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10 Abstract

11 The increasing number of mastectomies results in a greater demand for breast reconstruction characterized by simplicity and

12 aQ1 low complication profile. Reconstructive surgeons are investigating tissue engineering (TE) strategies to overcome the

13 current surgical drawbacks. 3D bioprinting is the rising technique for the fabrication of large tissue constructs which

14 provides a potential solution for unmet clinical needs in breast reconstruction building on decades of experience in

15 autologous fat grafting, adipose-derived mesenchymal stem cell (ASC) biology and TE. A scaffold was bioprinted using

16 encapsulated ASC spheroids in methacrylated gelatin ink (GelMA). Uniform ASC spheroids with an ideal geometry and

17 diameter for bioprinting were formed, using a high-throughput non-adhesive agarose microwell system. ASC spheroids in

18 adipogenic differentiation medium (ADM) were evaluated through live/dead staining, histology (HE, Oil Red O), TEM and

19 RT-qPCR. Viable spheroids were obtained for up to 14 days post-printing and showed multilocular microvacuoles and

20 successful differentiation toward mature adipocytes shown by gene expression analysis. Moreover, spheroids were able to

21 assemble at random in GelMA, creating a macrotissue. Combining the advantage of microtissues to self-assemble and the

22 controlled organization by bioprintingQ2 technologies, these ASC spheroids can be useful as building blocks for the

23 engineering of soft tissue implants.

24 1 Introduction

25 Breast cancer is the most common cancer in women

26 worldwide, with nearly 1.7 million new cases diagnosed in

27 2012 (second most common cancer overall). This represents

28 about 12% of all new cancer cases and 25% of all cancers in

29 women [1]. Mastectomies impair the esthetic appearance,

30 function and psychological well-being of patients. In

31addition to breast reconstruction following mastectomy for

32established breast cancer, an increasing number of women

33with BRCA mutations (25%) is opting for prophylactic

34mastectomy followed by breast reconstruction, indicating

35the need for soft tissue implants [2]. The success of con-

36ventional implant-based breast reconstruction has been

37hindered by complications such as capsular contracture,

38infection, rupture, foreign body reaction and anaplastic

39large-cell lymphoma [3]. Adipose tissue (AT), in the form

40of a free flap, has been the preferred method of choice since

41patients are pleased with the natural shape, consistency and

42permanency of the superior esthetic results [4]. Despite

43major advancements in microsurgery and transplantation,

44reconstruction remains hindered by the availability of donor

45sites. Even in less extensive cases, the harvest of donor

46tissue carries a significant risk of donor site morbidity and

47the potential for failure, infection, and degradation at the

48host site. The microvascular nature of the surgical procedure

49makes it a costly solution and requires a high level of sur-

50gical skill [5]. Surgeons are persistently attempting to

51optimize surgical techniques and investigating new
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52 technologies regarding soft tissue deformities due to high

53 patient expectations for improved functional/cosmetic out-

54 comes [6]. Tissue engineering (TE) strategies are widely

55 investigated to overcome the current surgical drawbacks.

56 3D bioprinting is a promising and popular branch of

57 modular TE. 3D bioprinting has garnered immense interest

58 over the last decade. The goal of bioprinting is to replace

59 damaged tissues with live, vascularized, de novo created

60 biosimilar constructs, suitable for surgical implantation. It

61 promises to bridge the gap between artificially engineered

62 tissue constructs and native tissues since it can co-deliver

63 cells and biomaterials with precise control over the com-

64 position, spatial distribution, and architectural accuracy [7].

65 Computer software is able to extract data from patient

66 images such as computed tomography scans or magnetic

67 resonance imaging to produce tailor-made tissue implants.

68 3D culture models have been cited to overcome the gap

69 between in vitro and animal studies in early-stage drug

70 screening. In preclinical setting 95% of oncology drugs fail

71 to receive FDA approval [8]. Part of the issue can be

72 administered to the lack of suitable culture models that

73 represent the in vivo environment. 3D culture models such

74 as spheroids have proven to exhibit much more in vivo-like

75 phenotype concerning cell metabolism and cell-cell inter-

76 action compared to any planar cell culture [9].

77 Spheroids or microtissues are cellular building blocks for

78 fabricating a construct with a cellular organization. They

79 can be compared to organoid structures encountered in

80 embryology [10]. The organization of cells into a spheroid,

81 or the fusion of spheroids into a macrotissue, is explained

82 by the differential adhesion hypothesis (DAH). The DAH

83 states that multicellular spheroids behave like liquids.

84 Spheroids, consisting of motile cells, will rearrange and

85 merge to maximize their adhesive bonds and minimize their

86 free energy [11]. They can be stacked in a 3D composition

87 to form larger constructs [12]. Experiments with tissue

88 spheroids show that closely placed spheroids will fuse into

89 larger microtissues [13]. This has been demonstrated by

90 Jakab et al. [14], who placed two rounded embryonic heart

91 cushion tissue explants in a hanging drop culture. These

92 spheroids fused perfectly by fusion kinetics described for

93 the fusion of two droplets [15]. Benefits of 3D spheroids

94 over 2D monolayer cultures include increased adipogenic

95 markers such as triglyceride accumulation as well as

96 expression of adipose-specific genes such as peroxisome

97 proliferator-activated-receptor-γ (PPAR-γ) [16]. Turner

98 et al. [17] created a 3D spheroid model using human

99 adipose-derived mesenchymal stem cells (ASCs) and their

100 subsequent adipogenic differentiation in vitro. Mature ASC

101 spheroids were evaluated based on functional markers such

102 as CD36-expression and PPAR-γ gene expression. The

103 authors report minimal spheroid loss during culture. The

104 CD36-expression, representing cell competency for

105consuming extracellular fatty acids, was consistently found

106to be higher in 3D ASC spheroids compared to 2D mono-

107layers. Such head-to-head comparison of 3D cultures vs 2D

108monolayer cultures may lead to a better in vitro model to

109uncover important biological mechanisms involved in dis-

110eases such as obesity and marks the importance of a 3D

111culture model in preclinical setting.

1123D spheroids have been found to enhance pluripotent

113potential and differential efficacy of multiple mesenchymal

114cell lines when exposed to appropriate differentiation media

115in vitro [17, 18]. Kapur et al. [19] explored growth, com-

116position and behavior of culture-expanded ASC spheroids

117using hanging-drop method. Their study demonstrates that

118ASC spheroids display a capacity for extensive renewal,

119developmental plasticity and internally directed organiza-

120tion. Their work confirms that ASC spheroids may be used

121to provide a flexible and practical modular foundation to

122build tissues and organs using bioprinting techniques.

123Bioprinting relies on the use of a hydrogel as a cell-

124supporting matrix [20]. Hydrogels have become an attrac-

125tive scaffold for TE purposes due to their ability to closely

126mimic the native tissue extracellular matrix (ECM) [6].

127Various cell types such as adult cells, human umbilical vein

128endothelial cells (HUVECs), fibroblasts, cardiomyocytes,

129myoblasts, mesenchymal stem cells (MSCs), bone marrow-

130derived mesenchymal stem cells (BM-MSCs), neural stem

131cells (NSCs), ASCs, human induced pluripotent stem cells

132(iPSCs), glioma stem cells, and amniotic fluid-derived stem

133cells have been used for 3D bioprinting [21]. Despite good

134proofs of concept of appropriate matrices for bioprinting

135[22–24], the technology is still in its infancy and bioinks

136only recently became commercially available. Biomaterials

137such as alginate, fibrin, hyaluronic acid, silk, chitosan,

138decellularized ECM and pluronic F-127 have been used as

139scaffold material [25]. Collagen is one of the most abundant

140proteins present in the human body (around 30%) [26]. Yao

141et al. [27] encapsulated ASCs in collagen/alginate micro-

142spheres and after 4 weeks of culture, the spheres were

143macroscopically similar to AT lobules. After injection in

144mice, the authors observed vascularized AT constructs. It

145remains difficult to reproduce the delicate structure-function

146relationships of complex tissues and organs using this

147approach.

148Van Vlierberghe et al. [28] noted that the desired scaffold

149for TE should have the modifiable mechanical properties of

150synthetic biomaterials and the biomimetic properties of

151naturally occurring biomaterials. Gelatin, a biopolymer

152formed by the hydrolysis of collagen, and its derivatives are

153some of the nature-derived bioinks that have gained sig-

154nificant attention. Generally, they have good biocompat-

155ibility, are cell supportive, biodegradable and easily

156optimized for bioprinting [25]. Vashi et al. [26] reported

157successful adipogenesis in mice after implanting a TE
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158 chamber filled with gelatin microspheres impregnated with

159 bFGF-2. An important limitation of natural biomaterials is

160 their rapid rate of degradation upon contact with bodily

161 fluids or culture media [29]. At low temperatures, gelatin

162 forms a physical hydrogel network. In order to circumvent

163 dissolution at 37 °C, methacrylamide-groups are incorpo-

164 rated into the gelatin. Gelatin-Methacrylamide (GelMA) is

165 usually crosslinked with photoinitiators that allow to retain

166 its biocompatibility with minimal cytotoxicity [30]. Long-

167 term stability of the printed structure typically depends on

168 the crosslinking mechanism after or during bioprinting.

169 Irgacure® 2959 (Irg) is widely considered the golden stan-

170 dard for GelMA hydrogel crosslinking. Free radicals are

171 created by the interaction of the photoinitiators with visible

172 or UV light and initiate the polymerization reaction. This

173 results in the formation of a stable chemically crosslinked

174 gelatin network at physiological conditions after physical

175 and chemical crosslinking [31]. GelMA is a cheap and easy

176 to handle shear thinning biomaterial, which makes it sui-

177 table for extrusion-based printing methods. GelMA presents

178 both natural cell binding motifs, such as RGD (Arg-Gly-

179 Asp) and MMP-sensitive degradation sites, and different

180 amino acid side-chain functionalities (carboxylic acid,

181 amines, hydroxyl) which allow for further covalent mod-

182 ifications such as with hyaluronic acid [32]. Clevenger et al.

183 [33] encapsulated ASCs in a biomimetic poly(ethylene)

184 glycol (PEG) hydrogel with RGD cell attachment sequences

185 along with MMP cleavage sites. ASC survival was sup-

186 ported, and the hydrogel demonstrated scaffold remodeling

187 upon ASC differentiation, which potentially allows for

188 greater vascularization of the graft through the holes created

189 in the hydrogel scaffold through MMP cleavage. Huber

190 et al. [34] encapsulated mature adipocytes in GelMA and

191 was able to produce fatty tissue equivalents reaching similar

192 tissue morphology to that of native fatty tissue after 14 days

193 of culture. The authors proved that GelMA is a promising

194 bioink for new printing techniques due to its biocompat-

195 ibility and tunable properties.

196 The aim of the present work is to successfully fabricate

197 high throughput adipogenic differentiated ASC spheroids

198 and subsequently bioprint the ASC spheroids encapsulated

199 in GelMA into a 3D construct for adipose tissue engineering

200 (ATE). First, adipogenic differentiation of ASC spheroids

201 was compared to a 2D culture. Second, ASCs and ASC

202 spheroids were seeded on or encapsulated in GelMA.

203 Finally, the encapsulated ASCs and ASC spheroids were

204 3D bioprinted. 3D bioprinting technology provides a

205 potential solution for unmet clinical needs in breast recon-

206 struction that builds on decades of experience and expertise

207 in autologous fat grafting, ASC biology and TE. No studies,

208 till now, have considered the use of bioprinting technology

209 to fabricate AT constructs using predifferentiated ASC

210 spheroids. The development of successful printing

211strategies requires investigation of all key elements in this

212process.

2132 Materials and methods

2142.1 Adipose-derived mesenchymal stem cell culture

215ASCs (Cryo-Save, Niel, Belgium), characterized as CD105+,

216CD90+, CD73+, CD45−, CD34− (according to the Inter-

217national Federation for Adipose Therapeutics and the

218International Society for Cellular Therapy) by flow cyto-

219metry [35], were cultured in standard culture medium

220(SCM) consisting of Dulbecco’s modified eagle’s medium

221(DMEM) Glutamax (Gibco®, Life Technologies), supple-

222mented with 10% fetal bovine serum (FBS) (Gibco®, Life

223Technologies), and 1% Penicillin/Streptomycin (Gibco®,

224Life Technologies) in T75 (75 cm2) CELLSTAR™ Filter

225Cap Cell Culture Flasks (Greiner Bio-One GmbH,

226Germany, Cat. No. 82050-856) at a density of

227350,000–500,000 cells per falcon as previously described

228[35, 36]. The falcons were placed and maintained in a

229humidified 5% CO2-containing atmosphere at 37 °C. Cul-

230ture medium was replenished twice a week. Once 80–90%

231confluency was achieved, ASCs were dissociated from the

232culture flasks with TrypLE® (Gibco®, Life Technologies).

233Adipogenic differentiation medium (ADM) consists of

234SCM supplemented with 1 μM dexamethasone (Sigma-

235Aldrich®, D4902), 200 μM indomethacin (Sigma-Aldrich®,

236I7378), 10 μg/mL insulin (Sigma-Aldrich®, I9278), 0.5 mM

2373-isobutyl-1-methylxantine (IBMX) (Sigma-Aldrich®,

238I5879). All cell types were used up to passage 10 and were

239cultured at 37 °C in a humidified 5% CO2-containing

240atmosphere.

2412.2 Microchip fabrication, spheroid formation and
242collection

243Spheroids were generated by using a non-adherent micro-

244well culture system, as previously described [37, 38]. Tai-

245lor-made, negative polydimethylsiloxane (PDMS)

246microchip molds have a diameter of 1.8 cm and generate a

247microchip with 2865 pores with a diameter of 200 μm

248consisting of Ultrapure™Agarose (Life Technologies) 3w/v%.

249In total, 106 ASCs in 0.5 mL SCM were seeded per

250microchip to obtain spheroids [39]. After 24 h, SCM was

251removed and replenished with ADM. The morphology of

252the spheroids was analyzed through observation utilizing

253phase-contrast microscopy (Olympus IX 81). The evalua-

254tion of the morphometry was performed using the Xcel-

255lence image software that allowed the determination of

256several parameters, such as diameter, perimeter (p), and

257area (A).
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258 The formula fcircularity= (4πA)/p2 enabled the ability to

259 calculate the circularity of the spheroids. For diameter and

260 circularity evaluation, phase-contrast images of 75 spher-

261 oids cultured in SCM or ADM (illustrated in Fig. 1),

262 derived from three independent experiments (n= 3), were

263 assessed at 1, 4, 8 and 13 days. Spheroids were harvested at

264 1, 4, 8 and 13 days from the microchips in their respective

265 medium, collected in a tube, and centrifuged to obtain a

266 spheroid pellet and further analyzed with phase contrast

267 microscopy, fluorescence microscopy, histology and q-RT-

268 PCR as described below. For 3D hydrogel and bioprinting

269 experiments, spheroids were collected after 3 days and

270 encapsulated in GelMA subsequently.

271 2.3 2D GelMA hydrogel evaluation

272 2.3.1 2D adipogenic differentiation on GelMA hydrogels

273 GelMA, provided by the Polymer Chemistry and Bioma-

274 terials group (UGent), with a degree of substitution of 95%

275 (DS95) was sterilized with ethylene oxide (cold cycle, AZ

276 Sint-Jan, Brugge) and dissolved in PBS at 37 °C to obtain a

277 10 w/v% solution. 1-[4-(2-Hydroxyethoxy)-phenyl]-2-

278 hydroxy-2-methyl-1-propane-1-one, also known as Irg

279 (Ciba® Specialty Chemicals, Basel, Switzerland), was made

280 to a concentration of 0.8 w/v% in PBS and mixed with

281 GelMA according to the formula below.

The amount inmLð Þ of Irg 2mol%ð Þ needed for one gram of GelMA ¼

0:000385 mole amine functions for 1g of GelMAð Þ � 0:95

DS%ð Þ � 0:02 2mol% Irgacure 2959ð Þ�
224:3 Molecular weight of Irgacure 2959ð Þ

0:008 0:8wv% concentration of Irgacure 2959ð Þ

282283

284 Hydrogel discs were prepared by pipetting 250 μl

285 GelMA solution in each well of a 48-well plate and

286crosslinked for 20 min with 365 nm UV-A light (4 mW/cm²,

287UVP Inc.) in the presence of 2 mol% Irg.

288In total, 20,000 ASCs in 0.5 mL SCM were seeded on

28948-Multiwell Plates (21,053 ASCs/cm2) containing the

290hydrogels. As control, ASCs were seeded with a density of

29140,000 cells/well in 24-well plates (21,053 ASCs/cm2).

292After 48 h, SCM or ADM was added to the wells. Differ-

293entiation was observed at day 7, 11 and 14. ASCs were

294analyzed with fluorescence microcopy and q-RT-PCR as

295described below.

2962.3.2 Encapsulation of ASCs and spheroids in GelMA

297GelMA DS95 was prepared and mixed with Irg as described

298in “2D adipogenic differentiation on GelMA hydrogels”.

299ASCs were resuspended in the GelMA/Irg-solution at a

300concentration of 106 ASCs 250 μL−1. Spheroids were sus-

301pended in the GelMA/Irg-solution at a concentration of 1

302microchip (106 ASCs) 250 μL−1. The 250 μL-suspensions

303were added to 48 multiwell plates. After physical gelation

304of 30 min at 4 °C, the solution was illuminated for 15 min

305with UV-A (365 nm, 8 mW cm−2, UVP Inc.) in a laminar

306flow cabinet with a TFL-40V transilluminator (UVP

30795042001, Thermo Fisher Scientific Inc.). Constructs were

308cultured in ADM. Analyses were conducted on day 7, 11,

30914 and 23.

3102.4 Bioprinting

3113D bioprinting was performed with the 3DDiscovery®

312(RegenHU LTD) using a time pressure-based printhead.

313Printing parameters such as printing pressure, printing

314temperature, needle geometry and diameter, feedrate, as

315well as the mechanical properties of the bioink will influ-

316ence the thickness of the strands. 3D models can be

Figure 1 Phase contrast images (×10) of spheroids cultured in SCM (a–d) and spheroids cultured in ADM (e, f) on day 1, 4, 8 and 13
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317 designed layer-by-layer with BioCADTM, a drawing suite

318 enabling us to design a scaffold from scratch (as seen in

319 Fig. 2). The BioCAMTM software then generates a toolpath

320 based on the 3D digital models acquired from the Bio-

321 CADTM software.

322 ASCs and spheroids were encapsulated in GelMA at a

323 concentration of respectively 4 × 106 cells mL−1 and 4

324 microchips mL−1. The single cell or spheroid-laden GelMA

325 is placed in the cartridge heater (23 °C). Four layers were

326 printed (Fig. 2). Each layer consists of ten struts. A conical

327 needle with gauge 25 (ID of 0.25 mm) was used to print,

328 which resulted in constructs with a height of ±1 mm. The

329 constructs are made of layers with dimensions of 13 ×

330 13 mm and a line space of 1 mm.

331 After printing at 5 mm s−1, the constructs undergo phy-

332 sical gelation (30 min at 4 °C) before being crosslinked

333 under the same conditions as previously mentioned. To

334 intensify cross-linking, immersion fluid, consisting of PBS

335 with photoinitiator in equal concentration as the GelMA-

336 solution, was added. After crosslinking, the structures are

337 rinsed with PBS and submerged in appropriate medium and

338 placed in an incubator at 37 °C and 5% CO2.

339 2.5 Analyses and assays

340 2.5.1 Live/dead assay

341 A live/dead viability assay was conducted with Calcein AM

342 (CA) (cell-permeant dye, Anaspec, AS-89201) and propidium

343 iodide (PI) (Sigma-Aldrich®, P4170) to measure the viability

344 of ASCs and spheroids. Pictures were made using an inverted

345 fluorescence microscope (Olympus IX 81) with filters for

346 green fluorescent protein (GFP) and Texas Red (TxRed). The

347 microscope is equipped with Xcellence software (Olympus).

348Confocal images were captured with a Nikon A1R

349inverted confocal microscope with a dry objective (×10)

350and NIS Elements Viewer software (Nikon Instruments

351B.V.). EGFP laser (488 nm) and TxRed laser (561 nm) were

352selected. ND2-files were imported in (Fiji is just) Image J

353for analysis.

3542.5.2 Oil Red O

355Oil Red O staining was performed on 2D differentiation and

356spheroid experiments. ASCs or spheroids were rinsed with

357PBS and fixed with 4% NBF (neutral buffered for-

358maldehyde). After rinsing with distilled water, dehydrating

359with 60% Isopropanol and staining with Oil Red O, the cells

360could be visualized with light microscopy (Olympus IX 81).

3612.5.3 Hematoxylin–eosin staining

362Spheroids were fixed with 4% NBF overnight after 14 days

363of culture. The spheroids were passed through decreasing

364alcohol concentrations (100, 90, 80, 70%) and embedded in

365paraffin to obtain 5 μm coupes with a microtome. The

366sections were colored with HE and evaluated with light

367microscopy (Olympus BX51).

3682.5.4 OsO4 staining and transmission electron microscopy

369Spheroids were fixed with 2% glutaraldehyde after 14 days

370of culture. Glutaraldehyde was replaced with cacodylate

371buffer after 1 h. The buffer was replaced by osmiumtetra-

372oxide for 90 min and again replaced by cacodylate buffer.

373Afterwards, increasing acetone concentrations were added

374to the spheroids to be finally embedded in Spurr kit

375(Sigma). Semi-thin sections of 1 μm were mounted,

Figure 2 BioCADTM software

3D image of the design.

Scaffolds with ten struts and

four layers in six-well plates
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376 counterstained with hematoxylin–eosin and analyzed with

377 light microscopy.

378 Thin sections (60 nm) were cut, stained with uranyl

379 acetate and lead citrate and examined using a JEOL 1200

380 EX II transmission electron microscope operating at 80 keV

381 [36, 40].

382 2.5.5 Gene expression analysis (RT-qPCR)

383 To evaluate adipogenic differentiation, TaqMan gene

384 expression assays (Applied Biosystems, Foster City, Cali-

385 fornia) were performed for PPAR-γ and fatty acid binding

386 protein 4 (FABP-4) on day 7 after encapsulating spheroids

387 or bioprinting. PPAR-γ is a member of the nuclear-receptor

388 superfamily and a regulator of adipocyte differentiation

389 [41]. FABP-4 is a late marker of differentiation, encoding

390 the fatty acid binding protein found in adipocytes, and its

391 roles are believed to include fatty acid uptake, transport, and

392 metabolism [42]. Total RNA was extracted from cells

393 using Trizol (Qiagen, Vento, The Netherlands), and trea-

394 ted with DNAse I (Invitrogen). Concentration and purity

395 of RNA was measured using spectrophotometry, after

396 which reverse transcriptase reaction was performed using

397 a universal reverse transcriptase kit (Eurogentec, Liege,

398 Belgium) according to the company’s protocol. Reverse

399 transcriptase–quantitative polymerase chain reaction was

400 performed for gene expression analysis on the 7500 Fast

401 Real Time Polymerase Chain Reaction System (Applied

402 Biosystems, Foster City, Calif.). Relative quantification

403 (n-fold expression) values were calculated using the

404 equation 2−ΔΔCt relative to control ASCs at day 0.

405 GAPDH (4326317E-0906030) was selected as endogen-

406 ous control.

407 2.5.6 Confocal images and Image J

408 To investigate the impact of 3D bioprinting on viability,

409 scaffolds containing encapsulated spheroids were compared

410 with 3D bioprinted spheroid scaffolds (n= 30) through

411 confocal images (Nikon A1R inverted confocal microscope)

412 after 7 days of culture in ADM. Spheroids were fabricated

413 and encapsulated in GelMA as stated above. Scaffolds were

414 3D bioprinted under the same conditions as stated in 3.4.

415 CA/PI was added to the encapsulated spheroids and printed

416 scaffolds and incubated for 30 min. Confocal images were

417 taken by a Nikon A1R inverted confocal microscope with

418 NIS Elements AR software. 10 μm coupes were taken at

419 random points to give a full image-depth at a certain point.

420 The ND2-files were imported in (Fiji is just) Image J software.

421 Viability was measured according to standard protocol by

422 Bioactive Regenerative Therapeutics, Inc. Channels were split

423 in red and green channels, converted to 8-bit and projected in

424 one focal plane. Intensities were measured and quantified.

4252.6 Statistics

426All analyses represent data from three independent experi-

427ments. Data were analyzed using SPSS version 24.0 (SPSS

428GmbH Software) and are presented in the form of mean ±

429SD. To test for normality of the variables, the Shapiro–Wilk

430test was performed. The homogeneity of variances was

431assessed using the Levene’s test. A student’s t test was used

432to determine significant differences in sphericity and dia-

433meter between spheroids cultured in ADM and spheroids

434cultured in SCM on day 1, 4, 8 and 13. The difference in

435mean survival after 7 days of culture of spheroids encap-

436sulated in GelMA vs spheroids bioprinted after encapsula-

437tion in GelMA was determined using a student’s t test. To

438indicate the equivalent differentiation rates in both study

439groups, tested with the differentiation assay, a

440Mann–Whitney U test was performed. Statistical sig-

441nificance was considered to be a p value less than 0.05.

4423 Results

4433.1 Biofabrication of adipose-derived mesenchymal
444stem cell spheroids

445Spheroids were formed by seeding 1,000,000 ASCs on each

446agarose microchip with 200 μm pores in presence of SCM.

447Each agarose microchip has 2865 pores of 200 μm diameter,

448thus one microwell contains ~349 cells which will form one

449spheroid. Within 24 h after seeding, the ASCs formed

450spheroids and SCM was replenished with ADM (Fig. 1e) and

451compared to spheroids cultured in SCM (Fig. 1a) for 13 days.

452Spheroid geometry was characterized by measuring the

453diameter and circularity. Evaluation of the diameter of the

454spheroids cultured in SCM after 1, 4, 8 and 13 days showed

455significant smaller spheroids compared to spheroids cul-

456tured in ADM over time. The spheroids cultured in SCM

457decreased from a diameter of 134 ± 9.92 μm on day 1 to a

458diameter of 68 ± 4.63 μm on day 13. Spheroids cultured in

459ADM also decreased over time, albeit less significantly than

460the SCM group. On day 1 the average diameter was 153 ±

4619.18 μm and decreased to 101 ± 5.70 μm on day 13. Both

462groups showed compaction during the entire experiment but

463more pronounced in the SCM group (Fig. 1e). After 8 days,

464the diameter is maintained in both groups (Fig. 3). Spher-

465oids cultured in SCM were less uniform, smaller, more

466polygonal in shape and prone to disintegrate over time,

467associated with a higher amount of cell debris (Fig. 1d).

468Spheroids cultured in ADM have a significantly larger

469diameter (p < 0.001 with Student’s t comparison) compared

470to spheroids cultured in control medium on day 1 (19.16 μm

471CI: [13.75; 24.58]), 4 (45.5 μm CI: [41.9; 49.0]), 8 (30.5 μm

472CI: [28.2; 32.9]) and 13 (32.8 μm CI: [29.8; 35.7]).
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474 time (Fig. 1a). On the last day, the round shape could not be

475 seen in the control group anymore. This is confirmed by

476 measuring the circularity, which is calculated by the for-

477 mula 4 π Area
Perimeter2

. A value of 1 indicates a perfect circle.

478 Spheroids cultured in ADM are significantly more circular

479 (p < 0.001 with Student’s t comparison) at day 4 (11.1% CI:

480 [0.089; 0.134]), 8 (17.3% CI: [0.143; 0.203]) and 13 (30.8%

481 CI: [0.274; 0.342]). Circularity remained stable >90% in the

482 ADM group. Circularity slightly increased from day 1 to

483 day 13 for the adipogenic differentiation group, correlating

484 with the decrease in diameter and showing compactness.

485 The morphology and differentiation capacity of ASC

486 spheroids was analyzed with different methods: Oil Red O,

487 HE, OsO4 (light microscopy and electron microscopy) as

488 seen in Figs. 4 and 5. Oil Red O staining showed a more

489 intense and uniform staining of lipid droplets compared to

490 control. HE staining of spheroids in adipogenic culture

491 medium showed cavities that might indicate lipid droplets

492 since lipids dissolved in alcohol upon staining (Fig. 4, HE,

493 black arrow). This is in contrast to spheroids in SCM which

494 showed no cavities. Upon fixation with glutaraldehyde and

495 OsO4 on day 13, intracellular lipid droplets were visualized

496 in spheroids cultured in ADM. Spheroids cultured in SCM

497 showed minuscule lipid droplets, indicating less differ-

498 entiation. Electron microscopy analysis (Fig. 5) confirmed

499 the presence of giant lipid droplets and collagen III (one of

500 the main constituents of the interstitial matrix, secreted by

501 adipogenically differentiated cells) deposition in spheroids

502 cultured in ADM.

5033.2 Compatibility of single cells with GelMA

504Single cells seeded on GelMA hydrogels (Fig. 6a) showed

505good viability in both the adipose group and the control

506group. Up to 14 days after seeding the ASCs on GelMA, a

507high viability was seen. The ASCs cultured in adipogenic

508differentiation medium showed a polyhedral morphology

509with multiple vacuoles. Cells in SCM expressed a more

510fibroblast-like morphology with minimal differentiation.

511This form was maintained with minimal increase of min-

512uscule lipid droplets by day 14. Upon Oil Red O staining,

513differentiation was significantly higher compared to con-

514trols, which retained a spindle shape. A multivacuolar

515morphology, filling the cytoplasm, was seen after 14 days of

516culturing. In the control groups, almost no Oil Red O

517staining could be seen.

518After 14 days, vacuoles with lipids could be observed in

519encapsulated single cells in GelMA (Fig. 6, g). Even after

52014 days we had perfect viability in the adipose group, in

521which the adipocytes showed a typical polyhedral mor-

522phology. Since cells are embedded in 3D, the micro-

523environment is more related to natural AT. Up to 23 days

524after encapsulating the ASCs in GelMA, a high viability

525was seen.

5263.3 3D printing of ASCs/spheroids encapsulated in
527GelMA

528Constructs were 3D printed with a time-pressure printhead

529(DD-135N) at RT (19 °C) with a cartridge heater

Figure 3 Sphericity and diameter of spheroids cultured in ADM or

SCM at 1, 4, 8 and 13 days. Spheroids cultured in ADM are sig-

nificantly more circular and have a larger diameter compared to

spheroids cultured in control medium at each day (p < 0.001, with

Student’s t comparison). Bar graphs represent standard deviation
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530 (CF-300H) set to 23 °C. The 3DDiscovery© was set to a

531 feedrate setting (5 mm s−1). Printing took around 15 min to

532 complete a six-well plate with squared scaffolds of 13 and

5331 mm high (Fig. 7). After physical gelation at 4 °C for

53430 min, the constructs were illuminated under UV light

535(365 nm) at 8 mW cm−2 for 15 min in immersion fluid, to

Figure 4 Viability analysis with

Ca/PI and differentiation

analysis with Oil Red O, HE,

OsO4 fixation (light

microscopy, HE) after 7 days.

Spheroids were cultured in SCM

or ADM. Ca/PI staining was

analyzed with fluorescence

microscopy, differentiation was

analyzed with light microscopy.

White arrow: amorphous zone.

Black arrow: lipid droplet
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536 counter dissolution of the scaffolds at 37 °C due to ineffi-

537 cient crosslinking of GelMA. After photocrosslinking, the

538 immersion fluid was removed, the constructs were rinsed

539 with PBS and ADM or SCM (control) was added. The

540 constructs were incubated at 37 °C and 5% CO2.

541 In total, 95% of the scaffolds were intact after 24 h at

542 37 °C. Viability was good in both the adipose group as in

543 the control groups (Fig. 7). As seen in all pictures, a

544 homogenous distribution of cells was obtained. Equal via-

545 bility was observed at the edges of struts as at the center of

546 struts. Almost no dead cells were observed after 7 days of

547 culture. In the spheroid group, a heterogeneous solution for

548 printing was obtained. Spheroids were homogeneously

549 distributed in the GelMA bioink as well as in the printed

550 GelMA scaffold. Typical adipocyte features such as uni-

551 vacuolar morphology, or a gridQ3 structure cannot be

552 observed within 7 days of culture (Fig. 8).

553 No significant difference was found in viability between

554 spheroids encapsulated in GelMA (80% ± 0.086) and

555 spheroids encapsulated in GelMA and subsequently bio-

556 printed (79% ± 0.078) after 7 days of culture (p > 0.05 and

557 n= 30). Obtained images through CLSM are illustrated in

558 Fig. 9.

559 In TE, microtissues are used as building blocks for the

560 assembly of larger tissue constructs. Giant cell clusters were

561 noticed in the gel 7 days post-printing the scaffolds (Fig. 9).

562 3.4 RT-qPCR

563 To assess adipogenic differentiation, upregulation of key

564 adipogenic marker genes was detected at transcriptional

565 level (Fig. 10). PPAR-γ and FABP-4 mRNA levels were

566 quantified after 7 days of culture in ADM using RT-qPCR.

567 As negative control sample, ASCs cultured in standard

568 culture medium for 7 days, was used for comparison. An

569 upregulation of the adipogenic specific genes was observed

570 in spheroids cultured in microchips in ADM (Sphe),

571 spheroids encapsulated in GelMA and cultured in ADM

572(GM Sphe) and spheroids encapsulated in GelMA and

573subsequently bioprinted (Print Sphe). mRNA levels of

574FABP-4 were five times higher and PPAR-γ levels were

575twice as high compared to the control sample. No sig-

576nificant difference in gene expression was found when

577comparing the different spheroid conditions. A clear trend

578in upregulation of both genes is seen in all spheroid con-

579ditions compared to positive control consisting of ASCs

580cultured in adipogenic culture medium for 7 days.

5814 Discussion

582Classic top down TE approaches originate from attempts by

583chemical engineers to create porous scaffolds from biode-

584gradable polymers as a temporary template that supports

585cell attachment and tissue neomorphogenesis [43]. This

586approach is hindered by limited control over cell–cell

587contact and microarchitecture [44]. In the context of mod-

588ular bottom-up TE, spheroids are used as micro-building

589blocks for the fabrication of a macrotissue. In the present

590study, we developed a method to bioprint viable ASC

591spheroids, encapsulated in GelMA, in a desired 3D con-

592figuration. The use of a 3D bioprinter enables us to

593assemble these building blocks layer-by-layer with high

594spatial control.

595ASCs have become the focus in many TE strategies. The

596abundantly availability of AT and its inherent regenerative

597potential allows patients to donate a sufficient quantity for

598cell isolation with minimal risk of adverse effects. They are

599abundantly available, easy to harvest, multipotent and less

600painful to extract than BM-MSCs. They can easily be

601extracted after small liposuction under local anesthesia. AT

602possesses superior stem cell content compared to other

603tissues; as much as 2% of the cellular content of adipose

604may be ASCs, compared to 0.002% BM-MSCs in bone

605marrow [17]. ASCs cultured in vitro in the form of 3D

606spheroids have improved viability, self-renewal capacity,

Figure 5 Adipogenic

differentiation of spheroids

cultured in ADM after 7 days.

Visualization of cell

morphology (left picture) and

deposition of extracellular

structures (collagen III, right

picture). Black arrow: lipid

droplet. Transmission electron

microscopy
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Figure 6 a–d ASCs seeded on

GelMA: 20,000 ASCs were

seeded on GelMA films and

cultured in control or

adipogenic differentiation

medium. Oil Red O staining at

14 days taken with a

combination of Brightfield

and TxRed filters. e–h ASC

encapsulation in GelMA

10 w/v%, 106 ASCs mL−1.

Pictures taken at 14 days. All

pictures are live/dead assays

taken with GFP filters. White

arrow: lipid droplets

Figure 7 Bioprinted scaffolds measure 13 × 13 × 1 mm. Pictures of constructs taken after physical gelation at 4 °C for 30 min and illuminated under

UV light (365 nm) at 8 mW cm−2 for 15 min in immersion fluid
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607 and differentiation potential compared to 2D-cultured cells

608 as seen in our experiments. A number of studies have

609 demonstrated that 3D bioprinting ASC single cells is not

610 cytotoxic and preserves proliferative and adipogenic dif-

611 ferentiation capabilities of non-printed ASCs [34]. This is

612 confirmed in our research: both encapsulated and printed

613 ASC spheroids show excellent viability. ASCs seeded on or

614 encapsulated in GelMA show a polyhedral morphology

615 with multilocular microvacuoles within the cell cytoplasm,

616 which are morphological features associated with immature

617 adipocytes.

618 To demonstrate the successful differentiation and long-

619 term maintenance of the 3D human adipose stem cell

620 spheroids as functional adipocytes, we analyzed expression

621 of PPAR-γ, a key gene involved in adipogenesis, using RT-

622 qPCR. An upregulation of the adipogenic specific genes

623 was observed in spheroids encapsulated in GelMA and

624subsequently bioprinted. mRNA levels of FABP-4 were

625five times higher and PPAR-γ levels were twice as high

626compared to the 2D control sample. These findings are

627consistent with a recent experiment of Kim et al. [45] who

628encapsulated ASC spheroids in an alginate solution and

629subsequently bioprinted the mixture. They measured PPAR-

630γ levels 4.40-fold higher than control samples. Turner et al.

631[17] measured 2–5-fold PPAR-γ expression in ASC

632spheroids cultured in ADM compared to 2D monolayer

633cultures. In the adipogenic differentiation process, several

634parameters can enhance the differentiation: (1) the adipo-

635genic culture medium, (2) the cellular environment (2D cell

636monolayers vs 3D spheroids), (3) the hydrogel (cells or

637spheroids encapsulated in the hydrogel) and (4) the hydro-

638gel processing (encapsulation or bioprinting). In the present

639work, we have analyzed the adipogenic expression after

6407 days. At that time point, the adipogenic culture medium

Figure 8 Bioprinting ASCs or

spheroids encapsulated in

GelMA. ASCs (superior row) or

spheroids (inferior row)

encapsulated in GelMA cultured

in ADM. Pictures are live/dead

assays at day 1 and 7 post-

printing (Olympus IX 81). A

good viability was observed

after 1 and 7 days. A slight

decline in viability was observed

after 7 days in

encapsulated ASCs

Figure 9 Left: confocal images

taken with Nikon A1R inverted

confocal microscope and

projected in 1 focal plane using

(Fiji is just) Image J software.

Picture is taken 7 days post

printing. Right: giant cell cluster

7 days post-printing spheroids in

GelMA. Picture taken with

Nikon A1R inverted confocal

microscope
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642 entiation. The other parameters (spheroid formation,

643 hydrogel and bioprinting) will definitely have an impact on

644 adipogenic differentiation but this can only be notified at

645 other time points. We believe that adipogenic differentiation

646 will be enhanced in spheroids compared to 2D monolayers

647 at very early time points due to cell–cell interactions. At

648 later time points, it will be expected that the differentiation

649 in cellular spheroids can be more homogeneous. Impor-

650 tantly, current experiments have been performed with

651 GelMA as bioink. In the future, other bioinks with

652 improved impact on adipogenic differentiation will be

653 developed. These are the reasons why 3D bioprinting did

654 not have a huge impact on adipogenic differentiation,

655 nevertheless, the adipogenic differentiation did show a

656 small increase compared to cells cultured as 2D

657 monolayers.

658 We are able to conclude that ASCs lose their pro-

659 liferative capability as seen in our sphericity measurements:

660 decrease in diameter until an equilibrium is reached.

661 Spheroids gradually exhibit behaviors associated with AT

662 such as triglyceride accumulation and expression of adi-

663 pogenic genes and transcription factors. In addition, ASC

664 spheroids vastly outperformed 2D monolayer cultures

665 regarding CD36 and PPAR-γ-expression due to contact-

666 inhibited proliferation which serves as a cue for enhanced

667 adipogenic differentiation [17]. A clear trend in upregula-

668 tion of both FABP-4 and PPAR-γ is seen in all spheroid

669 conditions compared to positive control consisting of ASCs

670 cultured in adipogenic culture medium for 7 days in our

671 experiments. This indicates differentiation toward mature

672adipocytes in bioprinted constructs. We measured spheroid

673clusters of almost 600 μm, which is way more than the

674200 μm fabricated spheroids. The bioprinting needle has an

675internal diameter of 0.25 mm in order to obtain higher

676resolutions. This leads to the hypothesis that clusters were

677formed after printing through tissue fusion, indicating tissue

678formation. In addition, they showed reasonable viability

679upon live/dead staining. Autonomous self-assembly TE

680such as spheroids is based on embryological processes of

681tissue development [28]. Our experiments showed no sig-

682nificant difference in gene expression comparing the dif-

683ferent spheroid conditions, marking the negligible influence

684of bioprinting on differentiation capacity in addition to

685excellent viability.

686Live/dead assays of the bioprinted constructs show a

687mean viability of 79% ± 0078 after 7 days of culture (n=

68830). Until now, no other research group has bioprinted ASC

689spheroids in GelMA. Single ASCs have been encapsulated

690in multiple experiments and show viabilities in the same

691range [46]. Huber et al. [34] incorporated mature adipocytes

692in methacrylated gelatin for ATE and measured its

693mechanical properties. The authors mention storage moduli

694similar to native AT when small forces (0.05 N) are applied.

695Under higher loads (0.5 N), the storage modulus of native

696AT was significantly higher than methacrylated gelatin.

697Natural AT is organized in lobules containing adipocytes,

698surrounded by connective tissue. Hence the big difference

699in storage moduli between low and high loads. Evidence

700shows that mechanical properties of a scaffold can influence

701the differentiation of mesenchymal stem cells to a specific

702lineage [6]. ASCs tend to differentiate toward an adipogenic

Figure 10 Real-time quantitative polymerase chain reaction analysis of

the gene expression of adipogenic markers FABP-4 and PPAR-γ. 2D

negative control: ASCs cultured in SCM (2D−) (n= 1), 2D positive

control: ASCs cultured in ADM (2D+) (n= 1), Spheroids cultured in

microchips in ADM (Sphe) (n= 3), Spheroids encapsulated in GelMA

and cultured in ADM (GM Sphe) (n= 3) and spheroids encapsulated

in GelMA and subsequently bioprinted (Print Sphe) (n= 2). PPAR-γ

and FABP-4 mRNA was measured after 7 days of culture. Bar graphs

represent the logarithmic normalized fold expression relative to control

ASCs (2D−) on day 0. Values are the mean fold change & SEM of n

replicate experiments; *p > 0.05 with Mann–Whitney U test
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703 cell type when seeded onto a softer scaffold [47]. It is dif-

704 ficult to engineer a bioink that features the variable

705 mechanical properties of a tissue and the anatomical rela-

706 tions of the different cell types. A bioink is only a temporary

707 scaffold that will be replaced by self-made ECM after cells

708 undergo self-assembly and self-organization.

709 We only used a 10 w/v% hydrogel because of its

710 excellent bioprinting properties, which is consistent with the

711 work of Huber et al. [34], who concluded that non-cured

712 GM in solution is cytocompatible with mature adipocytes in

713 the tested range of 0.6–10 w/v%. In our protocol GelMA

714 was illuminated up to 15 min in order to prevent dissolution

715 at 37 °C post-printing. This is significantly more than the

716 curing times of up to 1 min by Gungor-Ozkerim et al. [48].

717 Still, we managed to have a mean viability of 79%. Irg is the

718 most commonly used photoinitiator but its peak absorption

719 point is not optimal to work with living cells. The excitation

720 peak is around 279 nm. When working with cells, higher

721 wavelengths (365–400 nm) are used because 279 nm would

722 likely cause DNA damage and protein damage. The

723 absorption peak of VA-086® is ~385 nm, which is in the

724 UV-A range and has been shown to have excellent bio-

725 compatibility properties [49]. However, when a certain

726 mechanical stiffness is needed, Irg provides a better stiff-

727 ness without damaging the cells too much in comparison

728 with VA-086®, where cell viability is affected greatly to

729 obtain similar mechanical strength [50]. Scaffolds with VA-

730 086® must be crosslinked twice as long as those with

731 Irgacure to obtain a similar stiffness. Unfortunately, there is

732 no working protocol to bioprint encapsulated spheroids with

733 VA-086®. 15 min of UV crosslinking was needed to achieve

734 stable constructs at 37 °C with a mean viability of 79%

735 7 days post-printing. The key limitation in photocrosslink-

736 ing techniques for creating tissues is that exposure to

737 harmful UV-light is needed and that photoinitiators may be

738 cytotoxic in their precursor or radical form [51]. To avoid

739 the use of UV-light, photoinitiators can be activated with

740 blue (visible) light at 405 nm. This is obviously not as

741 damaging to cell viability, but a co-initiator and co-

742 monomer are needed to produce enough radicals. This is

743 why we still prefer the use of the more toxic UV-induced

744 photoinitiators. UV is also known to have limited penetra-

745 tion depth which might affect the overall polymerization

746 efficiency for large constructs. Lin et al. [52] evaluated the

747 effect of UV exposure on endothelial colony-forming cells

748 and mesenchymal stem cells. They found that moderate UV

749 light in UV spectrum of 320–500 nm at an intensity of

750 7.5W cm−2 had >90% viability if exposed up to 200 s. We

751 believe that the high number of cells in our constructs and

752 the fact that spheroids are strong aggregations of differ-

753 entiated cells, neither presence of Irg nor the UV-irradiation

754 has a direct negative influence on the short-term viability of

755 encapsulated spheroids. Photo-polymerization can be

756incorporated during the printing process: after each

757deposition of a layer, the construct is irradiated, which

758potentially shortens total exposure time since only a small

759layer of unexposed material needs to be penetrated by UV-

760light. No significant difference was found in viability

761between spheroids encapsulated in GelMA (80% ± 0.086)

762and spheroids encapsulated in GelMA and subsequently

763bioprinted (79% ± 0.078) after 7 days of culture (p > 0.05

764and n= 30). This means that the extruding pressures of

7650.050MPa do not exhibit a negative influence on cell via-

766bility. Although gelatin provides a cell supportive envir-

767onment to bioinks, its properties to protect cells from stress

768from bioprinting are low. This could mean that the physical

769structure of a spheroid offers slight protection against

770harmful factors of the bioprinting process. A decrease of

77120% in viability in both the spheroids encapsulated in

772GelMA and bioprinted spheroids can be administered to the

773detrimental effects of crosslinking radicals and UV radia-

774tion. Zhao et al. [53] optimized nozzle temperature during

775bioprinting to improve cell viability. The authors reported

77690% survival of HeLa cells at 25 °C nozzle temperature

777whereas 50% survival has been reported at 10 °C. This is in

778accordance to our nozzle temperature and room temperature

779of 23 °C. At 23 °C the applied pressure is around

7800.050MPa.

781Building stable, large-volume AT by conventional

782tissue-engineering methods presents numerous challenges.

783Standard subcutaneous AT consists of differentiated adi-

784pocytes that make up only 90% of the total volume [54].

785The main challenge is the establishment of a vascular sys-

786tem throughout the entire engineered tissue for long term

787survival in vivo. In mature AT, a well-defined vascular

788system is present with every adipocyte surrounded by one

789or more capillaries: AT triggers blood vessel formation and

790ECs promote preadipocyte differentiation [55]. A vascular

791system is a necessary component for AT engineering (long-

792term functionality) but also notoriously difficult to incor-

793porate. Organ-on-chip technology is the closest we have

794come to achieve a functional unit but their integration into

795functional bioprinted constructs need more efforts to suc-

796ceed [56]. In a next step, HUVEC’s could be introduced in

797the 3D spheroids. Unfortunately, adipocytes and endothelial

798cells have disparate preferred culture conditions, requiring

799compromised solutions. Occhetta et al. [32] obtained good

800results co-culturing BM-MSCs with HUVEC. They note

801that BM-MSCs nor HUVECs cultured alone could form a

802surrounding ECM at comparable levels as the co-cultured

803constructs. Spheroid organization in vitro prior to implan-

804tation has been shown to improve in vivo angiogenesis [57].

805We measured diameters of 153 ± 9.18 μm on day 1 and

806101 ± 5.70 μm on day 13 of culture in ADM with a sig-

807nificant difference (p < 0.001) compared to spheroids cul-

808tured in SCM. Viability tends to be higher in ADM
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809 compared to control medium in our experiments. The cells

810 cultured in SCM expressed a pseudo-sphere shape due to

811 the form of the microchip. After manipulation of ASC

812 spheroids in SCM, a high tendency to disintegrate into

813 single cells was observed and thus they could not be used as

814 control for encapsulated spheroids. Our spheroids cultured

815 in ADM showed compaction over time. The decrease of

816 diameter and darker color of spheroids in our experiments

817 may be explained by the increased cell-cell contact from

818 neighboring cells in three-dimensional culture. We limited

819 our research to 200 μm spheroids since the diffusion limit of

820 oxygen is usually around 200 μm in vivo [58]. ASC

821 spheroids release more hypoxia-related factors such as

822 VEGF than ASCs grown in 2D culture [59]. Hypoxia could

823 be beneficial for primitive cells but detrimental to differ-

824 entiating cells such as ASC spheroids. Addition of angio-

825 genic growth factors and endothelial precursor cells may

826 address these issues, as investigated by De Moor et al. [39].

827 Generating blood vessels in artificial tissue deals with the

828 ability of ECs to organize into blood vessels autonomously

829 [60]. For in vitro TE, a rudimental interconnected tubular

830 system must be available instantly, which matures into a

831 genuine vascular structure for the fast integration of the

832 engineered tissue to the host tissue. It is expected that this

833 pre-structuring may guide the direction of growth into an

834 interconnected capillary system. Recently, complex 3D

835 tissue constructs containing parenchymal cells and vascular

836 cells have been implanted in experimental models [61].

837 These studies show that functional tissue organoids can be

838 constructed in vitro and implanted in tissue, with evidence

839 of vascular integration between implanted and recipient

840 circulations and restoration of tissue function by the

841 organoids.

842 5 Conclusion

843 Bioprinting AT results from the combination of an

844 increased need for breast reconstructions in today’s society

845 characterized by simplicity along with a low complication

846 profile. Bioprinting ASC spheroids could revolutionize soft

847 tissue reconstruction and counteract donor site morbidity,

848 lengthy operations and microsurgical expertise. We provide

849 a method to form nearly perfect round spheroids with

850 minimal variability to be bioprinted in a desired 3D con-

851 figuration. The ability to culture spheroids post-printing for

852 extended periods of time, up to 14 days with excellent

853 viability, has been achieved. Further research is needed to

854 integrate endothelial precursor cells in spheroids to fabricate

855 prevascularized constructs in vitro before implantation and

856 to stimulate adipogenesis. This proof-of-concept enables

857 researchers to further investigate suchQ4 possibilities.
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