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Abstract: Corneal transplantation is considered a convenient strategy for various types of corneal
disease needs. Even though it has been applied as a suitable solution for most corneal disorders,
patients still face several issues due to a lack of healthy donor corneas, and rejection is another
unknown risk of corneal transplant tissue. Corneal tissue engineering (CTE) has gained significant
consideration as an efficient approach to developing tissue-engineered scaffolds for corneal healing
and regeneration. Several approaches are tested to develop a substrate with equal transmittance
and mechanical properties to improve the regeneration of cornea tissue. In this regard, bioprinted
scaffolds have recently received sufficient attention in simulating corneal structure, owing to their
spectacular spatial control which produces a three-cell-loaded-dimensional corneal structure. In this
review, the anatomy and function of different layers of corneal tissue are highlighted, and then the
potential of the 3D bioprinting technique for promoting corneal regeneration is also discussed.

Keywords: corneal tissue engineering; epithelium; stroma; endothelium; 3D bioprinting

1. Introduction

The cornea, which is located in the anterior part of the eye, is a transparent layer and
acts as the window of the eye [1–3]. The corneal structure contains three transparent layers,
and two membranes [2]. The corneal structure transfers light into the eye’s environment
and protects the eye’s structure from mechanical or chemical environmental injuries, UV
light, and infection [4]. Corneal dysfunction causes corneal visual loss [5].

Corneal surgery and corneal transplantation are well-known therapies for corneal
blindness [5]. According to the World Health Organization (WHO), about 10 million
patients globally need healthy corneal donation [1]. Additionally, over 40,000 corneal
transplantations are carried out in the United States annually [6]. However, corneal trans-
plantation displayed several drawbacks including shortness of high-quality donor corneas,
expensive surgery, and rejected tissue due to the immune system and weakness for long-
term transplantation [7]. In addition, because aging diminishes the function of endothelial
cells, the quality of the transplanted cornea is of utmost importance [8]. Furthermore, the
tissue becomes ineligible for corneal transplantation by therapies that alter the corneal
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structure to improve vision, such as LASIK [9]. Scientists are utilizing stem cells and
tissue-engineering techniques to generate bioengineered cornea, or even individual corneal
layers, to address the shortage of eligible corneas for donation [10–12].

Tissue engineering utilizes cells, bioactive macromolecules, and scaffolds, or a blend of
the mentioned factors [13–17]. Human corneal cell keratoplasty (HCCK) was recently cho-
sen as an advanced corneal surgery technique. The HCCK technique includes transparent
carriers to improve human corneal cell behavior [18–20]. These lamellar keratoplasties and
tissue-engineered full-thickness are recognized as successful transplantations [5]. Although
donor corneas are used in these approaches, they still possess some challenges such as
allograft tissue availability and rejection [21]. Results have shown that the proliferative
ability of cultured human corneal cells can be preserved; thus, cornea tissue engineering
(CTE) is recognized as a suitable approach for reconstructing corneal damage [22]. A recent
study revealed that human corneal cells (HCCs) have adequate efficacy for cell propagation,
but they might show low biocompatibility, weak light transmittance, and poor mechanical
properties [23–25]. There are several methods of producing tissue-engineered scaffolds that
completely resemble corneal structures [9,26–29]. Among them, 3D bioprinting technology
is one of the potential approaches for producing artificial target tissue scaffolds. For exam-
ple, the advantage of choosing this method in scaffold construction is the induction of the
natural process during embryogenetic tissue formation and imitation [30–32]. Overall, 3D
printing is attractive due to its high spatial resolution, and the simultaneous processing of
cells and materials [33]. The conventional 3D printer consists of a classic inkjet, nozzles,
and printer heads with material loaded into the cartridges as bioinks [34–39]. Thus, this
review paper will highlight the corneal anatomy and different corneal layers’ functions,
ocular disorders, and a summary of different approaches in scaffold constructions with a
specific emphasis on 3D printed corneal tissue-engineered scaffolds.

2. Corneal Anatomy and Physiology

The cornea, known as the window of the eye, is optically transparent, including a
special structure that is avascular anatomically. This dome-shaped and specialized tissue
is located in the anterior part of the eye. Two major roles of the cornea are protecting
the eye from harsh environments, and transmitting over 80% of light to inner portions
(Figure 1A) [23]. As is evident in Figure 1B, the cornea is composed of three arranged
and transparent layers, and two membranes: The cornea includes the outermost layer of
epithelium, stroma, and the innermost layer of endothelium. Additionally, the epithelium
and stroma are separated by Bowman’s membrane. However, the stroma and endothelium
are separated by Descemet’s membrane (Figure 1B) [22]. Furthermore, the cornea acts as
the last superficial barrier of the eye, providing safety from external potential dangers,
and infections [40]. Moreover, to maintain and protect the integrity of the eye surface,
corneal nerves play a vital role [23]. Consequently, corneal regeneration is obtained by
nerve density, and corneal sensation factors after transplantation [4].

In addition, the aqueous humor is located at the eye’s surface, and the function of the
cornea depends on its malleability [41]. Moreover, it should be noted that the tear film
is placed in the outermost portion of the eye, and acts as a reservoir for antibacterial and
growth factors [9]. Additionally, one of the most critical roles of tear film in maintaining
homeostasis, proliferation, and repair is covering the corneal surface. The anatomical
importance of the cornea, which includes five transparent and arranged layers, corresponds
to a wide-angle lens [13].
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Figure 1. (A) The anatomy of the eye, cornea. (B) The cornea is an optically transparent multilayered 
structure consisting of three cell layers and two membranes. Adopted and modified from [1] 
(Chapter 67) with permission. 
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Figure 1. (A) The anatomy of the eye, cornea. (B) The cornea is an optically transparent multilayered
structure consisting of three cell layers and two membranes. Adopted and modified from [1]
(Chapter 67) with permission.

2.1. Corneal Epithelium

The epithelium is the outermost layer of the corneal tissue, and acts critically in the
refraction of light into the eye [42–44]. The epithelium is a highly innervated tissue with
nerve endings terminating at corneal epithelial layers [45]. The epithelium is a multilayered
tissue and has five cell layers which occupy 10% of the corneal structure, and is about
50 µm thick [22]. The epithelium, a biological barrier, is responsible for the transfer of
all soluble constituents and water out or into the stroma to maintain proper corneal light
transparency, providing a smooth layer [23]. There are three cell types in the epithelial layer
of the cornea. These cell types consist of 3–4 layers of flattened squamous cells, 1–3 layers
of wing cells, and a single layer of columnar basal cells. It should be noted that these cells
are held together by tight junctions [1]. These cell types are regenerated every 7–10 days
continuously by the limbus stem cells (LSCs) [46].

There are some challenges in the regeneration of the epithelial layer by tissue engi-
neering approaches, such as mimicking its arranged complexity, maintaining integrity as a
sufficient barrier, and replacing epithelial cells continually [47–49]. In general, the epithelial
layer, as the outermost layer, can keep the eye safe from mechanical damage, infection, and
injuries [4]. In addition, it has a role in protecting the retina from UV damage [4].

2.2. Corneal Stroma

The stroma occupies 90% of the corneal tissue and 5% of corneal keratocyte cells
(CKCs), and is an acellular layer but also a dense connective layer derived from neural crest
cells [40]. The stroma comprises over 200 noncellular collagenous lamellae that are fully
uniform, small, and aligned collagen fibers [7]. When injuries occur, flattened fibroblasts
are activated. These lie quiescently, typically to produce collagen, then stabilize collagenous
lamellae, and secrete the stromal components [2]. There are two important properties of
a healthy stroma layer: optical transparency, and suitable mechanical strength [12–14].
Optical transparency is needed for biophysical properties, and suitable mechanical strength
can be decreased when this organized structure is disturbed. Light transmittance can
be reduced as a result of stromal damage and disruption. The stroma expresses two
major challenges for the tissue engineer: equal mechanical stability, and high optical
transparency [50].

2.3. Corneal Endothelium

Although the endothelium is the thinnest layer of the corneal tissue, it is important for
maintaining function, and the ability to maintain corneal reproduction [1]. It is necessary
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to maintain dehydration by keeping optimal optical clarity [51]. Originally, the human
endothelial cells (HECs) consist of about 5000 cells/mm2, while the number of HECs shows
loss with increasing age. In general, the major challenge for tissue-engineered transplanta-
tion is the HECs cell number of out 2500 cells/mm2 [52]. The endothelium functions as a
leaking pump of the corneal structure by leaking from the stroma layer in the presence of
excessive stromal hydration (above 80%) [53]. The pumping-leak function process contains
Na+ and K+-ATPase pumps that occupy the basolateral membrane. The main function
of pumping-leak is to maintain stromal relative dehydration through transporting ions
and water from the stroma to the tear film and aqueous humor [54–56]. The main charac-
terization challenge is the efficiency measurement of the transplanted HECs [57]. There
are some selective glucose transporters in this layer, permitting nutrition transformation
from the aqueous humor to feed the epithelial and CKCs. Therefore, the main function of
the endothelial layer is optical transparency with regulated hydrophilic proteoglycan and
collagen interfibrillar spacing. In addition, endothelial distortion might lead to a loss in
pump function [58].

3. Cells
3.1. Epithelium Cells

The corneal epithelial cells function as a physical barrier that resists the outer environ-
ment to maintain a healthy stroma layer. This effective corneal cell layer has a continuous
turnover, with a lifespan of approximately 7 to 10 days (Figure 2). This turnover function is
well described by the XYZ hypothesis [1]: X, the basal epithelial cells form the layer capable
of proliferation properties; Y, migration centripetally of peripheral cells of new basal cells
from the limbus to the cornea; and Z, loss of the epithelial cells from the surface. Generally,
the epithelial cells shed constantly, and are substituted by a new cell sheet [59]. X + Y = Z
describes the corneal epithelium’s maintenance function: cell loss and replacement. These
three stages describe the complete corneal wound healing process: Z represents the epithe-
lial cell loss from the limbus, step Y describes the covering of the surface by the wound
surface, and lastly, in the final step X, proliferation provides cells with the ability to replace
the epithelial tissue. As a result, the intensity of the centripetal movement and enhancement
of proliferation ability are reasons to promote corneal wound healing [60].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. The major role of the limbus is to regenerate epithelium where the limbal stem cells (LSCs) 
reside. LSCs produce transient amplifying cells (TACs) that have a significant proliferation 
potential. Then, TACs migrate to epithelium which is responsible for producing epithelial cells and 
is replaced. Mes = mesenchymal cell, Mel = melanocyte, Fib = fibroblast, Conj = conjunctiva. Adopted 
and modified from [1] (Chapter 67) with permission. 

3.2. Stroma Cells 
The corneal stroma consists of both extracellular and cellular components [61]. 

Cellular components of the mature corneal stroma are CKCs. CKCs have a dendritic 
morphology and are responsible for the maintenance of the ECM of the stroma. CKCs 
generate keratocan and lumican, and they are the key factors in maintaining the shape 
and transparency of the stroma. These small leucine-rich protein family members 
(keratocan and lumican) are the most important keratan sulfate proteoglycans in the 
corneal stroma [62–64]. Keratocan is solely found as a proteoglycan in the cornea, while 
lumican may also exist in various tissues as a glycosylated protein [33]. Both keratocan 
and lumican interact with collagen fibrils, and regulate the structure of this tissue to fit 
within their limits for specific properties [4]. Based on previous evidence, keratocan plays 
a crucial role in preserving the corneal structure [9]. 

Wound healing processes change the dendritic morphology of CKCs to be 
fibroblastic in appearance [65]. Two important functions of the keratocyte—the expression 
of keratocan and keratan sulfate synthesis—are decreased during the 
fibroblast/myofibroblast transformation [9]. Both isolated keratocytes from the corneal 
stroma and cultured keratocytes exhibit fibroblastic/myofibroblast phenotypes, and, 
meanwhile, show decreased keratocan expression and keratan sulfate synthesis, similar 
to in vivo wound healing [66]. This demonstrates that keratocan can be regarded as an 
indication of the native keratocyte phenotype [2]. 

3.3. Endothelium Cells 
The key function of the endothelial cells is to pump excess fluid from the stroma and 

epithelium into the superficial layer of the cornea to maintain optimum corneal nutrition, 
and hydration [67]. This is recognized as the “pump-leak hypothesis”, preserving the 
cornea in a dehydrated state. It is worth mentioning that the hydration stage plays an 
important role in optical transparency (Figure 3) [60]. Endothelial cells are responsible for 
transporting proteins from inner layers using Na/K ATPase pumps. Thus, this gradient 
provides an osmotic pressure to maintain corneal stroma hydration, which is essential for 
endothelial cell growth [68]. 

Figure 2. The major role of the limbus is to regenerate epithelium where the limbal stem cells (LSCs)
reside. LSCs produce transient amplifying cells (TACs) that have a significant proliferation potential.
Then, TACs migrate to epithelium which is responsible for producing epithelial cells and is replaced.
Mes = mesenchymal cell, Mel = melanocyte, Fib = fibroblast, Conj = conjunctiva. Adopted and
modified from [1] (Chapter 67) with permission.
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3.2. Stroma Cells

The corneal stroma consists of both extracellular and cellular components [61]. Cellular
components of the mature corneal stroma are CKCs. CKCs have a dendritic morphology
and are responsible for the maintenance of the ECM of the stroma. CKCs generate keratocan
and lumican, and they are the key factors in maintaining the shape and transparency of the
stroma. These small leucine-rich protein family members (keratocan and lumican) are the
most important keratan sulfate proteoglycans in the corneal stroma [62–64]. Keratocan is
solely found as a proteoglycan in the cornea, while lumican may also exist in various tissues
as a glycosylated protein [33]. Both keratocan and lumican interact with collagen fibrils, and
regulate the structure of this tissue to fit within their limits for specific properties [4]. Based
on previous evidence, keratocan plays a crucial role in preserving the corneal structure [9].

Wound healing processes change the dendritic morphology of CKCs to be fibroblastic
in appearance [65]. Two important functions of the keratocyte—the expression of kera-
tocan and keratan sulfate synthesis—are decreased during the fibroblast/myofibroblast
transformation [9]. Both isolated keratocytes from the corneal stroma and cultured kera-
tocytes exhibit fibroblastic/myofibroblast phenotypes, and, meanwhile, show decreased
keratocan expression and keratan sulfate synthesis, similar to in vivo wound healing [66].
This demonstrates that keratocan can be regarded as an indication of the native keratocyte
phenotype [2].

3.3. Endothelium Cells

The key function of the endothelial cells is to pump excess fluid from the stroma and
epithelium into the superficial layer of the cornea to maintain optimum corneal nutrition,
and hydration [67]. This is recognized as the “pump-leak hypothesis”, preserving the
cornea in a dehydrated state. It is worth mentioning that the hydration stage plays an
important role in optical transparency (Figure 3) [60]. Endothelial cells are responsible for
transporting proteins from inner layers using Na/K ATPase pumps. Thus, this gradient
provides an osmotic pressure to maintain corneal stroma hydration, which is essential for
endothelial cell growth [68].
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4. Corneal Scarring

Understanding the processes of deficiency or disease in almost any aspect of the
visual system necessitates an intensive investigation of the structural foundations of the
cornea, hence necessitating a considerable emphasis on individualized medical and surgical
regeneration therapy. Vision impairment and obstruction of light to the eye have revealed a
lot of biological information about ophthalmic diseases, ranging from damaged superficial
layers and limbal cells to corneal injuries [4].

4.1. Keratoconus

Overall, keratoconus involves a general weakness of the connective tissue of the
cornea. It is a progressive, noninflammatory corneal dystrophy resulting in thinning and
protrusion of the cornea, changing it from a dome shape to a conical shape with gradual
bulging [69–71]. Initially, patients experience blurred vision with the same symptoms as
irregular astigmatism and refractive defect [72–74]. Vision is obscured as keratoconus
progresses. The extent of vision impairment is subject to the degree of progression.

As keratoconus progresses it can be more easily diagnosed, as patients experience
impaired night vision, photophobia, severe headaches due to eye strain, and eye itching.
Usually, the condition is bilateral, and begins in the early teenage years. Corneal scarring is
seen in advanced keratoconus stages, and can contribute to further vision loss until it even-
tually progresses to the point that corneal transplantation is critical to repair vision [75–77].
Keratoconus is responsible for stromal scarring, axial thinning, the disintegration of the
epithelial basement membrane, and breaks in the Bowman’s membrane. According to the
reported clinical case studies, the progression of keratoconus typically alters inevitable
astigmatism from regular to irregular [4].

4.2. Dry Eye Disease

Dry eye has a wide range of eye surface diseases. According to a study reported
in the 2007 international dry eye workshop, dry eye is a multidimensional disease, and
its symptoms include tear instability, visual disturbance, eye discomfort, and potentially
ocular surface damage [78]. According to data from previous studies, approximately
4.91 million Americans suffer from dry eye disease. Furthermore, there are tens of millions
of less severe symptoms that can lead to dry eye failure if they are not followed up, which
can trigger irritation—such as extended use of visual display terminals, or contact lens
wear [79]. The pathophysiology involves either increased tear evaporation, decreased
tear secretion, or both, resulting in hyperosmolarity of the tear film, and ocular surface
inflammation. Corneal epithelial integrity can be seen in dry eye disease in its moderate
to severe forms disrupted with punctate epithelial erosions; these erosions are detectable
with fluorescein staining. The most common treatment for moderate to severe dry eyes is
tearing supplementation, anti-inflammatory drops, eyelid hygiene, punctual plugs, and
oral tetracycline [80].

4.3. Bacterial Keratitis

Bacterial keratitis is well-known as a devastating infection of the cornea, which can
occur when the ocular defense is damaged. As a result, its spread causes inflammation,
and gradual loss of vision. It is important to note that epithelial defects and decreased
corneal sensitivity are prompting factors for severe ulcers, stromal necrosis, and bacterial
growth. Failure in the protective mechanism and lack of ocular surface integrity causes
the penetration of bacterial microbes into the cornea [81]. The most common causative
organisms of bacterial keratitis include Staphylococcus aureus, Streptococcus pneumonia, and
Staphylococcus epidermidis [82].

4.4. Light and Chemical Injuries

Clinically, exposure to UV light from a light source can damage the corneal epithe-
lium, and cause fluorescein staining. Snow blindness, tanning bed use, direct lightening,
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and direct observation of the sun are some of the major causes of lesions on the corneal
surface. Other important factors (such as chemical burns) can cause weakness in the cells
of the corneal surface and affect the epithelial regeneration, even leading to potential blind-
ness [83]. There are currently common treatments for superficial diseases that increase the
ability of the corneal epithelium to recover. For extreme cases, cell-based restorative and
repopulation treatments are necessary [21], which include techniques such as stem cell
transplants, allografts, and limbal autografts to promote re-epithelialization [84].

4.5. Corneal Abrasion and Foreign Body

Corneal abrasions are more common in patients with symptoms in the epithelial layer,
as they are more susceptible to injury. Abrasions typically occur with a range of symptoms,
such as foreign body sensation, pain, tearing, sensitivity to light, and decreased vision, and
it should be also noted that patients typically present with a history of trauma [85]. The
presence of a foreign body within the corneal calls for immediate action to avoid permanent
scarring, and serious loss of the epithelial cell surface. A deep wound with infected foreign
material is likely to result in severe complications, initiating traumatic iritis, recurrent
erosion syndrome, bacterial keratitis, and corneal ulcers [86].

5. Three-Dimensional Bioprinting

In general, the created scaffold structure is similar for all 3D printed models (Figure 4).
First, the creation of a high-quality 3D model from the desired object is required. Then, the
3D structure should be printed in 2D layers of thickness, defined by the 3D image. The
data will form the structure for layer-by-layer printing by transferring the command to
the printer’s desktop. The flexible manufacturing process allows it to be provided to the
targeted tissue. In addition, graphical methods can be designed, including computer-aided
design (CAD), and magnetic resonance imaging (MRI) of a structure similar to the data
received from patients [33].
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Another consideration is bioprinting, which uses cellular encapsulated biological mate-
rials as bioinks [87]. Scaffolds printed with a cell are produced in situ. In this circumstance,
the printing process must be carried out in disinfected conditions, and be compatible with
the cell. The importance of maintaining structure and having mechanical properties in
the printed structure are factors that limit the selection of cell-compatible materials [88].
It is also important to select the appropriate rheological parameter to reduce the shear
pressure, which is required for the printing parameters [89]. Nevertheless, cell-loaded
bioprinting reduces the resolution of the printed substrate. Secondly, the need to increase
the cell density ratio relative to the surface area is of critical importance [90]. It should be
noted that a healthy threshold of cell density in solid organs is considered to be about 109
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to 1010 cells per cell culture well. Up until now, bioprinted hydrogel scaffolds only had a
cell density ranging between 105 and 107 cells per cell culture well [91].

Bioprinting methods have successfully been applied by several researchers, and have
demonstrated the reliable properties of bioprinting techniques to generate ex vivo con-
structs and membranes [92]. For example, scientists have obtained noticeable features by a
microextrusion approach to produce a proper replacement for neural studies, generating
3D models of interacting human endothelial cells (HECs), and cancer studies by using a
laser-based method, or even recreation of native ECM of cartilage by a droplet-based tech-
nique [93–95]. As a top-down approach, bioprinted scaffolds are known as a biofabrication
technology for fabricating several types of ex vivo membranes and tissues artificially by
consecutive deposition of cell-loaded layers [96–99]. Different approaches can be applied
for fabricating bioprinted scaffolds such as laser-based, droplet-based, and extrusion-based
techniques (Figure 5) [100]. These bioprinting techniques are compatible with several kinds
of bioinks which can be crosslinked in different ways. However, optimizing bioink, accord-
ing to the requirements of each of these bioprinting techniques, is associated with different
challenges. An extrusion-based method is the most popular in comparison with other types
of bioprinting approaches [101–103], since it is compatible with most injectable hydrogel
platforms for biomedical engineering, and regeneration medicine applications [93,94,104].
In brief, this method contains pre-polymerized bioink which is extruded through a single
nozzle under pressure. The pressurized air can be applied to the printer head to produce a
3D construct by extruding printing material layer by layer.
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In addition to these three bioprinting methods, recent studies have demonstrated
two more techniques that have illustrated interesting results. These techniques can be
categorized into two major categories. Among these techniques, one involves using pho-
tocurable gels, and another is based on applying thermosensitive and natural (such as
collagen) bioinks [105–108]. As a photocurable gel, both poly (ethylene glycol) diacry-
late (PEGDA) and gelatin methacrylate (GelMA) can be crosslinked using lithium phenyl
(2,4,6-trimethyl benzoyl) phosphinate (LAP) as a crosslinker under visible light. Bernal
et al. [105] fabricated a GelMA-LAP bioink system to produce 3D printed osteogenic models
by employing the volumetric method, setting 2D light with rotating and synchronously
irradiated patterns. It should be noted that the volumetric bioprinting technique enables
geometrically constructed production which aims to create centimeter-scale constructs at
an unprecedented printing rate, opening new possibilities for upscaling the creation of the
hydrogel-based structure. The result showed that the polymer was not cured evenly and
only in some parts of the structure, preventing the gelation threshold as a result of increased
absorption. Looking on the bright side, after fourteen days of continuous cell culturing,
the tissue-engineered construct revealed enhanced alkaline phosphatase (ALP) expression,
and mineral deposition. Another study by Grigoryan et al. [106] generated multi-vascular
and intravascular structures via photopolymerizable gel with the addition of food dye for
the stereolithography approach. Both studies illustrated that it is possible to fabricate a
complex 3D construct via these methods, and demonstrate new possibilities for fabricating
corneal tissue suitable for tissue transplant applications. The second category of bioprinting
methods involves applying thermosensitive and natural bioinks [107,108]. Skylar-Scott
et al. [107] generated a 3D printing scaffold with the sacrificial writing into functional tissue
(SWIFT) approach. In the SWIFT technique, a high volume of cells are transferred into the
engineered ECM during the bioprinting procedure. This technique contains a sacrificial
gel that contains the cells. This gel is printed and after printing it is liquified by melting
at room temperature; thus, the gel is removed creating a path for the medium to flow.
The results have shown that after eight days of cell seeding cardiomyocyte cells showed
a beating function, proving the successful functional application. Another study which
was designed in the reverse order, in comparison to SWIFT, utilized freeform reversible
embedding of suspended hydrogels (FRESH), supporting the 3D printed structure during
the process which revealed positive results after 14 days of cell seeding [108]. Thus, the
obtained results can be used for human corneal generation.

Corneal Bioprinting

In general, corneal bioprinting offers a wide range of possibilities to address current
challenges and requirements of corneal tissue regeneration (i.e., controllable structure and
properties, similar mechanical strength to withstand environmental as well as structural
pressure, and fabricating a fully-organized corneal construct) [100]. As was addressed in
Sections 2 and 3, the corneal structure consists of three transparent layers. The thickest layer
of the cornea is the stromal layer (~500 µm), and the epithelium and endothelium are both
delicate in structure (<50 µm) [109]. The stromal layer occupied over 90% of the corneal
structure, and functionally is the most important tissue in CTE due to its transparency (as a
result of aligned collagen lamellae and proteoglycan expressions) and mechanical perfor-
mance (due to cross-linked collagen fibrils) [110]. In addition, the peripheral and central
sections of the stromal layer show different mechanical properties, which play a crucial role
in the orientation of collagen content, and corneal cell differentiation and alignment [111].
Therefore, to enhance the functionality of the stromal part, it is crucial to simulate the
micro and macrostructure since the physical, mechanical, and chemical properties of the
tissue-engineered structure directly and noticeably affect biological factors [9].

According to current studies, various bioprinting techniques for CTE have been
considered (Table 1) [33,67,112–121]. Sorkio et al. [112] analyzed the feasibility of a laser-
based bioprinting method to generate corneal tissue. In brief, the collagen type-I cell loaded
enhanced LSCs cell attachment and proliferation. Although it is possible to print a tissue-
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like stromal layer, the tissue-engineered structure may not be appropriate in its structure
and mechanical properties because of the very sensitive nature of CKCs. Additionally, the
fabricated scaffold did not have proper transparency for corneal demands. Another study
by Isaacson et al. [33] reported preparing bioink consisting of alginate-collagen type-I and
CKCs. The prepared ink was injected into a 3D mold made by acrylonitrile butadiene
styrene (ABS), and using the FRESH method. The final result was a structure similar to the
3D structure of corneal, with corneal tissue. Even though the produced construct showed
suitable transparency, it could not support CKCs properly and the cells could not reach a
dendritic shape.

Table 1. Summary of different experimental studies based on 3D printing techniques.

Corneal
Layer

Bioprinting
Method Material Cell Source Results Ref.

Stroma

Extrusion ALG, COL bioink,
FRESH support CKCs

â Similar structure to native cornea architecture
encapsulated stromal cells under COL-based bioink

â Stromal cells showed high cell viability [33]

Laser Matrigel,
COL bioink LECs

â Printed membranes showed maintaining good cell
viability and positive labeling for COL

â Suffered from lack of sufficient transparency [112]

Extrusion COL, dC CKCs

â The differentiation potential of hTMSCs just
observed with the Dc-COL membrane

â Proper mechanical flexibility
â Improved transparency properties of COL-Dc in

comparison with COL scaffold

[121]

Droplet COL, AG CKCs

â Keeping native keratocyte phenotype as well as
proper elongation

â Similar transparency in comparison with the
stromal layer

[113]

Extrusion
GelMa, reinforced

with PEG, PCL
Fibers

LSSCs
â Providing an ideal environment for the

preservation of keratocyte phenotype [120]

Extrusion GelMa CKCs

â Keratocytes showed keeping of the phenotype
â Similar transparency with the native cornea
â Adequate mechanical stability [118]

Extrusion dC CKCs

â The optimal nozzle diameter for bioprinting
cornea-like aligned collagen fibrils

â The optimal nozzle diameter to preserve the
morphology and phenotype of keratocytes

â Excellent transparency
â Keeping the keratocyte phenotype

[122]

Endothelium Extrusion
Gelatin, RGD bioink,
amniotic membrane

dC support
CECs â Enhanced cell vitality and proliferation [119]

Epithelium

Extrusion
GelMa bioink,

GelMa
dome-shaped mold

CEpCs
â Extremely transparent curved membrane through

geometric fabricated features [117]

Extrusion ALG, GelMa, COL CEpCs

â Good printability and high transparency
â Enhanced cell viability and proliferation
â Controllable in vitro degradability
â Improved epithelial cells markers

[114]

The vitality and proliferation of CKCs are challenging, since this sensitive type of
cell simply converts to scar-inducing stromal fibroblasts at non-desirable conditions. Re-
cently, this challenge was overcome with the droplet-based printing technique, since it is
more compatible with cells relating to laser-based or extrusion-based printing techniques.
Campos et al. [113] printed collagen-type I-agarose bioink corneal construct with CKCs en-
capsulation to produce a dome-shaped structure in a layer-by-layer manner. The obtained
results illustrated cell vitality and proliferation similar to the control sample, and showed
positive expression for both lumican and keratocan markers.
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From an anatomical standpoint, the stromal layer is difficult to regenerate with cur-
rent techniques due to its highly complex microstructure, and it being made of randomly
oriented collagen lamellae [120]. Additionally, the stromal mechanical strength and light
transmittance performance are completely related to the stromal unique structure, which
is fabricated from randomly oriented collagen fibrils [2]. Current research based on the
fabrication of aligned PCL-PEG fibers with the incorporation of limbal stem cells (LSCs)
and 15% GelMA gel to fabricate corneal tissue-engineered construct showed better me-
chanical strength with improved suture-ability, as well as improvement in expression of
CKCs markers. Moreover, the scaffold illustrated high transparency and similar mechanical
strength, in comparison with the native cornea [120]. Other studies have also been based
on the advancement of bioprinting techniques for CTE by employing decellularized cornea
gel or GelMA, showing improvement in CKCs differentiation, and better tensile strength.
The printed scaffold improved filopodial elongations and phenotype maintenance similar
to CKCs in vivo. The collected results motivated researchers to apply the bioprinting tech-
nique for the generation of CTE scaffolds due to their impact on architecture, transparency,
mechanical strength, and cell/scaffold interactions [118,121].

After examining the aforementioned studies, it can be challenging to introduce the
most promising technique to simulate corneal structure. For instance, enhanced mechanical
features are possible with an extrusion-based approach, or improved elastic modulus can
be achieved with a droplet-based technique; however, mechanical properties with a laser-
based technique are not discussed yet. As reported in recent papers, the corneal stroma
has about a 150–700 kPa elastic modulus [7]. Thus, the extrusion-based method would
be the best candidate if mechanical properties have been chosen as the most important
parameter. However, other properties such as microstructure and geometrical curvature are
also prominent, which can be better satisfied using the droplet-based method. Furthermore,
bioprinting considerably removes the possibility of human error, and it is superior to casting
gels into molds in simulating native curvature of the corneal. Additionally, according to
the microstructure, although it is not addressed by recent studies, future studies may be
focused on the CKCs migration and orientation by employing smart fiber alignment [123].

6. Nanotechnology in CTE

Nanotechnology can be employed for the development of corneal scaffolds to enhance
their physicochemical characteristics [9]. Nano scaffolds offer unique mechanical aspects
that promote cell adhesion, proliferation, and differentiation, in addition to facilitating
gas and nutrient exchange and waste removal [4]. For instance, dendrimers (~10 nm)
are high-contrast polymers with a 3D ionic form, and many end groups [9]. The great-
est benefits of dendritic systems are their high density of functional side chains, their
capacity to manage network crosslinks, and their scalability across a broad range of sizes.
It has been demonstrated that dendrimer-based hydrogels enhance the efficient healing
of corneal fractures, without scarring or inflammation. Due to the ability to modulate
the crosslinking process and alter the chemistry of crosslinking, it is feasible to influence
the duration of resorption, and hence control the wound healing process over a longer
period [124]. Thus, dendrimers are labile “smart” nanomaterials that can be employed for
wound healing during long recovery periods, with a minimal likelihood of triggering an in-
flammatory reaction [124,125]. Combining nanotechnology and corneal tissue engineering
with natural biomaterials could be a potential approach for reaching the current goal in this
category [126]. For instance, to create biomaterials with the appropriate attributes, metal
nanoparticles, graphene oxide, carbon nanotubes, and nanoliposomes can be combined.
Enhancing the proliferation and functionality of additional stem cells is facilitated by their
in situ transformation from sol to gel. Soft nanoparticles can interact with polymer chains
and contribute to the hydrogel grid’s subsequent crosslinking, hence enhancing its mechan-
ical aspects [126–128]. In a study, Tayebi et al. [129] produced chitosan nanoparticles into
chitosan/polycaprolactone membranes yielding a biodegradable, transparent scaffold for
cultivating corneal endothelial cells. The chitosan nanoparticles/polycaprolactone, which
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have the lowest wettability, exhibited transparency comparable to human stromal tissue.
The scaffold was non-cytotoxic, and enhanced the proliferation of CECs. The biophysical
results revealed that CECs adhered to the scaffold, and formed a dense monolayer. Thus,
the created scaffold appears to be appropriate for corneal endothelium regeneration. In
another study, Chang et al. [130] developed a novel ophthalmic formulation based on
moxifloxacin and dexamethasone-loaded nanostructured lipid carriers mixed with colla-
gen/gelatin/alginate for the treatment of a corneal disorder, particularly bacterial keratitis.
The nanoparticles had the following characteristics: average size: 132.1 ± 73.58 nm; zeta po-
tential: 6.27 ± 4.95 mV; entrapment efficiency: 91.5 ± 3.5%; and drug content: 18.1 ± 1.7%.
The findings indicated that the nanoparticles could release an effective working concen-
tration in 60 min, and sustain the drug release for a minimum of 12 h. While the samples
did not show any toxicities, the substrate enhanced the cell numbers of CEpCs. An animal
study confirmed that it inhibits the growth of pathogen microorganisms, and promotes
corneal wound healing. The results suggest that the nanoparticle formulation may be
an effective anti-inflammatory agent for CTE. The application of nanoparticles, through
using the bioprinting technique, permits tailored therapy for more precise and successful
disease treatment [100]. Nanotechnology is predicted to be employed in the future to
personalize regenerative medicine utilizing human stem cells, and to provide therapeutic
tools to maintain a healthy environment for the growth and maturation of stem cells in
the damaged area [131]. However, nanotechnology research in CTE is still in its infancy,
and only limited in vivo investigations are reported. The behavior of corneal cells in tissue
engineering constructions in corneal injury has been widely proven in vitro, but in vivo
proof-of-concept investigations are lacking, leaving many concerns unanswered.

7. Conclusions and Future Progress

Recently, different studies on the advancement of CTE replacements are focused on an-
alyzing various biomaterials, and fabrication methods. Although there are several studies
on this subject, the prior studies displayed a lack of understanding of the corneal function
and its structure; therefore, there is still significant room for progress in mimicking the na-
tive corneal properties, such as corneal physicochemical properties. Even though different
studies have shown that biomaterials might have similar mechanical, optical, and physical
properties to the natural cornea, it is challenging to arrange these biomaterials into the same
well-organized structures as the natural cornea. Bioprinted tissue engineering scaffolds
with proper orthogonal lamellae architecture can be a crucial step for the successful fabrica-
tion of CTE scaffolds. In this regard, the fabrication of a successful CTE scaffold will be
mostly dependent on generating necessary features, such as releasing important functional
biomolecules to improve corneal components, cells, and nerve regeneration. Furthermore,
to produce a tissue-engineered scaffold adjusting mechanical and optical features is crucial
as well. Research shows that bioprinted scaffolds equipped with nanotechnology compo-
nents and nanoscale characteristics can improve the potential of CTE. The ultimate aim of
CTE is to improve, preserve, and restore vision by developing nanotechnology-enabled
regenerative therapies to heal damaged corneal tissues based on unique patient needs.
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