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Abstract 

Lignocellulosic feedstocks, which are currently under-exploited, can be used for the production of biofuels, such as 

ethanol, and for biorefinery applications to produce a variety of value-added products. Although bioconversion of 

lignocellulose by microbial or yeast fermentation have been reported, efficient and economical lignocellulosic fer-

mentation process is still a challenge due to multiple process parameters involved for bioprocess design, optimization 

and scale-up. Bioprocess modelling strategies have been proven effective for achieving high-production process* 

efficiency in yield, productivity or titer of desired product. Several types of bioprocess modelling for lignocellulosic 

application have been developed and successfully validated as a promising alternative for rapid design, optimization 

and scaling up of biomass-based process. This review aims to summarize the important development of bioprocess 

modelling for lignocellulosic bioprocess applications towards the success of biorefineries and bio-based economy. 

In particular, we discuss modelling relevant to lignocellulosic bioprocess including cell modelling based on kinetics, 

stoichiometry and integrative approaches and fermentation kinetic modelling for process performance assessment. 

An overview of these modelling approaches and their application for systematic design of efficient and economical 

lignocellulose-based bioprocesses are given.

Keywords: Lignocellulosic bioprocess, Systematic process optimization, Integrative cell modelling, Fermentation 

model, Process integration
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Background
Low-priced, abundant and renewable lignocellulosic bio-

mass has become an attractive alternative feedstock to 

significantly supplement corn and starch as a fermenta-

tion feedstock for bio-based production (FitzPatrick et al. 

2010; Kircher 2012). �ese substrates can be obtained 

from agricultural, industrial and municipal solid wastes 

and forestry residues. �e use of lignocellulose resources 

for the production of biochemicals and biofuels is con-

sidered as cost-effective and environmentally sustain-

able serving bio-based economy (Binod et al. 2010; Lopes 

2015). �e optimization of the technology and scale-up 

for lignocellulosic bioprocess is rapidly developing by 

several biotech companies and pilot plants in Europe 

and the US. Bioconversion of lignocellulose to bioprod-

ucts requires lignocellulosic biomass to be hydrolysed in 

order to generate monomeric sugars for the fermentation 

step. Hydrolysis of lignocellulose is usually achieved by 

means of a thermal and/or chemical pretreatment fol-

lowed by enzyme hydrolysis. Many studies have demon-

strated the feasible production of bioproducts by both 

bacteria (e.g. Zymomonas mobilis, Escherichia coli) and 

yeasts (e.g. Saccharomyces cerevisiae, Scheffersomyces 

stipitis) using lignocellulosic feedstock (Geddes et  al. 

2015; Zhang and Lynd 2010; Van Zyl et al. 2007; Unrean 

and Nguyen 2012). However, several challenges remain 

for achieving the efficient hydrolysis and fermentation of 

lignocellulose. Studying enzymatic and chemical hydroly-

sis of lignocellulosic biomass based on experimental and 

modelling approaches has been extensively reviewed 

elsewhere (Van Dyk and Pletschke 2012; Bansal et  al. 
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2009; Meng and Ragauskas 2014; Hodge et al. 2009; Ged-

des et al. 2010; Sun and Cheng 2002). Hence, this review 

focuses on the fermentation step of lignocellulosic bio-

process based upon integrative cell and fermentation 

kinetic modelling framework.

One of the challenges of lignocellulose fermentation is 

the presence of sugar mixture (mainly glucose and xylose) 

released during the pretreatment and enzyme hydroly-

sis of lignocellulosic materials. From an economic point 

of view, these sugars must be efficiently fermented by 

organisms into desired product (Bera et al. 2010; Konishi 

et al. 2015; Unrean and Srienc 2010). �e fluctuation of 

sugar composition, 30–50 % and 10–25 % of dry weight 

for glucose and xylose content, respectively, in different 

biomass feedstock strongly affects fermentation perfor-

mance since an organism may not be able to optimally 

adjust its fermentation capacity to match with the change 

in sugar composition resulting in long fermentation time. 

A culture system that is able to handle the variation of 

sugar composition and efficiently ferment the sugar mix-

ture is therefore required in order to meet the technical 

and economic requirements of industrial lignocellulose-

based process. Another challenge for lignocellulosic fer-

mentation is the presence of inhibitory substances (such 

as acetic acid and furans) generated during the pretreat-

ment strongly inhibiting growth and fermentation per-

formance of fermenting organism (Almeida et  al. 2007; 

Allen et  al. 2010; Klinke et  al. 2004). �ese inhibitors 

are significant hurdles for the implementation of large-

scale lignocellulose-based bioprocess. Removal of the 

inhibitors by physical and chemical means significantly 

adds to the overall process cost and causes loss of sugars 

(Liu and Blaschek 2010). �erefore, the use of inhibitor-

tolerant microorganisms in the fermentation or the use 

of optimized process configuration to minimize inhibi-

tory effects is required to improve process efficiency. �e 

development of inhibitor-tolerant cell factory is previ-

ously reviewed by Liu (2006, 2011) describing the mecha-

nisms of action of known inhibitors as well as metabolic 

and evolutionary engineering strategies for tolerant 

strain development. �us, this review focuses on fermen-

tation process configuration to overcome inhibition issue 

caused by the inhibitors and fermentative end products. 

Moreover, problems with viscosity and partial insolubil-

ity of lignocellulosic biomass can cause poor mixing and 

limited mass and heat transfer especially at high solid 

operation of fermentation process. Design of fed-batch 

process configuration with sufficient mixing is required 

to improve process efficiency (Nguyen et al. 2015; Ged-

des et al. 2010; Unrean et al. 2015).

Hence, this review article discusses the development of 

cell and bioprocess modelling to provide a comprehen-

sive update of the model-based approach for the design, 

optimization and scale-up of biomass-based processes. 

Specific modelling strategies for optimizing fermentation 

control in lignocellulosic bioprocess based on integrative 

cell modelling and fermentation kinetics are discussed.

Cell modelling for growth and fermentation 
of lignocellulosic hydrolysate
Different type of cell modelling that is relevant to cell 

growth and fermentation of lignocellulosic bioprocesses 

is explored as follows:

Monod cell growth kinetics

An unsegregated and unstructured model based on 

Monod kinetic has been the most commonly used model 

to describe the overall cell growth and fermentation in 

batch, fed-batch or continuous lignocellulosic biomass 

processes. �e Monod’s cell modelling which considers 

cell growth as one, single reaction is typically composed 

of the kinetics of (1) cell growth determined by limit-

ing substrate (i.e. glucose or xylose present in biomass 

feedstock), and (2) cell death due to the endogenous 

metabolism as well as toxicity caused by end product or 

inhibitors (e.g. furfural, HMF or acetic acid) present in 

hydrolysates. A generalized Monod’s cell growth equa-

tion with competitive and non-competitive inhibition of 

inhibitors and cell growth inhibition of end product is

Specific cell growth rate:

In addition, cell death kinetics is typically applied to 

prevent an over-prediction of cell viability in lignocel-

lulosic process (Zhang et  al. 2009a, b). Both cell death 

rate caused by end product and cultivation temperature 

can be described by Arrhenius-type kinetics (Mutturi 

and Lidén 2014). Furthermore, two distinct population 

of cells: one is active population able to replicate, Type 

I cell, and another is stalled population unable to repli-

cate due to toxicity of inhibitors, Type II cell, can also be 

included in the cell growth model (Wang et al. 2014). �e 

predicted cell death rates due to endogenous metabolism, 

temperature, end product and toxicity of inhibitors pre-

sent in hydrolysate are given as follows:

Specific cell death rate:

Temperature-dependent cell death rate:
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Product-dependent cell death rate:

Transformation rate from type I to type II cell: 

�e generalized equation describing cell growth can 

then be generated by combining Eqs. (1, 2, 3, 4 and 5):

�is equation is commonly applied for predicting 

cell growth during the fermentation of lignocellulosic 

hydrolysate.

Stoichiometric metabolic model

Cell growth can also been simulated based on a steady-

state flux balance model which solves the stoichiometric 

mass balance of metabolic reaction network within cell. 

�e model allows for quantification of carbon flux occur-

ring within the cell by coupling extracellular fluxes for 

cell growth, substrate uptake and product secretion with 

the intracellular flux distribution in matrix form:

Stoichiometric flux balance:

�e most common mathematical tool used for solving 

these balance equations is flux balance analysis (FBA). 

�e reader is referred to Maarleveld et al. (2013) for the 

thorough review of concept and application of this com-

putation tool. Briefly, FBA yields a single flux solution 

that satisfies specified objective and constraints based on 

linear program (LP) optimization. �e commonly used 

objectives are as follows:

Objective : maxµ, qP or qATP
Subject to : qmin ≤ q ≤ qmax

Ji = Ji, i ∈ E
Ji = 0, i ∈ N
Ji,min ≤ Ji ≤ Ji,max , i ∈ M

�e stoichiometry metabolic model has been utilized 

to study the response of cell metabolism to different envi-

ronmental and genetic perturbations or different stresses 

caused by inhibitors during lignocellulosic fermenta-

tion process (Heer et al. 2009; Hanly and Henson 2014). 

By constraining fluxes associated with corresponding 

genes, the stoichiometric model can be applied to guide 

genetic engineering for increasing production of biore-

finery products such as ethanol, malic acid and succinic 

acid (Pizarro et al. 2007; Oberhardt et al. 2009) as well as 
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to aid process development, optimization and scale-up 

(Baart et  al. 2007). Integration of stoichiometric meta-

bolic model with dynamic model, regulatory and signal-

ling network in the future could significantly increase the 

usefulness of the model for guiding cell engineering and 

optimizing lignocellulosic bioprocesses.

Fermentation kinetic model

Kinetic model to describe fermentation profile of ligno-

cellulosic hydrolysate can be developed by taking into 

account growth-limiting factor such as sugar and/or 

nitrogen content, product titer and temperature influ-

enced fermentation process. �e proposed lignocellu-

losic fermentation kinetic model typically comprises (1) 

the sugar uptake equation and (2) the fermentation equa-

tion of secreting products. Sugar uptake model follow-

ing Michaelis–Menten kinetics considers the uptake rate 

of hexose and pentose sugars (e.g. glucose or xylose) for 

cell growth, product synthesis and for maintenance pro-

cess, the competitive inhibition between hexoses for each 

transporter (Pizarro et al. 2007) and the non-competitive 

inhibition between hexoses and pentoses (Zhang et  al. 

2009a, b). �e non-competitive inhibition of sugar trans-

port caused by increasing concentration of end product 

and by the presence of inhibitors (e.g. acetic acid, furfural 

or HMF) are also commonly included in the model to 

capture the adverse effects of these compounds on sugar 

fermentation (Hanly and Henson 2014). A generalized 

kinetics of sugar uptake is

Specific sugar uptake rate: 

�e balance equation of sugar during lignocellulosic 

hydrolysate is as follows:

Balance equation of sugar:

 

Some yeast cells such as S. cerevisiae have ability to 

convert inhibitors (e.g. furfural or HMF) present in lig-

nocellulosic hydrolysate into less toxic compounds. 

�us, kinetics of inhibitor conversion should also be 

included when describing cell growth and fermenta-

tion. �e conversion kinetics of inhibitors can be defined 

similarly to that of sugar uptake. A model developed by 

Hanly and Henson (2014) has described the detoxifica-

tion of furfural and HMF from hydrolysate media by 

S. cerevisiae. �e kinetics of fermentation describing 

growth-associated production based on Monod kinetics 
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and non-growth-associated production for fermentation 

products can be written in a general form as follows:

Secreting products: 

Combining cell growth and fermentation kinetic model 

then permits the prediction of time profiles for the pro-

duction of bioproducts, such as ethanol, during lignocel-

lulosic hydrolysate fermentation.

Integrative dynamic model for cell growth 
and fermentation
Most modelling frameworks describing cell growth and 

fermentation are based on a simple unstructured Monod 

kinetic model or a steady-state stoichiometric flux bal-

ance model. Integrative dynamic model framework has 

recently been proposed through incorporation of kinetic 

model and stoichiometric metabolic model for the pre-

diction of dynamic whole-cell metabolism as the culture 

environment dynamically changes with time. Integrative 

dynamic model allows the thorough studies of a dynamic 

interaction of cell metabolism occurring during culture 

environment changes or genetic alternation by predict-

ing optimal metabolic flux distribution at each instant 

time throughout the process. Such model may enable an 

expanded platform to design process or genetic modifica-

tion candidates that may enhance the efficiency in batch 

or fed-batch of lignocellulosic bioprocesses. Two types of 

integrative dynamic model capable of simulating dynam-

ics of cell growth and fermentation in batch or fed-batch 

(10)
dCPi

dt
= qPiX − DCPi

(11)qPi =

(

Vmax, PiCSi

KPi + CSi

)

= YPi , Si(qSi + mSi).

fermentation of lignocellulosic biomass have been devel-

oped: (1) dynamic flux balance model and (2) cybernetic 

model.

Dynamic �ux balance model

Concept of dynamic flux balance analysis (dFBA) is relied 

on a flux balance stoichiometric network in combination 

with kinetic model describing cell growth and fermenta-

tion as illustrated in Fig. 1. First, the dynamic model uti-

lizes kinetic equations to predict the substrate uptakes 

and additional flux constraints which are then used as 

inputs for the stoichiometric model analysis. �e out-

puts of the flux balance model are the predicted specific 

rate of substrate and product (biomass and end product). 

�e computed consumption and production rates based 

on flux balance are fed into the dynamic mass balance 

model, which are differential balance equations describ-

ing the concentration of the extracellular metabolites 

considered in the model. �e dynamic mass balance is 

solved numerically to calculate time profiles of substrate 

and product in the fermentation process. �e dFBA 

model has been used to predict cell growth and fermen-

tation profiles in response to nitrogen source, culture 

temperature, inhibitory compounds (e.g. furfural, HMF) 

and ethanol toxicity in batch and fed-batch fermentation 

of lignocellulosic hydrolysates (Sainz et al. 2003; Pizarro 

et al. 2007; Hjersted and Henson 2006; Hanly and Hen-

son 2014; Unrean and Franzen 2015; Unrean et al. 2015). 

In addition, the dFBA model can accurately predict the 

dynamic effects of genetic alternations and regulatory 

processes on the production performance (Pizarro et al. 

2007; Lee et  al. 2008). �us, dFBA model proves useful 

for evaluation of the dynamic interactions between the 

cell metabolism and its changing environment in batch 
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Fig. 1 Schematic diagram describing dynamic flux balance analysis (dFBA). The dFBA model can be developed by linking intracellular metabolic 

network fluxes with the changes in extracellular fluxes (e.g. sugar uptake and inhibitor conversion rates). The model permits determination of 

dynamic flux change over bioprocessing time (adapted from Unrean and Franzen 2015)



Page 5 of 9Unrean  Bioresour. Bioprocess.  (2016) 3:1 

and fed-batch fermentation which could lead to a better 

design of cell and fermentation conditions in lignocellu-

losic process.

Cybernatic model

Cybernetic modeling framework is based on the incorpora-

tion of internal dynamics of simplified regulated metabolic 

network of cell and the effects of external environment 

(Murthy et  al. 2012). Similar to dFBA model, the cyber-

netic model can be divided into two distinct but interlinked 

models. �e first model determines reaction rates of cyber-

netic metabolic network model consisting of simplified 

catabolic and anabolic pathways that produce energy, cata-

bolic and anabolic precursors necessary for cell growth and 

fermentation. �ese pathways are optimally utilized by cell 

for maximizing cell growth. �e second model determines 

kinetics for cell growth, substrate uptake and product 

secretion based on the metabolite balance equations. �e 

cybernetic model is typically described by set of equations 

for reaction rates following Monod kinetics by assuming to 

vary directly with the relative enzyme concentration and to 

exhibit saturation dependence on all substrates.

Reaction rate expression:

�e enzyme balance equation is given by

Enzyme balance: 

�e balance equations for cell growth, substrate, prod-

uct and intracellular metabolite can be described as 

follows:

Cell growth: 

Extracellular metabolite: 

Intracellular metabolite: 

�e cybernetic modelling approach has been used to 

accurately simulate yeast cell growth, ethanol fermenta-

tion and energy consumption in batch, fed-batch and 
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=

∑
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continuous fermentation of lignocellulosic biomass 

(Straight and Ramakrishna 1994; Ko et al. 2010; Murthy 

et al. 2012).

Model‑based process design and optimization
Cell consortium model for optimizing co-culture 

fermentation

�e process using cell consortia holds promise for a better 

exploitation of individual species capabilities leading to an 

efficient fermentation of pentose and hexose sugars that 

compose lignocellulosic biomass. A mixture of multiple 

substrate-selective microbial or yeast strains is expected 

to act in concert to simultaneously uptake pentose and 

hexose sugars and efficiently convert to value-added 

bioproducts (Suriyachai et  al. 2013; Henson and Hanly 

2014). Several studies have developed cell consortium 

model based on cell growth, fermentation kinetic model 

and dynamic flux balance model to study the capability of 

co-culture system and to optimize cell growth and mixed 

sugar fermentation performance by co-culture (Unrean 

and Srienc 2010; Unrean and Khajeeram 2015; Hanly and 

Henson 2013). Using the co-culture of multiple strains 

enhances ethanol titer, production rate, shorten fermenta-

tion time, and reduce process costs making the co-culture 

process a promising technology for industrial applica-

tions (Chen 2011; Wan et  al. 2012; Yadav et  al. 2011; Li 

et  al. 2011; Hickert et  al. 2013). �e dynamic co-culture 

model has been applied to optimize the inoculum cell 

concentration and aeration level that maximized fermen-

tation process efficiency (Unrean and Srienc 2010; Hanly 

and Henson 2013). Co-culture model has also been used 

to predict the optimal relative cell ratio of each strain that 

yields simultaneous consumption of different sugar mix-

ture with minimal fermentation time enabling improved 

productivity and less production cost (Hanly et al. 2012; 

Unrean and Khajeeram 2015). �e co-culture model 

also demonstrates the flexibility of the cell consortia for 

optimally handling any sugar mixture available in differ-

ent biomass feedstock. Additionally, Hanly and Henson 

(2013) applied the cell consortium modelling strategy for 

predicting targeted gene manipulation in the xylose-fer-

menting yeast cell in order to further improve ethanol fer-

mentation by co-culture. �e cell consortium modelling 

framework could, therefore, provide strategies for rapid 

process optimization of the multiple-strain culture by 

optimally adjusting each strain distribution based on the 

model prediction to match with varying sugar composi-

tion in lignocellulosic biomass feedstock for efficient and 

sustainable production of bioproducts.

Fed-batch lignocellulosic bioprocess optimization

Fed-batch cultivation strategy by controlling the sub-

strate feeding can be applied (1) to overcome inhibitory 
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effects by maintaining the inhibitors at low concentra-

tions, (2) to avoid accumulation of undesired byproducts 

caused by overflow metabolism and (3) to ensure a bal-

anced feeding of mixed hexose and pentose sugar avail-

able in biomass feedstock for achieving high yield, titer 

and productivity of the desired product (Abdel-Rahman 

et al. 2015; Rudolf et al. 2007; Petersson and Lidén 2007; 

Johnsson et al. 2013). A kinetic model based upon a sys-

tem of linear differential equations can be formulated to 

design and optimize various process configurations such 

as batch and fed-batch process for efficient fermenta-

tion of biomass-derived sugars. �e model-based process 

optimization was demonstrated in designing feed strat-

egy with optimal specific cell growth rate of fed-batch for 

efficient mixed glucose–xylose fermentation (Unrean and 

Nguyen 2012). �e optimized batch with cell recycle or 

with in situ ethanol removal was also simulated based on 

the kinetic model (Slininger et al. 2014). Besides applica-

tion of the integrative dynamic model to study whole-cell 

metabolism during batch and fed-batch processes, the 

modeling approach can be used for in silico determina-

tion of the optimal operating conditions, such as feed rate 

or feed medium composition, for fed-batch fermentation 

of lignocellulosic hydrolysate (Unrean and Franzen 2015).

Coupling cell and fermentation kinetic model with 

enzyme hydrolysis model permits the prediction of 

dynamic cell growth and fermentation during simulta-

neous saccharification and fermentation (SSF) process. 

�e fed-batch SSF offers several advantages including 

less water consumption, lower production cost through 

the reduced number and size of required equipment and 

utility as well as minimized negative effects of inhibitors 

present in lignocellulosic hydrolysate (Olofsson et  al. 

2008; Mohagheghi and Schell 2010; Koppram et al. 2014). 

An SSF modelling approach is a useful guiding tool for 

rational design of the optimal feed profiles of solid sub-

strate, enzyme and yeast cell in fed-batch SSF to avoid 

poor mass and heat transfer caused by high viscosity 

and to maximize process efficiency, thereby meeting the 

technical and economic requirement of the lignocellu-

losic biomass process (Zhang et al. 2010; Zhao et al. 2013; 

Huang et  al. 2014). Several mechanistic models for SSF 

have been previously developed which describe kinetics 

of enzyme hydrolysis and yeast cell fermentation (Van Zyl 

et  al. 2011; Morales-Rodriguez et  al. 2011; Mutturi and 

Lidén 2014; Wang et al. 2014). �e SSF model comprises 

two interlinked models, the enzyme hydrolysis model 

providing the quantitative analysis of the enzyme kinet-

ics and the fermentation kinetic model describing kinet-

ics of cell growth and sugar fermentation by organisms. 

�e integrative SSF model has also been developed which 

integrates the enzyme hydrolysis model with the dynamic 

cell metabolic model to quantitatively capture the 

dynamic responses of enzyme and cell metabolism with 

changing culture environment (e.g. substrates, inhibi-

tors and end products) during SSF. Figure  2 represents 

Fig. 2 Integrative simultaneous saccharification and fermentation (SSF) model. The SSF model is a combination of (1) enzyme hydrolysis model 

describing the kinetics of enzymatic hydrolysis of lignocellulosic biomass and (2) integrative dynamic model describing cell growth and fermenta-

tion kinetics (adapted from Unrean et al., submitted)
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schematic diagram describing integrative SSF model. 

�is integrative SSF modelling approach describing 

the enzyme kinetics together with the dynamics, time-

dependence involved in the cell metabolism is capable of 

accurately predicting ethanol fermentation profiles by S. 

cerevisiae during SSF process. �e model is considered a 

useful guiding tool for predicting fed-batch SSF process 

performance under various solid substrate, enzyme and 

yeast cell feed profiles permitting a systematic optimiza-

tion of feeding strategies for efficient fed-batch SSF with 

maximized product yield, titer and productivity (Unrean 

et al. 2015).

Future prospect
�e utilization of lignocellulosic feedstocks as substrate 

in bio-based processes has increased considerably in 

recent years for a sustainable development of bio-based 

economy. Design and optimization of lignocellulosic 

bioprocesses to improve yield, titer and productivity of 

desired bioproducts is key to the success of bioprocesses 

and biorefineries. Model-based bioprocess design and 

optimization appears as a promising approach that can 

be used, in combination with genetic engineering and 

fermentation control, to facilitate the systematic design 

and optimization efforts aimed at rapidly improving 

efficiency of lignocellulosic biomass process for the pro-

duction of value-added products. Integrative cell and 

fermentation kinetic modelling can assist in designing 

fermentation strategies or identifying genetic modifi-

cation candidates for enhanced lignocellulose-based 

bioprocess efficiency to meet the current technical and 

economical demand. However, the current models do not 

include the regulatory and signalling network or stress 

response mechanisms of the cell when being cultured 

in lignocellulosic hydrolysate which also play important 

roles in determining the process efficiency. Inclusion of 

high-throughput omics data to describe cellular regula-

tion and genome-wide kinetics is a future trend to fur-

ther improve the accuracy of the integrative modelling 

framework for lignocellulosic bioprocess design, optimi-

zation and scaling up.

Nomenclature

CSi
  concentration of sugar Si

CSj  concentration of sugar Sj

CSi , feed
  concentration of sugar Si in feed media

CP  concentration of end product P

CP, max  maximum concentration of end product P

Cmj  concentration of intracellular metabolite mj

Cmexj  concentration of extracellular metabolite mex,j

Cmexj,feed  concentration of metabolite mex,j in feed 

media

Ii  concentration of competitive inhibitor i

Ij   concentration of non-competitive inhibitor j

Ik   concentration of inhibitor k

X   biomass concentration

t   fermentation time

µSi
  specific cell growth rate

µmax, Si  maximum specific growth rate on sugar Si

D  dilution rate of continuous culture mode

q  metabolite flux vector of enzymatic reaction

qSi  specific uptake rate of sugar Si

qPi  specific production rate of product Pi

qATP  synthesis rate of ATP

Vmax, Si  maximum rate of sugar Si uptake

Vmax,Pi  maximum specific production rate of product 

Pi

v
max

T
  maximum specific transformation rate

Km, Si  saturation constant of sugar Si uptake

KSj  non-competitive inhibition rate constant of 

sugar Sj on sugar Si

Kmu, Si  saturation constant for growth on sugar Si

KPi
  saturation constant of product Pi

Ki  competitive inhibition rate constant of inhibi-

tor i

Kj  non-competitive inhibition rate constant of 

inhibitor j

Ktrf  specific transformation rate from type I to 

type II cells

kT  inhibitor saturation constant of type I–type II 

cell transformation

n  exponential constant of ethanol inhibition to 

growth on sugar Si

mSi
  maintenance coefficient for growth on sugar Si

Y
max
X , Si

  maximum cell yield on sugar Si

YPi , Si  yield of product Pi based on consumed sugar 

Si

A  frequency factor for Arrhenius equation

E  activation energy for Arrhenius equation

T  culture temperaturef

a  ethanol death coefficient

b  ethanol death rate constant

H  coefficient for cooperative transformation 

from type I to type II cells

S   m by n stoichiometric matrix of metabolite m 

in enzymatic reaction n

J  vector of accumulation and exchange rates

E  set of intracellular metabolites with externally 

determined exchange flux

N   set of intracellular metabolites with no 

accumulation

M  set of extracellular metabolites based on 
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experimental measurement

ri   specific rate of reaction i for synthesis or deg-

radation of metabolite

rek  synthesis rate of enzyme k

ki   rate constant of reaction i

ɛi   relative concentration of enzyme catalysing 

reaction ri

Kmj  saturation constant of metabolite mj

ek  concentration of enzyme k

βk  first-order degradation constant of enzyme k

vi  cybernetic variable for activity of enzyme i
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