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Abstract

Summary: The BioPlex project has created two proteome scale, cell-line-specific protein–protein interaction (PPI)
networks: the first in 293T cells, including 120k interactions among 15k proteins; and the second in HCT116 cells,
including 70k interactions between 10k proteins. Here, we describe programmatic access to the BioPlex PPI networks
and integration with related resources from within R and Python. Besides PPI networks for 293T and HCT116 cells,
this includes access to CORUM protein complex data, PFAM protein domain data, PDB protein structures, and tran-
scriptome and proteome data for the two cell lines. The implemented functionality serves as a basis for integrative
downstream analysis of BioPlex PPI data with domain-specific R and Python packages, including efficient execution
of maximum scoring sub-network analysis, protein domain–domain association analysis, mapping of PPIs onto 3D
protein structures and analysis of BioPlex PPIs at the interface of transcriptomic and proteomic data.

Availability and implementation: The BioPlex R package is available from Bioconductor (bioconductor.org/pack
ages/BioPlex), and the BioPlex Python package is available from PyPI (pypi.org/project/bioplexpy). Applications and
downstream analyses are available from GitHub (github.com/ccb-hms/BioPlexAnalysis).

Contact: ludwig_geistlinger@hms.harvard.edu

1 Introduction

Protein–protein interactions (PPI) are physical contacts between pro-
teins that are essential for the function, organization and regulation
of molecular processes. PPIs can be experimentally detected based
on yeast two-hybrid screening (Y2H) or affinity-purification mass
spectrometry (AP-MS), and computationally inferred using a variety
of strategies. Although comprehensive databases of validated and
predicted PPIs exist, available PPI networks remain fragmentary and
provide limited information on context dependency of the contained
interactions. Using a large-scale AP-MS platform for two human cell
lines, the BioPlex project has recently started to explore context de-
pendency of human PPIs at proteome scale, which revealed shared
and cell-specific modules between cell lines (Huttlin et al., 2021). To
enable straightforward and reproducible access to the BioPlex PPI
networks and facilitate integration with related data resources, we
provide software packages implemented in R and Python that pro-
vide analysis capabilities for a series of downstream applications
and that connect the networks with domain-specific functionality of
the two major data science ecosystems.

2 Features

Import and representation of PPI data. The packages read PPI data
from a simple file format that provide the bait ID and the prey ID
for each interaction, along with a probability that the interaction
resulted from a bona fide interacting partner (Fig. 1A). Once
imported, the PPI data are stored for efficient representation and
manipulation in dedicated graph data structures as implemented in
Bioconductor’s graph package (Carey et al., 2005) and Python’s
NetworkX package (Hagberg et al., 2008).

Overlap analysis with human protein complexes. For the assess-
ment of coverage on known protein complexes, we provide func-
tions to import complex data from CORUM (Giurgiu et al., 2019).
Once protein complex data have been obtained, the user can assess
whether and to which extent a given PPI network overlaps with
human protein complexes (Fig. 1B). As a certain amount of overlap
can be expected just by chance, an assessment of statistical signifi-
cance is needed to decide whether the observed overlap is greater
(enrichment) or less (depletion) than expected by chance. We there-
fore implemented functions for testing overlaps of PPIs with a
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complex based on random sampling or network randomization. The
random sampling procedure compares the observed number of inter-
actions within a complex to random sub-networks of the PPI net-
work, matching the number of subunits, the bait: prey ratio, and the
node degree distribution of the complex. The network randomiza-
tion procedure randomizes the network a defined number of times
and calculates for each complex how often the number of edges in
the complex in a randomized network exceeds the number of edges
in the complex observed for the true PPI network. Both approaches
can also be applied to other gene sets, and we provide visualization
functions for the illustration of differential enrichment of a complex
between network versions and cell lines.

Domain–domain association analysis. For the detection of protein
domains that mediate interactions by binding complementary domains
within other proteins, we provide functions to obtain protein domain
information from PFAM (Sonnhammer et al., 1998) and annotation to
the metadata for each node of the graph (Fig. 1C). Given the obtained
PFAM domains, the packages implement functionality for the identifi-
cation of statistically associated domain pairs connected by a dispro-
portionately high number of PPIs. We therefore assess domain pairs
connected by two or more PPIs for significance using Fisher’s exact test
based on (i) the number of PPIs connecting both domains; (ii) the num-
bers of PPIs involving either domain individually; and (iii) the number
of PPIs not involving either domain. Although the domain association
analysis identifies domain pairs whose parent proteins interact prefer-
entially, this does not necessarily mean that these domains themselves
are responsible for the interaction. Many may simply be passengers
that associate as a consequence of PPIs mediated by contacts elsewhere
in the protein sequence.

Mapping PPIs onto 3D protein structures. For the identification
of PPIs that connect complex subunits or protein domains that are
close enough to physically interact, we provide functionality to ob-
tain protein structures from PDB (Berman et al., 2000). As previous-
ly described (Huttlin et al., 2021), we therefore map a set of
proteins, for example, representing subunits of a complex, to PDB
structures, and annotate the mapping to the node metadata
(Fig. 1D). We then infer physical interactions within a structure by

calculating the distance between the atoms of different chains within
that structure. If the minimum distance between atoms of two chains
is below a given threshold (default: 6 Å), these proteins are defined
to interact directly; all other pairs of proteins that occurred in the
same structure are assumed to interact indirectly. We provide func-
tions to visually inspect such structurally inferred interaction graphs
side-by-side with the corresponding PDB structure.

Integration with omics data. Two sources of variability in the detec-
tion of PPIs via AP-MS are bait and prey expression, where larger frac-
tions of detected interactions can often be explained with higher
expression of either bait or prey proteins. For the systematic assessment
of AP-MS variability within the BioPlex networks, we provide functions
to obtain RNA-seq data for 293T cells (Sun et al., 2019) and HCT116
cells (Ghandi et al., 2019) and relative protein expression data compar-
ing 293T and HCT116 cells based on tandem mass tag analysis (Huttlin
et al., 2021). Datasets are provided in designated data structures as
implemented in the SummarizedExperiment package in R and the
anndata package in Python (Fig. 1E). Maximum subscoring network
analysis can be applied for the unsupervised identification of functional
modules based on differential expression between both cell lines on tran-
scriptomic and proteomic level. In a second supervised reduction step,
gene set enrichment analysis can be used to identify biological themes
within a module. Resulting enriched gene sets and pathways can be
visualized with an R/Shiny graph viewer, allowing the flexible overlay of
node and edge metadata attributes for interactive exploration at https://
ccb-rstudio-connect.hms.harvard.edu/graphviewer.
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Fig. 1. Overview. (A) The BioPlexR and BioPlexPy packages import PPIs from a flat file format into R and Python, and store them in dedicated graph data structures. The

packages provide functionality for integration with data resources and analysis capabilities for: (B) overlap analysis with human protein complexes from CORUM (Giurgiu

et al., 2019), (C) association analysis between protein domains from PFAM (Sonnhammer et al., 1998), (D) proximity analysis of interacting proteins in multi-chain protein

structures from PDB (Berman et al., 2000) and (E) integration with transcriptomic and proteomic data for both cell lines
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