottom: Threading of an end segment is modeled by a
series of random braid moves. Reproduced with permission from Reference 83.
(d ) Molecular dynamics (MD) simulations of a string in a rotating box,
mimicking the above experiment. The string was represented as a bead chain
subject to bending, excluded volume, and gravitational potentials. (e) Estimated
knotting probability versus string length, based on 33 tumbling simulations per
point. Knots were detected by MD simulations in which the string ends were
pulled either toward (light purple line and dots) or away from (dark purple line
and crosses) each other until the knot was tight or disappeared. ( f ) Simulated
knotting probability versus box revolution. Values were determined as in panel e.

MC: Monte Carlo

in a rotating box (Figure 3d,e). We have also

calculated the probability of knot formation as

a function of box revolutions, predicting a rapid

formation of knots: 80% of the simulated tri-

als produced a knot after only two revolutions
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AFM: atomic force
microscope

(Figure 3f ). Such simulations may offer a con-

venient route for dissecting the mechanisms of

knot formation.

FEATURES OF KNOTTED
SYSTEMS

Knotted systems can be studied in greater depth

by analyzing a variety of static properties. Here

we give a few examples of these properties and

describe recent progress in studying biophysi-

cally relevant systems.

Size of Knots and Knotted Systems

Several knot size measures have been investi-

gated experimentally, theoretically, and compu-

tationally (74). In polymers, knot size may dif-

fer from the size of the polymer (Figure 1d ).

Polymer size is typically characterized by the ra-

dius of gyration, Rg, i.e., the average root mean

square distance between each segment and the

center of mass. For linear polymers, Rg ∼ Nν ,

where ν = 0.5 for pure random walk chains

and ν ≈ 0.588 for self-avoiding random walk

chains (56) or chains with excluded volume (24,

29). The same self-avoiding random walk scal-

ing exponent has been observed for knotted

and unknotted circular polymers in the limit

of N → ∞, as determined by MC simulations

(38, 75).

The scaling in Rg was investigated exper-

imentally via fractal dimensional analysis of

atomic force microscope (AFM) images of cir-

cular DNA molecules strongly and weakly ad-

sorbed on a mica surface (34) (Figure 2c).

Strong adsorption gave ν ≈ 0.60, close to

ν ≈ 0.588 for 3D polymers, suggesting that it

projects 3D conformations onto the surface. In

contrast, weak adsorption yielded ν ≈ 0.66, in-

termediate between ν ≈ 0.588 for 3D polymers

and ν = 0.75 for 2D polymers, suggesting a

partial relaxation of 3D conformations into a

quasi-2D state (34). A similar intermediate scal-

ing exponent was predicted by MC simulations

of dilute lattice homopolymers confined in a

quasi-2D geometry (41).

As knots shrink, their size or length can

be investigated separately from the size of the

overall chain (Figure 1d ). In ring polygons,

knot size can be determined from the short-

est portion of the polygon that, upon appropri-

ate closure, preserves the topology of the chain

(50, 64, 65). Another computational method in-

volves introducing a slip link that separates two

knotted loops within the same ring polygon.

Entropic effects expand one loop at the expense

of the other, and the average position of the slip

link defines the length of the smaller knot (64)

(Figure 1e).

The size of tight knots in open chains has

also been studied (81). Open chains cannot be

knotted in a strict mathematical sense. For the-

oretical arguments, knot size can be deduced

from the volume of a maximally inflated tube

containing the knot (39) (Figure 1f ). Accord-

ingly, it was predicted that the size of sufficiently

tight and complex knots in an open polymer

should depend on a balance between the en-

tropy of the chain outside the knot and the

bending energy of the chain inside the knot.

If the chain tails are sufficiently long, the knot

should neither shrink nor grow on average (39).

In one study, the size of tight knots in stretched

polyethylene was predicted from the distribu-

tion of bond lengths, bond angles, and torsion

angles along the chain, suggesting that trefoil

knots involve a minimum of 16 bonds (121).

For comparison, ab initio calculations predicted

a minimum of 23 bonds (92). Furthermore, the

extent of tight knots has been determined ex-

perimentally. Fluorescence measurements indi-

cated that trefoil knots in actin filaments can

be as small as ∼0.36 µm (3). Similar measure-

ments on 31, 41, 51, 52, and 71 knots in linear

dsDNA yielded knot lengths of 250–550 nm for

molecules stretched by a tension of ∼1 pN (8).

Knots can be tightened on proteins as

well. The figure-eight knot present in the

chromophore-binding domain (CBD) of the

phytochrome from Deinococcus radiodurans

(Figure 2g) was tightened with an AFM to a

final length of 17 amino acids (12). Similarly,

simulations of the 52 knot in ubiquitin carboxy-

terminal hydrolase L1 (UCH-L1) using a

Go-like model suggested minimum lengths of

either 17 or 19 residues, depending on the final

356 Meluzzi · Smith · Arya

A
n
n
u
. 
R

ev
. 
B

io
p
h
y
s.

 2
0
1
0
.3

9
:3

4
9
-3

6
6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
 -

 S
an

 D
ie

g
o
 o

n
 0

5
/3

1
/1

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



location of the tight knot along the backbone

(101). More accurate all-atom MD simulations

with explicit water found tight 31 and 41 knots in

stretched model peptides to be about 13 and 19

amino acids long, respectively, in good agree-

ment with the experiments (32). Curiously, in

these simulations, a tight 41 knot in polyleucine

was found to trap a single water molecule, which

escaped upon further tightening.

Assessing the size of tight protein knots is

important for understanding their biological

roles. Bulky knots could hamper the threading

of polypeptides through the narrow pore of the

proteasome, possibly protecting certain knot-

ted proteins from rapid degradation (109). This

hypothesis was supported by Langevin dynam-

ics simulations of the translocation of a test pep-

tide through a narrow channel (radius ∼6.5 Å).

The presence of a 52 knot in the peptide re-

duced the translocation rate by two orders of

magnitude, suggesting that knots may indeed

hinder protein degradation by the proteasome

(44).

Knot Localization

Several studies have addressed the localization

of knots in a polymer (Figure 1d ), and vari-

ous aspects of knot localization, including the

role of entropic and electrostatic effects, have

been reviewed (38, 48, 75). Knot localization

within a closed knotted chain results from the

gain in entropy by a long unentangled loop,

which causes the knotted portion of the chain

to shrink (38). This effect could be mimicked by

vibrating a twisted bead chain on a horizontal

plate (40). The same phenomenon was inferred

from the size distributions of simple knots in

random closed chains of zero thickness (50).

Numerically, knots are localized when

their average size 〈ℓ〉 grows slower than the

length N of the chain, or limN→∞ 〈ℓ〉/N = 0.

When 〈ℓ〉 ∼ Nt , with t < 1, the knot is weakly

localized (63). The value of t depends on

solvent quality. MC simulations of trefoil knots

in circular self-avoiding polygons on a cubic

lattice (64) yielded t ≈ 0.75 in good solvent

and t ≈ 1 in poor solvent, indicating that knots

Langevin dynamics:
a computationally
efficient MD
refinement that
approximately
accounts for the effects
of random collisions of
solvent molecules with
the system

are weakly localized in the swollen phase but

are delocalized in the collapsed phase. Similar

scaling exponents have been obtained for linear

polyethylene in good and poor solvent via MC

simulations (108). These exponents have been

confirmed by analyzing the moments of the

probability distributions of knot lengths for

different types of knots (65).

Knot localization was observed in AFM im-

ages of circular DNA weakly adsorbed on a mica

surface (34). Moreover, MC simulations of ring

polymers adsorbed on an impenetrable attrac-

tive plane have predicted that lowering the tem-

perature leads to strong knot localization, i.e.,

〈ℓ〉 becomes independent of N (63). Knot lo-

calization in DNA is important because it may

facilitate the creation of segment juxtapositions

and thereby may enhance the unknotting activ-

ity of type II DNA topoisomerases (59).

Strength and Stability
of Knotted Systems

Rock climbers are well aware that knots weaken

the tensile strength of ropes. Similar ef-

fects hold for knotted molecules. Using Car-

Parrinello MD simulations, it was shown that a

linear polyethylene molecule with a trefoil knot

breaks at a bond just outside the entrance of the

knot, where the strain energy is highest, but is

still only 78% of the strain energy needed to

break an unknotted chain (92). Hence, the knot

significantly weakened the molecule. Similarly,

when the ends of single actin filaments con-

taining a trefoil knot were pulled with optical

tweezers, the filaments were found to break at

the knot with pulling forces of ∼1 pN, indi-

cating a decrease in tensile strength by a fac-

tor of 600 (3). On a macroscopic scale, exper-

iments with fishing lines and cooked spaghetti

confirmed that rupture occurs at the knot en-

trance, where the curvature was predicted to

be the highest, causing local stresses that favor

crack propagation (80).

Ordinary strings can be tied strongly with a

square or granny knot (Figure 1g), but if two

polymer chains were tied in this fashion and

then pulled apart, the knot would invariably
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Brownian dynamics:
Langevin dynamics
with zero average
acceleration, typically
used to simulate
overdamped systems

Wormlike chain: a
semiflexible polymer
chain

slip. However, Langevin dynamics simulations

found that, when pulled strongly, smooth poly-

mers untie more quickly than bumpy polymers

(53). Increasing the pulling force makes the en-

ergy landscape of bumpy polymers more cor-

rugated, thus hindering the thermally activated

slippage of the strands.

Although they weaken tensioned strings,

knots may actually increase the stability of

certain systems. Increased stability could ex-

plain the presence of knots in some proteins

(120). To test this effect, the deep slipknot

(Figure 1g) in the homodimeric protein alka-

line phosphatase from E. coli was cross-linked

via a disulfide bridge between monomers, ef-

fectively increasing the knotted character of the

overall dimer (52). A ∼10◦C increase in melting

temperature of this cross-linked dimer, relative

to a control dimer cross-linked outside the slip-

knot loops, suggested that knots can increase

the thermal stability of proteins. Yet, unfolding

experiments with the 41-knotted CBD of the

phytochrome from D. radiodurans found that

the knot did not significantly enhance mechani-

cal stability (12). It was suggested, however, that

this knot might serve to limit the possible mo-

tions induced by the chromophore on the CBD

upon light absorption.

DYNAMIC PROCESSES
INVOLVING KNOTS

Finding and characterizing knots in biophysi-

cal systems naturally lead to an investigation of

dynamic processes involving knots. We focus

on three prominent examples: diffusion, elec-

trophoresis, and unknotting.

Knot Diffusion

As discussed above, knots may become local-

ized. Once localized, a knot can diffuse along

the chain. The resulting motion is governed

by the inability of intrachain segments to pass

through one another. The same constraints ex-

ist for intermolecular entanglements and thus

dominate the dynamics of concentrated poly-

mer solutions and melts. Such systems are well

described by the reptation model (24, 29), for

which P.G. de Gennes was awarded the Nobel

Prize in Physics in 1991. This model assumes

that each polymer molecule slides within an

imaginary tube tracing the molecule’s contour.

In agreement with this model, experiments have

shown that linear DNA molecules larger than

∼50 kbp, in solutions more concentrated than

∼0.5 mg ml−1, exhibit tube-like motion, expe-

rience tube-like confining forces, and diffuse as

predicted by reptation theory (77, 85, 86).

The notion that reptation may also govern

knot diffusion was supported experimentally by

Bao et al., with 31, 41, 51, 52, and 71 knots in sin-

gle, fluorescently stained DNA molecules (8).

The knots were seen as bright blobs diffusing

along the host DNA. The diffusion constants,

D, of the knots were strongly dependent on

knot type, and the drag coefficients deduced

from D were consistent with a self-reptation

model of knot diffusion (8). Brownian dynamics

simulations of a discrete wormlike chain model

of DNA yielded D values of the same mag-

nitude as the values measured experimentally

(110). Moreover, Langevin dynamics simula-

tions of knot diffusion in tensioned polymer

chains found D values consistent with a sliding

knot model in which the friction between the

solvent and the knot dominates knot dynam-

ics at low tensions, whereas internal friction of

the chain dominates the dynamics at high ten-

sions (43). In the absence of tension, knot dif-

fusion was proposed to consist of two reptation

modes, one due to asymmetric self-reptation of

the chain outside the knot, the other due to

breathing of the knot region. The latter mo-

tion allows the knot to diffuse in long chains

(67).

In addition to diffusing along polymers,

knots can affect the diffusion of the polymers

themselves. Brownian dynamics simulations of

ring polymers with knots of up to seven cross-

ings found that the ratio of diffusion coeffi-

cients for knotted and linear polymers, DK /DL,

grows linearly with average crossing number

NAC of ideal knot representations (47). Thus,

intramolecular entanglement seems to speed

up polymer diffusion. Nevertheless, diffusion
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of knotted polymers may be complicated by

intermolecular topological constraints. For ex-

ample, we have found that circular DNA can

diffuse up to two orders of magnitude slower

when surrounded by linear DNA than when

surrounded by circular DNA of the same con-

centration and length (87). Current reptation

models fail to fully describe these findings, but

qualitatively we believe that unknotted circu-

lar molecules are easily pinned by threading of

linear molecules. Such pinning mechanisms are

likely to affect the diffusion of knotted polymers

as well.

Electrophoresis

The strong negative charge on DNA molecules

at sufficiently high pH is exploited in agarose

gel electrophoresis to separate DNA molecules

according to size and supercoiling state. For

over two decades, the same technique has

proven invaluable for analyzing knots in re-

laxed circular DNA (31, 55). In seminal exper-

iments with E. coli topoisomerase I, electron

microscopy revealed the topology of knotted

DNA molecules from distinct gel bands (23)

(Figure 2e). Remarkably, each band contained

DNA knots with the same minimum number

of crossings, C, which seemed to control the

electrophoretic mobility of knotted DNA.

A follow-up study (99) uncovered a surpris-

ingly linear relationship between the previously

reported electrophoretic migration distances of

DNA knots and the average number of cross-

ings, NAC , in the ideal geometric representa-

tions (49) of those knots. Because NAC is lin-

early related to the sedimentation coefficient,

which provides a measure of molecular com-

pactness, it was concluded that DNA knots with

many crossings are more compact and there-

fore migrate faster through the gel than DNA

knots with fewer crossings (112). At high elec-

tric fields, however, the linear relationship be-

tween migration rate and NAC no longer holds.

This change in behavior has been exploited in

2D gel electrophoresis to improve the separa-

tion of knotted DNA (105) (Figure 2f ) and has

been reproduced in MC simulations of closed

self-avoiding random walks (117). Such change

was attributed to increased trapping of knotted

DNA by gel fibers at high electric fields. The

distribution of trapping times obeyed a power

law behavior consistent with the dynamics of

a simple Arrhenius model (116), thus enabling

the estimation of the critical electric field as-

sociated with the inversion of gel mobility of

knotted DNA.

Despite considerable modeling efforts and

extensive use of DNA electrophoresis, a com-

plete theory that accurately predicts DNA mo-

bility as a function of electric field and poly-

mer properties is still lacking. Novel separation

techniques provide additional motivation for

understanding the dynamics of knotted poly-

mers in electric fields (76, 54).

Unknotting

Knot removal can occur via two main mecha-

nisms: unraveling and intersegmental passage.

Unraveling is the reverse of the threading-

of-loose-ends mechanism that allows knots to

form in open chains. A clear example of unravel-

ing involved the agitation of macroscopic gran-

ular chains on a vibrating plate. A tight trefoil

knot unraveled with an average unknotting time

that scaled quadratically with chain length (11).

This scaling behavior is reminiscent of knot dif-

fusion in linear polymers predicted by a mech-

anism of “knot region breathing” (67).

As with diffusion, the unraveling of knots

in polymers is affected by external constraints.

MD simulations of polyethylene melts found

that macromolecular crowding causes trefoil

knots to unravel through a slithering motion

with alternating hairpin growth and shrink-

age, resulting in a scaling exponent of 2.5 for

the average unknotting time (51). Similarly,

a tight trefoil knot in a polymer constrained

within a narrow channel was predicted to un-

ravel through simultaneous changes in size and

position, with a cubic dependency of mean knot

lifetime on the polymer length (71).

A situation in which knots must unravel

rapidly is during the ejection of DNA from vi-

ral capsids upon cell infection. The electrostatic
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repulsions and entropic penalty experienced by

DNA molecules confined within phage cap-

sids result in high internal forces (78) of up

to ∼100 pN, according to measurements by

optical tweezers (84). Such forces are capable

of removing DNA knots in some viruses upon

exit from the capsid through a narrow opening,

as confirmed by MD simulations of a coarse-

grained polymer chain initially confined within

a sphere (66). In this system, the ejection dy-

namics were controlled primarily by the rep-

tation of the polymer through the knot (66), a

process presumably similar to the knot diffusion

observed experimentally by Bao et al. (8).

The second general mechanism of unknot-

ting is intersegmental passage, which can also

lead to knot formation. This mechanism con-

sists of passing chain segments through tempo-

rary cuts on other segments of the same chain.

This procedure is carried out at the cellular level

by type II DNA topoisomerases, which use ATP

to lower the fraction of knotted DNA below

the levels observed in random cyclization (91).

Knotting and catenation of DNA interfere with

vital cellular processes (59), including repli-

cation (9), transcription (25), and chromatin

Hairpin-like G segment model

Hooked juxtaposition model

b 

a 

Figure 4

Models of unknotting by type II DNA topoisomerases. (a) In the hairpin-like G
segment model (111), the enzyme binds to the G segment and sharply bends it
into a hairpin-like structure; the T segment is then allowed to pass only from
the inside to the outside of the hairpin. Adapted from Reference 111. (b) The
hooked juxtapositions model (59) assumes that hooked juxtapositions form
frequently in knotted DNA and that the enzyme binds to DNA only at these
juxtapositions. Once bound, the enzyme catalyzes the intersegmental passage.
Adapted from Reference 59.

remodeling (88). Hence, type II DNA topo-

isomerases have been an attractive target for an-

ticancer drugs (28) and antibiotics (107). The

molecular mechanism by which type II DNA

topoisomerases break, pass, and rejoin dsDNA

is fairly well understood (36, 72, 93), but the

higher-level mechanism that leads to a global

topological simplification of DNA is a subject

of continuing debate (59, 111).

A few interesting models of type II DNA

topoisomerases action have been proposed (59,

111). Two of these models seem consistent with

the structure of yeast topoisomerase II (30). In

the first model (113) (Figure 4a), the enzyme

binds to a DNA segment, known as the G seg-

ment, and bends it sharply into a hairpin-like

structure. Next, the enzyme waits for another

DNA segment, called the T segment, to fall

into the sharp bend. Then, the enzyme passes

the T segment through a break in the G seg-

ment, from the inside to the outside of the

hairpin. Indeed, MC simulations of this model

using a discrete wormlike chain found the pres-

ence of hairpin G segments to lower the steady-

state fraction of knots by a factor of 14. This

value, however, is less than the maximum of 90

observed in experiments with type II DNA

topoisomerases (91).

The other model of topoisomerase action

(Figure 4b) is based on two assumptions (14).

First, hooked juxtapositions, or locations where

two DNA segments touch and bend around

each other, occur more frequently in globally

linked DNA than in unlinked DNA. Second,

the enzyme binds preferentially to DNA at

hooked juxtapositions. Once bound, the en-

zyme passes one segment through the other.

Hence, type II DNA topoisomerases disentan-

gle DNA by selectively removing hooked jux-

tapositions. This model’s ability to predict a

significant steady-state reduction of knots and

catenanes below topological equilibrium was

supported by MC simulations with lattice poly-

gons (60) and freely jointed equilateral chains

(17). Nonetheless, these models of DNA may

not be sufficiently accurate (111). Additional

simulations with wormlike chains may clarify

the significance of hooked juxtapositions (59).
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The negative supercoiling state of DNA also

seems to affect the results of topoisomerase ac-

tion. Early MC simulations of a wormlike chain

model of circular DNA suggested that super-

coiling reduces the free energy of highly chi-

ral knots below that of unknotted DNA, effec-

tively favoring knot formation in the presence

of type II DNA topoisomerases (82). A more re-

cent study explicitly accounted for the changes

in linking number introduced by DNA gyrase

after each intersegmental passage to maintain

a constant level of torsional tension in DNA

(16). The resulting knot probability distribu-

tions suggested that negative supercoiling op-

poses segment passages in directions that lead to

knotting. Thus, the supercoiling action of DNA

gyrase may be the principal driver toward low

levels of DNA knotting in vivo (16).

CONCLUSION

Knots have been discovered in a wide range of

systems, from DNA and proteins to catheters

and umbilical cords, and have thus attracted

much attention from biophysicists. In this re-

view we have explored a variety of topics in

the biophysics of knotting. Despite the tremen-

dous progress made in this field by theoretical

and experimental studies, many open questions

remain, which are summarized below. These

questions could inspire new research efforts.

In particular, computer simulations and single-

molecule experiments hold great promise in

clarifying knotting mechanisms, while emerg-

ing techniques for high-resolution molecular

imaging should facilitate the study of knotting

processes inside the cell.

SUMMARY POINTS

1. The Jones, Alexander, and HOMFLY polynomials from knot theory are powerful tools

for analyzing and classifying physical knots.

2. An agitated string forms knots within seconds. The probability of knotting and the knot

complexity increase with increasing string length, flexibility, and agitation time. A simple

model assuming random braid moves of a string end reproduces the experimental trends.

3. Knots are common in DNA and the different knot types can be separated by using elec-

trophoresis techniques, which exploit the varying mobility of knotted DNA in entangled

media in response to electric fields.

4. Knots have recently been discovered in proteins. The formation mechanisms and the

biological function of these knots are just beginning to be studied.

5. Knots can be generated artificially in nanoscale systems and used to study fundamentals of

knot dynamics. Localized knots in DNA diffuse via a random-walk process that exhibits

interesting trends with respect to tension applied across the molecule.

6. Confinement and solvent conditions not only play an important role in determining the

types and sizes of knots that appear in biophysical systems, but also affect the diffusion

and localization of knots.

7. Knots appear to weaken strings under tension but can have a stabilizing effect on knotted

systems such as proteins.

8. DNA topoisomerases are enzymes that play an important role in the disentanglement

of DNA, and their mechanism of topological simplification is only now beginning to be

understood.
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FUTURE ISSUES

1. The function of knotted structures within proteins and the mechanism by which these

knots form remain mysterious. How do knots form in proteins? Are chaperones needed

to fold knotted proteins? How do proteins benefit from having knotted backbones?

2. The effect of macromolecular crowding on the knotting dynamics of different biopoly-

mers within the cell has not been examined so far. This effect could be important for

understanding knotting in vivo.

3. The transitions of knots from one type to another in both open and closed chains are

far from fully understood. Do these transitions follow thermodynamic probabilities and

patterns or is the process chaotic? What are the dynamics of these transitions? How do

they depend on the type of agitation and chain (open versus closed)?

4. The formation of knots in human umbilical cord and surgically implanted shunt tubes

is undesirable, but the underlying causes are unclear. Can such processes be accurately

studied and modeled? Can such knots then be avoided?

5. Improved imaging approaches for the visualization of knots, both molecular and macro-

scopic, and both in vitro and in vivo, are needed to facilitate the experimental investigation

of knot dynamics.

6. Are there any useful applications for molecular knots in biotechnology, nanotechnology,

and nanomedicine?

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that

might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

D. Meluzzi was supported partly by the NIH Heme and Blood Proteins Training Grant No.

5T32DK007233–33 and by the ARCS Foundation. The authors are grateful to Dr. Martin

Kenward for helpful comments.

LITERATURE CITED
1. Good beginner’s

introduction to

mathematical knot

theory.

1. Adams CC. 2004. The Knot Book. Providence, RI: Am. Math. Soc.
2. Andersson FI, Pina DG, Mallam AL, Blaser G, Jackson SE. 2009. Untangling the folding mechanism of

the 5(2)-knotted protein UCH-L3. FEBS J. 276:2625–35
3. Arai Y, Yasuda R, Akashi KI, Harada Y, Miyata H, et al. 1999. Tying a molecular knot with optical

tweezers. Nature 399:446–48
4. Arsuaga J, Diao Y. 2008. DNA knotting in spooling like conformations in bacteriophages. Comput. Math.

Methods Med. 9:303–16

5. Explores DNA knot

conformations formed

inside viruses and

provides a theoretical

analysis exploiting

concepts from

mathematical knot

theory.

5. Arsuaga J, Vazquez M, McGuirk P, Trigueros S, Sumners DW, Roca J. 2005. DNA knots reveal

a chiral organization of DNA in phage capsids. Proc. Natl. Acad. Sci. USA 102:9165–69
6. Arsuaga J, Vazquez M, Trigueros S, Sumners DW, Roca J. 2002. Knotting probability of DNA molecules

confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. USA 99:5373–77
7. Baker NM, Rajan R, Mondragon A. 2009. Structural studies of type I topoisomerases. Nucleic Acids Res.

37:693–701

362 Meluzzi · Smith · Arya

A
n
n
u
. 
R

ev
. 
B

io
p
h
y
s.

 2
0
1
0
.3

9
:3

4
9
-3

6
6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
 -

 S
an

 D
ie

g
o
 o

n
 0

5
/3

1
/1

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



8. Reports the

remarkable feat of tying

a knot in a single DNA

molecule with optical

tweezers and imaging

the diffusion of the knot

within the molecule by

fluorescence

microscopy.

8. Bao XR, Lee HJ, Quake SR. 2003. Behavior of complex knots in single DNA molecules. Phys.

Rev. Lett. 91:265506

9. Baxter J, Diffley JFX. 2008. Topoisomerase II inactivation prevents the completion of DNA replication

in budding yeast. Mol. Cell 30:790–802

10. Belmonte A, Shelley MJ, Eldakar ST, Wiggins CH. 2001. Dynamic patterns and self-knotting of a driven

hanging chain. Phys. Rev. Lett. 87:114301

11. Ben-Naim E, Daya ZA, Vorobieff P, Ecke RE. 2001. Knots and random walks in vibrated granular

chains. Phys. Rev. Lett. 86:1414
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71. Möbius W, Frey E, Gerland U. 2008. Spontaneous unknotting of a polymer confined in a nanochannel.

Nano Lett. 8:4518–22

72. Nitiss JL. 2009. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev.

Cancer 9:327–37

73. Olavarrieta L, Robles MLM, Hernández P, Krimer DB, Schvartzman JB. 2002. Knotting dynamics

during DNA replication. Mol. Microbiol. 46:699–707

74. Orlandini E, Stella AL, Vanderzande C. 2009. The size of knots in polymers. Phys. Biol. 6:025012

75. Orlandini E, Whittington SG. 2007. Statistical topology of closed curves: some applications in polymer

physics. Rev. Model. Phys. 79:611–42

76. Ou J, Cho J, Olson DW, Dorfman KD. 2009. DNA electrophoresis in a sparse ordered post array. Phys.

Rev. E 79:061904

77. Perkins TT, Smith DE, Chu S. 1994. Direct observation of tube-like motion of a single polymer chain.

Science 264:819–22

78. Petrov AS, Harvey SC. 2007. Structural and thermodynamic principles of viral packaging. Structure

15:21–27

79. Petrushenko ZM, Lai CH, Rai R, Rybenkov VV. 2006. DNA reshaping by MukB: right-handed knotting,

left-handed supercoiling. J. Biol. Chem. 281:4606–15

80. Pieranski P, Kasas S, Dietler G, Dubochet J, Stasiak A. 2001. Localization of breakage points in knotted

strings. New J. Phys. 3:10

81. Pieranski P, Przybyl S, Stasiak A. 2001. Tight open knots. Eur. Phys. J. E 6:123–28

82. Podtelezhnikov AA, Cozzarelli NR, Vologodskii AV. 1999. Equilibrium distributions of topological states

in circular DNA: interplay of supercoiling and knotting. Proc. Natl. Acad. Sci. USA 96:12974–79

83. Reports a systematic

experimental study of

knot formation in a

tumbling string and a

theoretical model for

knot formation via

random braid moves.

83. Raymer DM, Smith DE. 2007. Spontaneous knotting of an agitated string. Proc. Natl. Acad. Sci.

USA 104:16432–37

84. Rickgauer JP, Fuller DN, Grimes S, Jardine PJ, Anderson DL, Smith DE. 2008. Portal motor velocity

and internal force resisting viral DNA packaging in bacteriophage [phi]29. Biophys. J. 94:159–67

85. Robertson RM, Laib S, Smith DE. 2006. Diffusion of isolated DNA molecules: dependence on length

and topology. Proc. Natl. Acad. Sci. USA 103:7310–14

86. Robertson RM, Smith DE. 2007. Direct measurement of the intermolecular forces confining a single

molecule in an entangled polymer solution. Phys. Rev. Lett. 99:126001

87. Robertson RM, Smith DE. 2007. Strong effects of molecular topology on diffusion of entangled DNA

molecules. Proc. Natl. Acad. Sci. USA 104:4824–27

88. Rodriguez-Campos A. 1996. DNA knotting abolishes in vitro chromatin assembly. J. Biol. Chem.

271:14150–55

89. Rollins GC, Petrov AS, Harvey SC. 2008. The role of DNA twist in the packaging of viral genomes.

Biophys. J. 94:L38–40

90. Rybenkov VV, Cozzarelli NR, Vologodskii AV. 1993. Probability of DNA knotting and the effective

diameter of the DNA double helix. Proc. Natl. Acad. Sci. USA 90:5307–11

91. Rybenkov VV, Ullsperger C, Vologodskii AV, Cozzarelli NR. 1997. Simplification of DNA topology

below equilibrium values by type II topoisomerases. Science 277:690–93

92. Saitta AM, Soper PD, Wasserman E, Klein ML. 1999. Influence of a knot on the strength of a polymer

strand. Nature 399:46–48

93. Discusses the

properties, mechanisms,

and structures of

topoisomerase enzymes

that knot and unknot

DNA in vital cell

processes and are the

target of anticancer and

antibacterial drugs.93. Schoeffler AJ, Berger JM. 2008. DNA topoisomerases: harnessing and constraining energy to

govern chromosome topology. Q. Rev. Biophys. 41:41–101

www.annualreviews.org • Biophysics of Knotting 365

A
n
n
u
. 
R

ev
. 
B

io
p
h
y
s.

 2
0
1
0
.3

9
:3

4
9
-3

6
6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
 -

 S
an

 D
ie

g
o
 o

n
 0

5
/3

1
/1

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



94. Seeman NC. 1998. Nucleic acid nanostructures and topology. Angew. Chem. Int. Ed. 37:3220–38

95. Shaw SY, Wang JC. 1993. Knotting of a DNA chain during ring closure. Science 260:533–36

96. Sogo JM, Stasiak A, Robles MLM, Krimer DB, Hernández P, Schvartzman JB. 1999. Formation of knots

in partially replicated DNA molecules. J. Mol. Biol. 286:637–43

97. Demonstrates that

knotting of the human

umbilical cord can cause

fetal death.

97. Sornes T. 2000. Umbilical cord knots. Acta Obstet. Gynecol. Scand. 79:157–59

98. Stark WM, Boocock MR. 1994. The linkage change of a knotting reaction catalysed by Tn3 resolvase.

J. Mol. Biol. 239:25–36

99. Stasiak A, Katritch V, Bednar J, Michoud D, Dubochet J. 1996. Electrophoretic mobility of DNA knots.

Nature 384:122

100. Sulkowska JI, Sulkowski P, Onuchic J. 2009. Dodging the crisis of folding proteins with knots. Proc. Natl.

Acad. Sci. USA 106:3119–24

101. Sulkowska JI, Sulkowski P, Szymczak P, Cieplak M. 2008. Tightening of knots in proteins. Phys. Rev.

Lett. 100:058106

102. Sumners DW. 2009. Random knotting: theorems, simulations and applications. Lect. Notes Math.

1973:187–217

103. Taylor WR. 2000. A deeply knotted protein structure and how it might fold. Nature 406:916–19

104. Taylor WR. 2007. Protein knots and fold complexity: some new twists. Comput. Biol. Chem. 31:151–62

105. Trigueros S, Arsuaga J, Vazquez ME, Sumners DW, Roca J. 2001. Novel display of knotted DNA

molecules by two-dimensional gel electrophoresis. Nucleic Acids Res. 29:e67

106. Trigueros S, Roca J. 2007. Production of highly knotted DNA by means of cosmid circularization inside

phage capsids. BMC Biotechnol. 7:94

107. Tse-Dinh YC. 2007. Exploring DNA topoisomerases as targets of novel therapeutic agents in the treat-

ment of infectious diseases. Infect. Dis. Drug Targets 7:3–9

108. Virnau P, Kantor Y, Kardar M. 2005. Knots in globule and coil phases of a model polyethylene. J. Am.

Chem. Soc. 127:15102–6

109. Virnau P, Mirny LA, Kardar M. 2006. Intricate knots in proteins: function and evolution. PLoS Comput.

Biol. 2:e122

110. Vologodskii A. 2006. Brownian dynamics simulation of knot diffusion along a stretched DNA molecule.

Biophys. J. 90:1594–97

111. Vologodskii A. 2009. Theoretical models of DNA topology simplification by type IIA DNA topoiso-

merases. Nucleic Acids Res. 37:3125–33

112. Vologodskii AV, Crisona NJ, Laurie B, Pieranski P, Katritch V, et al. 1998. Sedimentation and elec-

trophoretic migration of DNA knots and catenanes. J. Mol. Biol. 278:1–3

113. Vologodskii AV, Zhang W, Rybenkov VV, Podtelezhnikov AA, Subramanian D, et al. 2001. Mechanism

of topology simplification by type II DNA topoisomerases. Proc. Natl. Acad. Sci. USA 98:3045–49

114. Wasserman SA, Cozzarelli N. 1991. Supercoiled DNA-directed knotting by T4 topoisomerase. J. Biol.

Chem. 266:20567–73

115. Wasserman SA, Dungan JM, Cozzarelli NR. 1985. Discovery of a predicted DNA knot substantiates a

model for site-specific recombination. Science 229:171–74

116. Weber C, Rios PDL, Dietler G, Stasiak A. 2006. Simulations of electrophoretic collisions of DNA knots

with gel obstacles. J. Phys. Condens. Matter 18:S161–71

117. Weber C, Stasiak A, Rios PDL, Dietler G. 2006. Numerical simulation of gel electrophoresis of DNA

knots in weak and strong electric fields. Biophys. J. 90:3100–5

118. Whittington S. 2009. Lattice polygons and related objects. Lect. Notes Phys. 775:23–41

119. Wolfson JS, McHugh GL, Hooper DC, Swartz MN. 1985. Knotting of DNA molecules isolated from

deletion mutants of intact bacteriophage P4. Nucleic Acids Res. 13:6695–702

120. Yeates TO, Norcross TS, King NP. 2007. Knotted and topologically complex proteins as models for

studying folding and stability. Curr. Opin. Chem. Biol. 11:595–603

121. Yu S, Xi ZL. 2008. A steered molecular dynamics study on the elastic behavior of knotted polymer chains.

Chin. Phys. 17:1480–89

366 Meluzzi · Smith · Arya

A
n
n
u
. 
R

ev
. 
B

io
p
h
y
s.

 2
0
1
0
.3

9
:3

4
9
-3

6
6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
 -

 S
an

 D
ie

g
o
 o

n
 0

5
/3

1
/1

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



Annual Review of

Biophysics

Volume 39, 2010
Contents

Adventures in Physical Chemistry

Harden McConnell ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 1

Global Dynamics of Proteins: Bridging Between Structure

and Function

Ivet Bahar, Timothy R. Lezon, Lee-Wei Yang, and Eran Eyal ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣23

Simplified Models of Biological Networks

Kim Sneppen, Sandeep Krishna, and Szabolcs Semsey ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣43

Compact Intermediates in RNA Folding

Sarah A. Woodson ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣61

Nanopore Analysis of Nucleic Acids Bound to Exonucleases

and Polymerases

David Deamer ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣79

Actin Dynamics: From Nanoscale to Microscale

Anders E. Carlsson ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣91

Eukaryotic Mechanosensitive Channels
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