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Abstract: Typical bioprocess comprises of different unit operations wherein a near optimal environ-

ment is required for cells to grow, divide, and synthesize the desired product. However, bioprocess

control caters to unique challenges that arise due to non-linearity, variability, and complexity of

biotech processes. This article presents a review of modern control strategies employed in biopro-

cessing. Conventional control strategies (open loop, closed loop) along with modern control schemes

such as fuzzy logic, model predictive control, adaptive control and neural network-based control

are illustrated, and their effectiveness is highlighted. Furthermore, it is elucidated that bioprocess

control is more than just automation, and includes aspects such as system architecture, software

applications, hardware, and interfaces, all of which are optimized and compiled as per demand.

This needs to be accomplished while keeping process requirement, production cost, market value of

product, regulatory constraints, and data acquisition requirements in our purview. This article aims

to offer an overview of the current best practices in bioprocess control, monitoring, and automation.

Keywords: process monitoring; control systems; neural networks; fuzzy logic; automation; biopro-

cess control; open loop; closed loop

1. Introduction

Biopharmaceuticals or biologics have dominated the healthcare sector over the past
decade [1]. This class of biotherapeutic products includes proteins, monoclonal antibodies
(mAbs), and nucleic acids (DNA, RNA or antisense oligonucleotides) [2]. The success of
these products is attributed to their effectiveness towards treating and managing a variety
of otherwise hard to treat diseases including cardiovascular, neurological, cancer and other
rare diseases. In 2017, the global market of biologics was USD 186.470 billion, and is
expected to reach USD 526.008 billion by 2025 at a compound annual growth rate (CAGR)
of 13.8% [3]. Within biotherapeutic products, mAbs are the most successful due to their
success as therapeutics and for diagnostics [4]. The total global market of mAbs was over
USD 122 billion in 2019, and is expected to surpass USD 200 billion in 2024 at CAGR of
6.9% [5].

Fundamentally, bioprocess development is performed while taking into account the
nature of the host cell, microbial or mammalian. Often, the complex non-linear cellular
growth and product kinetics are determined by the highly complex cellular metabolic
network, ultimately impacting process yield and product quality [6–9]. The biologic
manufacturing platform comprises of multiple upstream and downstream unit operations
with the former including cell culture, cultivation, and harvesting unit operations, and the
latter including multistep chromatography, filtration, and diafiltration [10].

Bioprocess productivity can be improved by efficient process control. Any control
structure requires a sensor to detect deviation in a critical quality attribute (CQA) or
a critical process parameter (CPP), monitoring recipe to decide when is it necessary to
take action, and last but not the least, control logic for manipulating process variables
to achieve the desired change and verification that the manipulation is effective and in
right direction [11,12]. The past few decades have witnessed considerable contributions
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to process modelling, whether mechanistic, stochastic, or empirical [13–15]. Additionally,
considerable advancements have been achieved in process control, with adaptive control,
fuzzy logic, and neural networks to name a few.

The selection of feedback control strategy depends on the complexity of system. If the
system is just to be maintained at a static set point, then the use of computationally inexpen-
sive proportional-integral (PI) control may be sufficient. More advanced control algorithms
are needed for dynamic signal tracking or for control of complex systems. Irrespective
of the computationally expensive nature of these algorithms, they have the potential to
accurately capture the altercations of the desired metabolic pathways. These pathways con-
tained complex regulation networks and thus show highly nonlinear behaviours. Recently,
various digital approaches such as artificial intelligence (AI) for advanced monitoring
and control and computational models have been implemented to study molecular or
process-relevant behaviour [16–18].

Moreover, one of the guiding principles of quality by design (QbD) is to incorporate
the use of modern control strategies and process analytical technology (PAT) tools so as
to deliver consistent process performance and product quality [19,20]. QbD implementa-
tion involves identification of critical quality attributes (CQAs), comprising of physical,
chemical, biological properties and other characteristics that need to be maintained in the
desired limit, range or distribution [21]. Additionally, each CQA is influenced by critical
process parameters (CPPs) whose fluctuations and effect over CQA must be supervised
and control. PAT has been defined as “a system for designing, analysing, and controlling
manufacturing through timely measurements (i.e., during processing) of critical quality
and performance attributes of raw and in-process materials and processes, with the goal
of ensuring final product quality” [22]. A key goal of PAT implementation is to design a
process that can handle incoming variability to deliver consistent product quality [23].

In this review, we present a discussion of control strategies applied for control of
bioprocesses. A variety of control schemes including feedback control, feedforward control,
cascade control, and advanced control techniques have been addressed. It has been
elucidated how an optimal control scheme aims to seek a compromise between bioprocess
dynamics (well understood concepts) and bioprocess kinetics (less understood concepts).
Challenges faced during implementing advanced control strategies are also highlighted.

2. Sustainability in Biologic Manufacturing

Before discussing bioprocess control strategies, we would like to briefly explore
the concept of sustainability in biologic manufacturing. The control strategies should
be developed in a way that they complement sustainability. Over past decade, the per-
ception of sustainability has evolved to describe such conditions that enable peaceful
existence of industry with nature while meeting present and future generation socioe-
conomic demand [24,25]. In sustainable biologic manufacturing, the existing economic
and environmental challenges need to be effectively managed. It requires an assessment
framework comprising of qualitative indicators from life cycle assessment (LCA) and
techno-economics analysis (TEA) to optimize biologic manufacturing at the preliminary
stage itself [24,26]. It allows us to identify trade-offs across environmental and economic
aspects over the entire process of biologic manufacturing.

For decades, LCA is known as a standard approach in many commercial industries.
However, its potential is yet to be fully realized in biologic manufacturing. Few studies
have highlighted the importance of LCA and TEA for designing more cost-efficient, robust
and environmentally friendly biologic manufacturing processes. In one study, Biosolve
simulation tool has been implemented to conduct LCA analysis of the mAb manufacturing
process. Here, the CIP and SIP steps are found to have greater environmental impact in
the same study [26]. Another study assesses the process development and production cost
across biopharmaceutical product cycle along with their contribution in overall research
and development (R & D) cost [27]. The utilization of single use technology has been
suggested to be economically favourable for short term and small-scale production (such as
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clinical production) [28]. For life cycle inventory, software such as Biosolve and Superpro
Designer are utilized to model a new production line in combination with LCA software
GaBi [29]. LCA in conjunction with TEA helps in accessing and optimizing sustainability
performance in terms of environment and economics of biologic manufacturing. It allows
us to identify hotspots (major environmental problems or costs) that may occur and how
changes in life cycle inputs (resources used) and outputs (emissions into the environment)
can reduce such hotspots. Further, LCA can take into account environmental impact of
process as a whole which make it an ideal decision support tool to improve the decision-
making quality in biologic manufacturing.

3. Strategies for Bioprocess Control

Bioprocess control comprises of a set of operations that supervise the process in an
unpredictable environment with the objective to maintain the process within the desired
design space. Typically, the control strategy is created during process development. Cre-
ation of a robust control strategy depends on how deep our understanding of the process
is and if we have accurate process models. Inaccurate process models are known to result
in instability of the controller [30]. Another major challenge is that of data availability as
often limited data is available during process development [30,31]. There is a direct relation
between the level of process understanding and the degree of robustness of the control
system (Figure 1). Table 1 lists the different strategies implemented for bioprocess control
along with their control structures. Depending on the requirements, one can decide on the
optimal choice between selecting sophisticated instrumentation and complex control laws
or simple control law with elaborate monitoring system.
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Table 1. Description of different control strategies and their control structures.

Control Strategy Description Control Structure

Open loop control

• Pre-computed and sequential
control actions are stored in a
controller and executed on demand

• Control action cannot be adjusted
based on system
response/disturbance

• Open loop control strategy can only
give instruction to the equipment

• No means of data acquisition
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Table 1. Cont.

Control Strategy Description Control Structure

Artificial neural
network-based control

• Comprises of input layer, hidden
layer, and output layer

• Hidden layer has weights that
transform input into a quantity that
can be used by output layer. The
technique adjusts hidden layer to
match the desired output.

• NN are designed for pattern
recognition, classification,
clustering, and prediction.

• Limitations include the extensive
amount of data required and
computational time
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uses real-time process model for
making predictions by optimizing
cost function at each step to reach
the reference value

• Improves steady state response,
predicts upcoming disturbances,
and guarantees prediction stability

• Requires accurate real-time model
and the computational cost is high
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tem. Researchers have utilized the open loop control strategy to reduce batch-to-batch
variability [33]. The predefined operating condition, based on the initial operating param-
eters, acts as the input to the system. In numerous studies, predetermined exponential
feed profiles (calculated based on initial conditions and growth kinetic parameters) are
reported [33,34]. In recent studies, optimization of fed-batch operating conditions based on
open loop strategy have been reported for recombinant lipase B, vaccine synthesis, ethanol,
and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production [34–38].

While open-loop control strategies have been successfully used for bioprocess control,
significant limitations exist including requirement of pre-computed knowledge of profiles,
difficulty in mathematical formulation of non-linear systems, challenges with respect to real-
time application, and requirement of complex databases of the process [32–34]. Another
major limitation is the incompetency to take corrective measures if random disturbances
occur during process operations [39].
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3.2. Proportional Integral/Proportional Integral Derivative (PI/PID) Control

Closed loop control systems, such as PI and PID, are designed to overcome the
disadvantages of open loop control. In such a system, a feedback term is added for
regulatory action to offer closed loop control. Hence, the control law becomes the sum
of feedforward and feed backward terms. The most common closed loop algorithm
is the PID controller, owing to its simplicity, robustness, and ease in tuning. Recently,
researchers have developed a SISO nonlinear bioreactor model using real-time data of E.
coli fermentation and employed internal model control based PID (IMC-PID) [40]. It is
seen that the proposed IMC-PID method resulted in superior performance with minimum
absolute error when compared to other methods [40]. The real-time investigation of closed
loop depicted satisfactory tracking of the set point levels. Similar studies conducted using
IMC-PID controller for temperature control in CSTR during ethanol production gave
better results [41]. For another application involving improvement in biomass growth,
combination of PI control with Generic Model Control (GMC) technique is implemented
to fed batch cultivation of E. coli BL21(DE3). The proposed approach satisfactorily tracks
the biomass profile with controller capable to maintain relevant growth conditions [42].
Feedback control loops such as flow feedback, pH feedback, or a combination of both
have been applied for buffer preparation in inline conditioning and have shown significant
potential [43,44]. For complex systems, PID control strategy has been modified as a non-
linear gain in sequence with a linear PID. In case the error between the set point and
the real-time process variable is zero, the system behaves as a linear system otherwise
as non-linear system. Considerable performance improvement has been observed with
the proposed approach in case of regulatory control and set point tracking in closed-loop
system [45]. Additionally, feedback PID control loops are employed for control of microbial
culture wherein the culture composition is the input variable and the actuator influence
population dynamics. Actuators can be pH, dissolved oxygen, temperature or addition of
inducer compounds that affects the organism’s fitness. It is seen that simple feedback loop
has enabled high reproducibility of processes with quality product [46]. Until now, such
strategies are rarely experimented, but have a promising future [47].

While PI/PID based control offers optimal performance for linear processes, it has
limited ability to cope up with non-linear processes [39,48]. Since the underlying physico-
chemical processes for most complex biotech unit operations are non-linear, these dated
controllers are not suitable to the dynamically changing conditions that are observed in
most biological systems and, hence, modifications are required to make the controller
effective for non-linear processes.

3.3. Cascade Control

Cascade control systems are comprehensively used in industry to improve the dy-
namic response of the systems. They minimize the effect of load disturbance that are
received in the secondary or slave loop. Few studies have demonstrated their application
for processes where the transfer functions of the primary and secondary loop are paral-
lel [49,50]. Performance of the cascade control system is better than the conventional single
loop control due to the presence of multiple sensors to measure conditions in a controlled
process [51]. Cascade control strategy is required when the single loop control strategy fails
to deliver satisfactory control output and secondary variable measurement is possible [52].
In a way, it can be said that cascade control strategy is one step superior to PI/PID control.

Despite encouragement from the regulators, only a few academic researchers have
tested the potential of cascade control in biopharma manufacturing. In one study, the
bioreactor reproducibility both within and throughout culture stations (12 bioreactor
vessels blocks) of AMBR 15 fermentation system (AMBR 15f) evaluated in fed-batch mode
suggested cascade control strategy (air/stirrer/oxygen) as a better option for obtaining
optimum cell growth [53]. Similarly, two-sided control loop for pH control is preferred
in bioreactors [54]. Researchers have also attempted to control DO levels during aerobic
fermentation using Pseudomonas putida mt-2 via cascade control [55]. Use of cascade-
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control to regulate DO levels during continuous fermentation for recombinant lipase
B production resulted in 5.8 times higher productivity over fed-batch [34]. In another
application, researchers demonstrated the effectiveness of cascade control for nullifying
batch variation during biopharma production wherein the controller allowed short-time
process disturbances (e.g., feed pump disturbances and antifoam spikes) to be resolved
and yielded satisfactory batch reproducibility [56].

Advantages of cascade control that have been demonstrated include: (1) likely dis-
turbance is distributed in the secondary loop where the corrective measures are taken
without influence over primary loop; (2) the lag phase associated with the auxiliary process
part is completely abated in the secondary loop and hence, improved the response of
primary loop; (3) gain variation of the auxiliary part is subdued in the same loop; and (4)
the secondary loop allows the primary controller to accurately regulate the mass or energy
flow. Thus, applying the cascade control strategy for biotherapeutics production is likely
to see increasing interest in the scientific community.

3.4. Model Predictive Control

Model predictive control (MPC) has been widely attempted for bioprocess optimiza-
tion [57,58]. Its primary requirement is a predictive process model, through which the
dynamic and static interactions among the input, output, and disturbance variables can be
apprehended and the control estimate can be synchronized with the optimum set points cal-
culations [59,60]. Successful implementation of MPC to track the variable trajectory [49,61]
and to maximize process variables has been reported in biomanufacturing [62,63]. Ow-
ing to the complexities and variabilities in mammalian bioprocesses, non-linear MPC
(NMPC) with dynamic models has been successfully applied but with larger computa-
tional time [64,65]. However, this large computational time (up to several minutes) is
acceptable for such processes due to the lengthy process time (typically in weeks). In addi-
tion, NMPC employed to address parametric uncertainties using min-max optimization
coupled with unscented Kalman filter (UKF) resulted in better performance and also dealt
with sensor unavailability issue for fed batch processes efficiently [66]. Researchers have
also used MPC for real-time control of quality attributes [67]. In multicolumn counter
current solvent gradient purification (MCSGP) process, MPC strategy successfully tracked
system periodicity and rejected disturbances. The results obtained were in agreement with
the experimentally optimized profiles [68]. Apart from this, single input single output
(SISO) MPC and multiple input multiple output (MIMO) MPC when used for online estima-
tion and control of the fed batch reactor have demonstrated better results than proportional
integral controller and feedback/feedforward controller. Steady state stabilisation in oscil-
lating cell culture bioreactors can be achieved by implementing MPC designed based on
cell population balance models [69].

As the essence of MPC is based on the process model, whether mechanistic or stochas-
tic, its success is also heavily dependent on the model’s accuracy and its ability to handle
the system disturbances [30,32,70]. Inaccurate process models are known to lead to faulty
results [25,48]. In the case of data driven model, a large number of data points are re-
quired [48,57,71]. Further, the MPC approach is considered as computationally expensive
in comparison to other control strategies, especially when optimization is required at each
time step [69,72]. Thus, despite MPC being well established in chemical industries, its
acceptance in biotech sector requires further development of robust process models.

3.5. Neural Network-Based Control

Application of neural networks (NN) is already established to solve complex tasks in
different engineering, medical, and other domains [73]. Since NN can effectively deal with
non-linear systems and has adaptive learning, its application in bioprocess monitoring and
control is becoming increasingly popular. Usually, data availability is the biggest limitation
in designing neural network. However, few researchers have developed an alternative
option to overcome the data limitation by generating artificial datasets (incorporating
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random noise to original datasets). Such approach is used in modelling and optimiza-
tion of fed batch process for cyanobacterial C phycocyanin production [74]. The results
obtained were in par with the neural network designed using large dataset. Recently, an
adaptive neural network technique is devised for tracking control. The method possesses
a self-learning capability which gives an added advantage in case of unavailability of
prior data [75]. In a similar study, closed loop controller designed with a neural network
estimator for a nonlinear process resulted in minimum tracking error when compared to
conventional open loop methods even in case of perturbations and parametric uncertain-
ties [39]. It is seen that the method gives better accuracy and is simple to design. Different
variants of neural network are useful in different cases. Use of radial basis function neural
network for fed batch bioreactor gave satisfactory performance in case of time varying
parameters, uncertain non-linear disturbances and unmodeled dynamics [76]. Researchers
have demonstrated the prediction of fungal biomass through Multiphase Artificial Neural
Network (MANN) model during the lag, log, and stationary growth phase. The result
indicates successful prediction of nonlinear features of fed-batch bioreactors via the MANN
model [77]. Monitoring transient state performance using ANN has been shown to offer a
better approach for controlling variables [78].

It is seen that trained neural networks can effectively evaluate and monitor process
variables. ANN in combination with extended Kalman filter gives improved predictions
in real time. This structure overlayed by model predictive control has great potential in
non-linear process control [79]. In another study, MLP3 neural network has been intro-
duced for controller output regulation and optimization. The strategy was experimentally
validated on alpha 1-antitrypsin (A1AT, human recombinant protein) production in Pichia
pastoris expression system under the control of alcohol oxidase (pAOX1) and resulted
in a significant improvement in product yield [80]. Apart from its role in control, NN
offers significant potential in developing model for different unit operations, thus enabling
model-based control.

Advantages of neural network over first principle or empirical modelling include: (1)
NN’s are more capable of dealing with high non-linearity; (2) the probability of higher
structural complexity makes them more descriptive as compared to empirical models; (3)
their structure needs not to be predefined; (4) they offer greater flexibility in modelling;
and (5) NN’s are less noise prone and can be applied to the systems of utmost uncertainty.

3.6. Fuzzy Logic-Based Control

Fuzzy logic inquisitively integrates human experience and reasoning that is funda-
mental to design nonlinear controllers. In a recent publication, researchers have reviewed
the evolution of fuzzy logic [81]. Fuzzy logic-based controllers have found practical appli-
cations in wider areas of energy, medicine, material, economics and pharmacology sciences.

Application of fuzzy logic-based controllers for control and decision making in bio-
process industry is well established. Bioprocesses such as fermentation operations are
complex and laden with various uncertainty factors. Therefore, the setup of optimum pro-
cess parameters is necessary for achieving higher growth rates and productivity. Multiple
researchers have demonstrated application of fuzzy logic Takagi Sugeno fuzzy controller
for tracking control of bioprocess [82,83]. Here, the process was modelled using the TS
fuzzy model followed by the use of fuzzy observer for designing controller. Two different
control approaches were employed for output tracking, i.e., parallel distributed compen-
sation control and fuzzy optimal control. It was seen that fuzzy control had lower root
mean square error while dealing with the non-linearity of the system. Similar results
were published for the purification of secondary metabolite optimization [84]. In addition,
implementation of fuzzy feedforward control strategy for temperature control in fermen-
tation [85] or product concentration control in enzymatic reactor [86] have proved to be
efficient control logics for improving load rejections in non-linear process. An interesting
application of fuzzy logic controller in combination with ANN is seen for fed batch cultures.
In this study, ANN was used as a soft sensor to estimate the glucose concentration whereas
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fuzzy logic controller was implemented for controlling substrate addition. An improve-
ment in estimation and control was observed with an error of 6% [87]. Several researchers
have demonstrated applications of fuzzy control systems for control and optimization of
bioreactor operations [88].

Fuzzy logic-based approaches have also been demonstrated to successfully explain the
complexity of biological processes. The rules describing the expert process knowledge do
not contain any complex mathematical equations and hence, are easy to understand. Thus,
fuzzy systems can be considered as a special case of local modelling approach in which
the input domain is distributed among different fuzzy regions described via multivariate
membership functions [82]. However, the limitations associated with fuzzy logic systems
are substantial and include inaccurate estimation of parameters due to fine tuning of rules,
lack of adaptability for dynamic process state or minute process variables change that
may have greater impact on overall process due to lack of learning. Thus, it is difficult
to estimate continuous and independent optimization of operating variables via expert
knowledge. These systems are more suitable for retaining distinct process space and
quality aperture.

3.7. Model-Based Control

Process models provide the foundation of advanced process monitoring, optimiza-
tion, and control. Such models can be mathematical, statistical, or empirical. Effective
monitoring and control of processes through the use of mathematical models has been
demonstrated by multiple researchers [25,30,89]. One such framework named parametric
optimization and control (PAROC), which has been implemented for biopharmaceutical
purification process, was developed using model-based control techniques. The platform
consisted of system identification and model analysis followed by designing multi paramet-
ric model predictive control and resulted in satisfactory control [90–92]. Same methodology
when applied to small scale chromatography systems also tested successful for steady
state operations and in rejecting uncertain perturbations [93]. In addition, when extended
it was applicable to pressure swing adsorption and simulated moving bed systems [94].
Following a similar approach for capture chromatography in integrated continuous pro-
cesses, mechanistic model was established with the adaptive model predictive controller
for design and control of the capture steps [95].

For the bioreactor, a number of control strategies have been applied. For example,
DO-stat control strategy [96–101] and Extremum seeking control strategy [102–104]. DO
stat or pH stat control strategies are based on the concept of indirect feedback control.
Here, a simple on–off controller manipulates indirect variables if direct variable deviates.
In DO stat control, concentration of dissolved oxygen is maintained constant whereas in
pH stat control, the pH is maintained constant. Extremum seeking control, developed
based on process models, solves optimization problem as control problem. It enhances
system capability to reject disturbances and thereby reduces sensitivity and downtime.
A recent case study demonstrates model-based control of end-to-end continuous process
for manufacturing monoclonal antibodies. The upstream process included bioreactor
integrated with ATF and downstream process included protein A capture, viral inactivation,
cation and anion exchange chromatography integrated together. The proposed control
strategy was capable of automation of the process for optimal operation [105,106].

However, realization of overall process supervision and control based on mathemat-
ical model remains an exception in biotech manufacturing. This is due to insufficient
process understanding arising from process complexity. The mathematical models devel-
oped are therefore primarily used for elementary processes. In combination with archival
data, real-time data, and observer intelligence have been used to develop hybrid models
(Figure 2) [107–110]. Researchers have developed a holistic model from fundamental rela-
tions, transfer functions and the data from mAb process to simulate a high titre production
bioreactor. Except for ammonia and glutamine, the application showed 80% agreement
between predicted and experimental data [111]. Thus, holistic based control architecture
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can integrate static and dynamic feedback components along with logic based switching or
discrete event elements. Despite the advancements in the fuzzy and NNs control systems
design, a control system that can cope with uncertainty and nonlinearity remains overdue.
However, most of the attention towards the development of hybrid controllers has been
focused on set point control and tracking problems.
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4. Future Scope

4.1. Soft Sensor-Based Control

Considering the complexity of bioprocesses, modelling to capture the overall charac-
teristics and variability remains a challenge. In bioprocesses, due to limited availability
of reliable on-line sensors, majority of process variables are evaluated off-line or at-line,
thereby resulting in an increase in overall system cost and delivery of inefficient informa-
tion. Moreover, operation and calibration for long duration in agitated, harsh environment
for online sensors and manual operation with varying frequency of measurement for at
line sensors are additional challenges in acquiring data. This has led to development
of cybernetical-physical systems wherein the integrated physical systems are controlled
by soft sensors and algorithms (Figure 3). Soft sensors have emerged as potential tools
for evaluation and maintenance of CQAs in on-line mode, thus enabling QbD [112–114].
Different studies have shown the uses of soft sensors for determination of biomass, product,
metabolites, amino acid concentration, and other CQAs, thus enabling process control
(Table 2). Although advancements in the soft sensors development are vast, their real-time
implementation requires further the development of non-invasive analytical techniques,
with the ability to monitor in situ or in real time; sensor devices adaptable in various
production systems and make it certain that the sensor configuration adheres to regulatory
compliances and good manufacturing practices. Real-time, user-friendly interfaces are
required so that the connection and contextualization of information from different sensors
can be made possible via digitalization [115].
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Table 2. Cases studies on soft sensor development for various applications.

Technique Application Reference

Artificial neural network
Monitor fermentation process—measurement of
glycerol, 1,2 propanediol and biomass

[116]

Multiple linear regression in combination with
mechanistic model

Prediction of biomass concentration [117]

Empirical models Biomass concentration [118]

Empirical modelling of oxygen uptake rate Predicted viable biomass [119]

Multivariate adaptive regression spline algorithm
in combination with 2D fluorescence spectra and
process data

Biomass concentration [120]

Artificial neural network Glucose estimation in fed batch culture [78]

Deep neural network
Parameter estimation in penicillin and
streptokinase fermentation process

[121]

Partial least square regression with turbidity and
Raman measurements in combination with Monod
kinetics model

Predict substrate concentration [122]

Error propagation method
Estimate error in predicted biomass fermentation
rate and substrate consumption rate

[123]

Partial least square regression in combination with
fluorescence fingerprinting

Monitor biotransformation production of 2 phenyl
ethanol by yeast

[124]

Partial least squares regression model in
combination with Raman spectroscopy

In line monitoring of the nutrient consumption
and production of markers associated with cell
metabolism

[125]

Partial least squares regression model in
combination with Raman spectroscopy

In line monitoring on amino acid [126]

Partial least squares regression with the help of
mid-UV absorption spectra

Monitor chromatography steps [127]
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Table 2. Cont.

Technique Application Reference

Partial least squares regression with Fourier
transform mid infrared spectroscopy

Monitor HCP and aggregates at line [128]

Deep neural network Lactose and ethanol concentration measurement [129]

Linear regression on data obtained from
biocalorimetry in combination with bioreactor off
gas analysis

Biomass concentration measurement [130]

Advancements in miniaturization of sensors, development of smart sensors, and
approaches for hardware-software integration (digital highway like fieldbus/profibus
or wireless) has given an extra advantage to its adoption in manufacturing. Industry
4.0 requires computer algorithm based monitoring and cyber–physical system control.
If the connections between soft sensors and process system engineering is investigated
thoroughly and carefully, then it can be said that with soft sensors, Industry 4.0 can become
a reality in bioprocessing with a promising future [131,132].

4.2. PAT Based Control Strategies

The task of the controller is to manipulate the process variable in a way that the
disturbance effect can be minimized and the process variable follows the specified trajec-
tory. As discussed in the previous sections, traditional feedback PI controllers are widely
implemented in the industries followed by the cascade control strategy. Advanced control
strategies like multivariable control, model-based control, and adaptive control find limited
industrial applications thus far. Despite major advancements that have been accomplished
in the last two decades, more needs to be done to gain wider acceptance amongst manu-
facturers. The simultaneous use of ‘all’ available process information, its processing and
convergence to meaningful action is a complex task and requires expertise. However, by
integrating accessible process information at different levels of sophistication advance
control schemes can be implemented. Based on the process understanding, advanced
bioprocess control can be successfully applied (Figure 4) by integrating expert systems and
artificial intelligence. Organized use of schematic information and logical process descrip-
tion gained by experience is key to success [107,109–111]. Understanding the relationship
between the CQA (process outputs) and the CPP (measurable process operational vari-
ables) is essential for creating an effective control scheme [133], and performing real-time
monitoring [134–136], as well as fault diagnosis [137].

In recent times, PAT based methodologies have encouraged biopharmaceutical indus-
tries to change their modus operandi from quality by inspection to quality by design (QbD).
However, the reluctance in industrial adoption is mainly due to the complex regulatory
environment and issues faced in implementation of technology [138]. Additionally, for bio-
processes, high level of process understanding and control is required. Lately, spectroscopic
PAT tools are gaining importance due to their ability to non-intrusively measure multiple
process variables in real time. Additionally, spectroscopic tools can be used to screen cell
culture media that helps in identifying correlations between the CPP and CQA’s [139]. The
generated data can be processed via multivariate data analysis (MVDA). Figure 5 depicts
an example of advanced monitoring of CPPs for a bioreactor, the data from which can be
analysed and used for facilitating advanced process control.
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4.3. Automation in Biomanufacturing

Onset of automation in biomanufacturing is a key step towards robust process control
(Figure 6). Digitalization is the new mantra with online sensors spewing continuous data
on a multitude of variables [140]. Developments of inline and at-line sensors, wireless
technology for connectivity of sensors to servers, smart sensors for acquiring data, and
advancements in sensor calibration and compact technology are being increasingly used
to address space limitations and logistic constraints. However, open platform communi-
cations or object linking and embedding approach can be implemented for integrating
unit operations [141,142]. A key challenge that remains is that of incorporation of the auto-
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mated and isolated workstation into the continuous workflow without affecting process
efficiency. This includes consistency between different versions of the software, proprietary
interfaces, and various data formats. Therefore, the primary need for successful integration
is the use of standardized communication protocols and graphical user interfaces [136]. A
critical criterion in the acceptance of middleware among users is scalability and flexibility.
Integration of enterprise control system (ECS) into business systems (BS), manufacturing
execution systems (MES), and shop-floor control systems (SFC) is the next stage of primary
challenge to tackle when implementing a plant-wide information control system. Progress
in integration-in-manufacturing through centralized/distributed hardware/software au-
tomation architectures is continuously growing via intelligence-in-manufacturing epitome
addressed by industry centric R & D activities. As an example, supervisory control and
data acquisition (SCADA) platform is implemented for an end-to-end integrated process
wherein the system integrates and analyses different unit operations and collects and stores
data to enable monitoring and control [143]. Additionally, the concept of digital twin for
enabling control is shown for small scale end-to-end monoclonal antibody production
platform [105]. However, full potential of automation in end-to-end bio-manufacturing
process at industrial scale is yet to be realized.

Life 2021, 11, x FOR PEER REVIEW 11 of 21 
 

 

integrated process wherein the system integrates and analyses different unit operations 
and collects and stores data to enable monitoring and control [143]. Additionally, the con-
cept of digital twin for enabling control is shown for small scale end-to-end monoclonal 
antibody production platform [105]. However, full potential of automation in end-to-end 
bio-manufacturing process at industrial scale is yet to be realized.  

Another significant challenge revolves around data analysis. Bioprocess analytics is 
recognized as a crucial technical barrier to the acceptance of bio-manufacturing automa-
tion. Research labs are producing an increasing amount of data, both in quantity and com-
plexity, which requires further analysis [144,145]. Further, the regulatory agencies are fo-
cused on issues around data integrity [144]. Therefore, operable and industry standard 
software systems are needed for data management. In addition, bio-manufacturing sys-
tems must be designed such that they can handle the high complexity of the data and have 
sufficient agility and flexibility.  

 
Figure 6. Benefits of automation in a biomanufacturing process. 

5. Conclusions 
In the last two decades, tremendous enhancement in process productivity has been 

realized. Advancements in process control and monitoring have helped in reducing de-
velopment costs and improving affordability. Considering the associated complexity and 
inconsistency, manufacturing of products like mAbs poses a major challenge to conven-
tional production practices. Inspired by the recent regulatory guidelines within the QbD 
framework, stochastic and mechanistic model-based controllers are now emerging as pop-
ular choices for bioprocess control. Contrary to the traditional experimental approach, it 
is observed that the utilization of simulations and advanced statistics results in a low cost 
and in a shorter time. This has led to the development of process control strategies, from 
cascade to adaptive to hybrid, along with introduction of neural network (NN)-based con-
trollers. Recent efforts have been made to conceptualize holistic process model-based con-
trollers that offer a digital replica of the end-to-end bioprocess. It involves integration of 
individual unit operation along with monitoring and control, providing deeper insight on 
the impact of complex correlations between CPPs and CQAs for coupled unit operations. 
At present, model-based controllers are capable of contributing towards root cause anal-
ysis, molecular interactions, and refinement of unit operation models. However, they typ-
ically have high computational burden. In recent times, neural network-based control 
strategies have made significant progress, but their use in process modelling requires ex-
tensive datasets. Hence, an integrated approach combining statistical models with de-
tailed theoretical models is required to avoid comprehensive experimentation and obtain 

Figure 6. Benefits of automation in a biomanufacturing process.

Another significant challenge revolves around data analysis. Bioprocess analytics is
recognized as a crucial technical barrier to the acceptance of bio-manufacturing automation.
Research labs are producing an increasing amount of data, both in quantity and complexity,
which requires further analysis [144,145]. Further, the regulatory agencies are focused on
issues around data integrity [144]. Therefore, operable and industry standard software
systems are needed for data management. In addition, bio-manufacturing systems must
be designed such that they can handle the high complexity of the data and have sufficient
agility and flexibility.

5. Conclusions

In the last two decades, tremendous enhancement in process productivity has been
realized. Advancements in process control and monitoring have helped in reducing de-
velopment costs and improving affordability. Considering the associated complexity and
inconsistency, manufacturing of products like mAbs poses a major challenge to conven-
tional production practices. Inspired by the recent regulatory guidelines within the QbD
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framework, stochastic and mechanistic model-based controllers are now emerging as pop-
ular choices for bioprocess control. Contrary to the traditional experimental approach, it is
observed that the utilization of simulations and advanced statistics results in a low cost and
in a shorter time. This has led to the development of process control strategies, from cascade
to adaptive to hybrid, along with introduction of neural network (NN)-based controllers.
Recent efforts have been made to conceptualize holistic process model-based controllers
that offer a digital replica of the end-to-end bioprocess. It involves integration of individual
unit operation along with monitoring and control, providing deeper insight on the impact
of complex correlations between CPPs and CQAs for coupled unit operations. At present,
model-based controllers are capable of contributing towards root cause analysis, molecular
interactions, and refinement of unit operation models. However, they typically have high
computational burden. In recent times, neural network-based control strategies have made
significant progress, but their use in process modelling requires extensive datasets. Hence,
an integrated approach combining statistical models with detailed theoretical models is
required to avoid comprehensive experimentation and obtain deeper understanding. Thus,
control strategies need to be designed aiming to achieve high levels of precision, accuracy,
and robustness.

In addition, automation in manufacturing would provide substantial opportunities to
overcome many of the challenges faced in commercial success. However, major technical
and business strategy challenges are encountered while creating scalable and automated
bio-manufacturing solutions. Thus, biotherapeutic developers must think from the perspec-
tive of large-scale production and should incorporate automation concepts from the earliest
stage of process development. Inadequacy of standardization across software, hardware
and design specification complicates the attempts of automation. To overcome these barri-
ers, manufacturers must continue to increase their process understanding and utilize this
understanding to develop a streamlined and efficient bio-manufacturing process featuring
validated in-process testing and control. Last but not the least, stakeholders and technical
solution providers should attempt to meet the innovation gap in biomanufacturing and
liaise jointly with biotherapeutic developers to design and develop automated solutions.
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