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Abstract
This review evaluates oilseed crop soybean endophytic bacteria, their prospects, and challenges for sustainable agriculture. 
Soybean is one of the most important oilseed crops with about 20–25% protein content and 20% edible oil production. 
The ability of soybean root-associated microbes to restore soil nutrients enhances crop yield. Naturally, the soybean root 
endosphere harbors root nodule bacteria, and endophytic bacteria, which help increase the nitrogen pool and reclamation 
of another nutrient loss in the soil for plant nutrition. Endophytic bacteria can sustain plant growth and health by exhibiting 
antibiosis against phytopathogens, production of enzymes, phytohormone biosynthesis, organic acids, and secondary metabo-
lite secretions. Considerable effort in the agricultural industry is focused on multifunctional concepts and bioprospecting 
on the use of bioinput from endophytic microbes to ensure a stable ecosystem. Bioprospecting in the case of this review is 
a systemic overview of the biorational approach to harness beneficial plant-associated microbes to ensure food security in 
the future. Progress in this endeavor is limited by available techniques. The use of molecular techniques in unraveling the 
functions of soybean endophytic bacteria can explore their use in integrated organic farming. Our review brings to light the 
endophytic microbial dynamics of soybeans and current status of plant microbiome research for sustainable agriculture.

Keywords  Endosphere · Food security · Leguminous crop · Nitrogen-fixing bacteria · Plant growth promotion · Soybean 
microbiome

Introduction 

Globally, diverse oilseed crops are cultivated for edible 
oil production to safeguard humans from malnutrition and 
related illnesses [1]. Their production rate differs from one 
country to another due to adaptation and growth under dif-
ferent weather conditions by region (e.g., temperate, tropi-
cal, and subtropical) [2]. The major type of oilseed crops 
are canola, groundnut, palm oil, sunflower, soybean, pea-
nut, rapeseed, and cottonseed [3]. In 2020/2021, statistics 
of USDA showed an account of 362.05 soybeans, 68.87 
rapeseed, 49.46 sunflower seed, 47.79 peanuts, and 41.80 of 

cottonseed, 19.96 palm kernel, and 5.75 copra world oilseed 
production (million metric tons) with soybean estimated of 
about a 90% production in the USA [4]. Also, in Sub-Saha-
ran Africa, Nigeria produces and exports a larger percentage 
of soybean annually.

Soybeans are leguminous plants in the family Fabaceae. 
Interest in soybean cultivation relies on their economic 
value, the edible oil-producing potential of about 20%, and 
protein content of 20–25% [5]. Notably, soybeans serve as 
an inexpensive and excellent source of high-quality edible 
oil and protein for humans as compared to other legumi-
nous crops and animal protein [6], and can be a supplement 
food source for livestock. Yet, soybean’s market value and 
maximum utilization are less explored in many countries 
[7]. Soybean can be processed into composite food products, 
substituting animal proteins, i.e., eggs, meat, and milk.

The uncertainties and challenges facing soybean culti-
vation may include poor and inefficient farming systems, 
drought, disease invasion, pest attack, lack of disease-
resistant cultivars, etc. [8–10]. Diseases such as stem and 
root blight, bacterial leaf blight, downy mildew, bacterial 
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pustule, rust, purple seed stain, frog-eye leaf spot, brown 
spot, charcoal rot, and soybean mosaic virus are the most 
common peculiar to soybean [11]. The control of disease 
in plants and crops under storage can be achieved by either 
biological, chemical, or physical means. Therefore, adopting 
proper control measures against phytopathogens in soybean 
can sustain plant health and crop productivity.

From antiquity, farmers adopted diverse cropping systems 
(crop rotation, mixed farming, organic farming, etc.) and 
agricultural practices (e.g., agrochemicals, irrigation, and 
harrowing) to mitigate bottlenecks limiting the cultivation 
of soybean and other food crops. Over time, agrochemical 
use has been a major concern to environmentalists, ecolo-
gists, and microbiologists due to the negative impact on the 
ecosystem [12, 13]. The peculiarity of these challenges is not 
limited to soybean cultivation alone, but other economical 
food crops.

In recent times, research efforts are on the increase to 
devise a sustainable means of improving soybean, and other 
food crop production in order to help solve food scarcity, 
hunger, and malnutrition [14]. Because of the environmen-
tal threats posed by the synthetic fertilizer application and 
the incessant population increase, the need to employ bio-
rational approaches and sustainable measures to enhance 
soybean production has become imperative. Naturally, 
soybean houses endophytic microbes capable of increasing 
the nitrogen pool in the soil to enhance plant nutrition for 
higher productivity [15]. The natural occurrence of these 
nitrogen-fixing bacteria is a promising way to reclaim lost 
soil nutrients for food production to meet the demand of the 
ever-growing population and relieve farmers of the cost and 
over-dependence on chemical fertilizers by farmers. Thus, 
harnessing endophytic bacteria as bioinoculants to oppose 
chemical fertilizers is critical as the best alternative.

The plant root endosphere represents discreet regions 
occupied by diverse, endophytic microorganisms [16], where 
these microbes exhibit mutualistic, neutral, or antagonistic 
relationships with the host plants. The emphasis on the root-
associated bacteria will be most considered in this review, 
as soybean root nodules naturally contain diverse nitrogen-
fixing bacteria (NFB) [17]. The complementary effects of 
root-associated bacteria and root nodule NFB can positively 
influence plant growth and survival under nitrogen-limiting 
soils [18]. Here we emphasize that the nitrogen-fixing poten-
tial of endophytic bacteria in leaves, stems, seeds, flowers, 
ovules, etc. may be of greater importance in plant growth 
when compared to root nodules NFB only. Nevertheless, 
comparative studies of these bacteria from various plant 
organs upon inoculation under greenhouse and field experi-
ments are required to ascertain this claim, requiring further 
studies.

The molecular insights into plant–microbe interactions 
have unveiled important functions of some endophytic 

microbes, which suggests their maximum exploration as 
bioinoculants in sustaining plant growth and health [19]. 
For instance, a few beneficial nodule endophytic microbes 
associated with soybeans have been assessed under green-
house and field trials to enhance soybean yield and in vitro 
screening for their antimicrobial properties against phy-
topathogens [20].

The interdependence of endophytic bacteria with the host 
plants confers beneficial effects in soybeans and other food 
crops, such that it stimulates plant growth promoters, antibi-
osis activity against phytopathogens for plant health, defense 
against oxidative stress, and yield enhancement without any 
pathogenic effects [21, 22]. Limited information is available 
in the literature on the plant growth stimulation and biocon-
trol potential of endophytic bacteria inhabiting soybean, thus 
limiting their ecological services. Nevertheless, exploring 
endophytic bacteria as bioinoculants can provide several 
opportunities in mitigating diverse agricultural problems, 
such as biotic and abiotic stress, and climate change. Fur-
thermore, addressing the challenges and uncertainties lim-
iting plant microbiome biotechnologically will ultimately 
reveal the amazing realities of incorporating endophytic 
resources from soybean and other food crops into agricul-
tural management. Our review brings to light the endophytic 
microbial dynamics of soybeans and current status of plant 
microbiome research for sustainable agriculture.

The Soybean Microbiome

It is essential to evaluate the diversity and population of 
endophytes in soybean plants in different environments, as 
a knowledge of this would serve as a background to promote 
their usage as biofertilizers, soil amendments, plant growth 
enhancers, and biocontrol agents with the overall aim of 
increasing different plant yield. Despite the success recorded 
in soybean’s endophytic microbiome research with promises 
to achieve future agricultural productivity [10, 15, 23], there 
is still a need for further studies. Sustaining plant health is 
paramount, as it is relatively mirrored in crop yield. The 
antimicrobial compounds and metabolites naturally found in 
economical plants, coupled with the biocontrol potential of 
some endophytic microbes, can contribute to plant health by 
reducing plant pathogenicity [24]. Inefficient control of plant 
pathogens results in yield loss to crops [25]. To help ame-
liorate these threats, in vitro screening of novel endophytic 
bacteria from economic plants for antimicrobial activity 
became important in identifying targeted biocontrol agents 
to specific pathogens in the host plants [26].

Taking account of key certain environmental factors that 
influence microbial community structure by monitoring dif-
ferent ecological niches is vital to ascertain specific environ-
mental factors influencing microbial diversity in plants. For 
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instance, in the phyllosphere, a limited supply of nutrients, 
ultraviolet light, humidity, temperature, oxygen concentra-
tion, pH, etc. influence the microbiome in this niche [27]. In 
the root endosphere, pathogens, nutrient deposition, and ver-
satility might be key factors influencing the diversity of the 
microbes in different plants. The effect of ultraviolet “B” has 
been reported to influence the bacterial community structure 
in the soybean phyllosphere [28]. The factors (geographical 
location, carbohydrates, amino acids, and other soil nutri-
ents) influence the microbial diversity in the root endosphere 
[29]. The soil-inhabiting microbes and some phyllosphere 
endophytic microbes can withstand high ultraviolet radiation 
due to the presence of pigments, i.e., melanin, xanthomona-
dine, and carotenoids [30]. The microorganisms found in 
the same ecological niche can be differentiated based on 
their characterization, genetic composition, and metabolic 
activities [30].

Plant endosphere ecology comprises microbial domains 
found in the below (root, sometimes seeds) and above (stem, 
leaf, seed, flower, and ovule) plant parts [31]. The microbial 
population and diversity in the plant root may be dissimilar 
compared to the other plant parts. The root endophytes are 
influenced by the exudate-secondary metabolites released 
into the soil-root environment [32]. Mina, Pereira, Lino-
Neto, and Baptista [33] stated that the endophyte diversity 
in the different organs of a particular plant is mediated by 
the physical and chemical properties. This claim was relative 
to soybean as de Almeida Lopes, Carpentieri‐Pipolo, Oro, 
Stefani Pagliosa, and Degrassi [34] observed a similarity in 
the diversity of microorganisms in soybean.

Endophytic Bacteria Associated with Soybeans

Studies on the functional traits exhibited by endophytic 
bacteria associated with soybean and Arabidopsis aim to 
reveal their significance in agriculture, industry, and medi-
cine [15, 35]. The effects of some endophytic bacteria from 
legumes and other food crops on plant growth are presented 
in Table 1. Hence, the advantages of beneficial endophytic 
bacteria (e.g., plant production, growth, secondary metabo-
lites) found in different food crops from various plant habi-
tats remains crucial in plant growth promotion, inducing 
plant tolerance to harsh environmental conditions and dis-
ease control. These researchers reported Citrobacter freundii 
and Enterobacter asburiae from the root and stem; Kosako-
nia cowanii, Pantoea agglomerans, and Variovorax para-
doxus from the root and leaf; Staphylococcus aureus from 
the stem and leaf; and Enterobacter ludwigii from the root, 
stem, and leaf of soybean. Likewise, Dubey, Saiyam, Kumar, 
Hashem, Abd_Allah and Khan [15] and Brunda, Jahagirdar, 
and Kambrekar [36] also isolated Bacillus pumilus from the 
stem and leaf of the soybean plant, which aligns closely with 
the claims of de Almeida Lopes, Carpentieri‐Pipolo, Oro, 

Stefani Pagliosa, and Degrassi [34], who observed similar 
bacterium in different organs of soybean. Hence, it is crucial 
to carry out more research to have a deeper understanding 
of the inherent factors affecting the diversity of endophytes 
in different plant parts for maximum exploration in solving 
agricultural problems.

The selection of endophytic bacteria based on taxonomy 
and functions can help understand diverse bacteria commu-
nities in different plants [37]. Plants of the same species 
may have different bacteria compositions and associations, 
depending on the location, genotype, cropping system, cli-
matic conditions, and growth stage [38].

The genomic data available on the microbes from soy-
bean with unique metabolic features reveal their genetic 
variation. The notable genes involved in flagella biosyn-
thesis (flg, fil, flh), chemotaxis (cheABRVWZ, mpc), IAA 
synthesis (trpABCDE), nitrogen fixation (iscU), and phos-
phate solubilization (pstABCS) identified in the genome of 
Pseudomonas fluorescens BRZ63 isolated from rapeseed 
may be responsible for the bacterium functions in enhancing 
plant growth and disease control [39]. A study by Adeleke, 
Ayangbenro, and Babalola [40] reported genes involved in 
nitrogen fixation, phosphate transport and solubilization, 
siderophore production, secretion systems, iron transport, 
flagella, flagella biosynthesis, and phytohormones in the 
genome of endophytic Bacillus cereus T4S isolated from 
sunflower, which enhanced sunflower yield. Furthermore, 
studies should also be intensified on soybean to unravel the 
genes in their different endophytes, enhancing plant growth.

Plant–microbe cooperation can modulate the transfer of 
certain genetic traits in the host plant by genome modula-
tion, which may assist plants in acquiring novel traits and in 
boosting their adaptation mode of actions in diverse envi-
ronments. The level of genetic communication in the root-
soil interface facilitates microbial infiltration into the plants 
[41]. However, the similar genetic complexity between 
rhizosphere microbes and endophytic microbes provide new 
insights into their colonization pattern into the root endo-
sphere and become endophytes [42]. Therefore, the mecha-
nisms employed by soybean endophytic microbes in plant 
growth promotion need to be understood to ascertain their 
roles in the plant endosphere.

Endophytic Fungi Associated with Soybean

Providing information on endophytic fungi (EF) inhabiting 
the root of soybean can help unravel the prospects of soy-
bean in sustainable crop production. The plant growth–pro-
moting attributes of bacteria and fungi inhabiting the root 
of plants may share significant similarities depending on 
the sample type, isolation source, and growth conditions 
[43, 44]. EF employs multifunctional strategies for plant 
growth and protection against biotic and abiotic stressors 
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[45]. Unraveling the community structure and complex 
plant–microbe synergies in the host plants has made the sci-
ence of endophyte interesting as a way of maximizing their 
bio-products (bioinoculants) to ensure food security [46, 47].

The EF which forms part of plant lifestyle with a strong 
affinity in the root endosphere due to the presence of cell 
organelle (mycelia) can be explored in agriculture [48–50]. 
Despite the ecological services of plant-associated EF, there 
is still a need to further investigate EF associated with soy-
bean. For instance, the biocontrol potential of EF isolated 
from rapeseed against Botrytis cinerea and Sclerotinia scle-
rotiorum, which causes gray mold and Sclerotinia stem root, 
has necessitated further their exploration [51]. A study by 
Sallam, Ali, Seleim, and Bagy [10] reported antagonistic 
activity of the endophytic fungus Trichoderma spp. isolated 
from the soybean against Rhizoctonia solani, which reduces 
their effect on soybean yield under greenhouse experiments. 
Other research findings (to mention but a few) on the plant 
growth promotion and antifungal attributes of EF against 
plant pathogens were evident in literature due to phytohor-
mone and metabolite secretions [25, 51–53].

The biotechnological potential of diverse EF in the pro-
duction of therapeutic agents and antibiotics revealed their 
beneficial effect on plant immunity and growth enhancement 
[54]. The mechanism of action and factors influencing the 
diversity of root-associated endophytic bacteria and root-
associated EF may be similar, possibly based on the same 
source of identification. Some identifiable EF isolated from 
the root, stem, and leaves of soybean with detailed biological 
activities for sustainable plant health includes Trichoderma 
asperellum, T. longibrachiatum, and T. atroviride [10], 
Colletotrichum spp., Pestalotiopsis spp., Botryosphaeria 
spp., Diaporthe spp. [55], and Fusarium, Alternata [56]. 
Despite their multifaceted attributes in plant growth promo-
tion, disease suppressiveness, stress alleviation, metal reduc-
tion, and nutrient mineralization [57–59], there is still a need 
for more studies into the EF colonizing the root of soybean.

Methodologies and Bottlenecks Limiting 
the Endophytic Study

The identification of endophytes in their host plants is some-
what difficult because some endophytic microbes might not 
be easy to culture in the laboratory [60], while some are 
viable but non-culturable. Hence, the use of culture-depend-
ent and culture-independent methods remain important as 
the case may be. In the use of culture-dependent methods, 
the population of microbes are easily evaluated, while in 
contrast, the culture-independent methods are more use-
ful in assessing the entire microbiome in the samples [61]. 
Culture-dependent methods, which involve microbial isola-
tion on nutrient-rich microbiological media under specific Ta
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revolutionized growth conditions, are important to deter-
mine microbial physiology and genes and screening for plant 
growth-promoting traits [62].

Conversely, this technique is laborious, revealing detailed 
microbial diversity and networking in econiches. Also, the 
proliferation of undesirable microorganisms on the cultured 
plates, which compete for nutrients needed by the desirable 
microorganisms, has been identified as a major challenge 
when isolating endophytic microbes by culturing methods 
[63]. Hence, the application of culture-independent methods 
is profound in characterizing yet-to-be cultured microorgan-
isms. Authors Alain and Querellou [64], Torsvik and Ovre-
sas [65], and Afzal, Shinwari, Sikandar, and Shahzad [63] 
stated that culturable bacteria represent about 0.0001–1% 
of the total endophytes in plants. Hence, the interest of 
researchers on purposeful research design should be con-
sidered before selecting a method for isolating endophytic 
microbes.

Endophytes can be cultured on agar plates, and then 
microbial DNA can be extracted before carrying out poly-
merase chain reaction (PCR). Garcias-Bonet, Arrieta, de 
Santana, Duarte, and Marbà [66] employed a commercial 
DNA extraction kit specific for plant DNA extraction to 
extract microbial endophytic DNA and used primer meant 
for the bacteria domain to carry out the PCR procedure. 
However, it should be noted that when amplifying a spe-
cific region of bacteria DNA, the mitochondria and chlo-
roplast DNA found in plants may have a close resemblance 
to that of endophytes; hence, this method might not be too 
appropriate. In this light, next-generation sequencing is rec-
ommended without denaturing gradient gel electrophore-
sis (DGGE) analysis. Piccolo, Ferraro, Alfonzo, Settanni, 
Ercolini, Burruano, and Moschetti [67] demonstrated the 
use of fluorescence in situ hybridization (FISH) technique 
in studying endophytic microbes. However, this can only 
be done in the natural habitat, thus making the laboratory 
isolation complicated.

On the other hand, Ikeda, Kaneko, Okubo, Rallos, Eda, 
Mitsui, Sato, Nakamura, Tabata, and Minamisawa [68] 
developed a procedure to enrich bacterial cells when isolat-
ing unculturable endophytes from the stem of a soybean by 
fractionalizing the homogenated soybean stem. This method 
was achieved by differential centrifugation and Nycodenz 
density gradient centrifugation. This method proved effec-
tive compared to when DNA was isolated from the soybean 
stem due to the higher intensity and number of amplicons 
of the bacteria when the efficiency of the bacteria cell was 
fortified using ribosomal intergenic spacer analysis. Equally, 
Lundberg, Yourstone, Mieczkowski, Jones, and Dangl [69] 
also worked on an improved technique for 16S ribosomal 
rRNA sequencing, where unique template molecules were 
tagged before PCR by mapping amplicon sequences (to their 
original templates), which help to prevent error and bias 

arising from the amplification process. This method uses 
a base pair sequence with a higher temperature (melting) 
than the primer set, which is designed to attach to the host’s 
DNA.

The culture-independent methods are more advanced due 
to attention drawn to them which facilitated more research to 
improve them. For instance, a modern analytical approach 
has been documented to advance the science of the plant 
microbiome [70]. The use of combined stable isotope prob-
ing (SIP) and nanoscale secondary ion mass spectrometry 
techniques (NanoSIMS) coupled with advanced Raman 
spectroscopy-based single cell–based methods have been 
envisaged in studying plant microbiome in  situ and to 
determine their biological functions in the bioremediation 
of complex pollutants from metal-polluted soil [71]. More 
importantly, the specific metabolic functions of endophytic 
microbes can be better understood by combining SIP with 
other molecular methods, such as qPCR, finger printing, and 
cloning.

Dos Santos and Olivares [72] reported the use of micro-
cosm combined with bacteria stocks as a reference to deter-
mine bacteria assemblage in the root of plants and their plant 
growth-promoting potential. Also, Hartman, van der Hei-
jden, Roussely-Provent, Walser, and Schlaeppi [73] reported 
a microcosm approach in elucidating the bacteria diversity 
and function in the root of red clover. Furthermore, Hartman, 
van der Heijden, Roussely-Provent, Walser, and Schlaeppi 
[73] revealed a significant reduction in the growth of red clo-
ver upon mono-inoculation with Flavobacterium compared 
to the co-inoculation of red clover with root microbiome, 
which enhanced plant growth by reducing the negative effect 
of mono-inoculation of red clover with Flavobacterium. 
Finally, a microcosm study performed by Eldridge, Trav-
ers, Val, Ding, Wang, Singh, and Delgado‐Baquerizo [74] 
reported diverse microbiome and their functions on 15 plant 
species growing in terrestrial habitats to reveal the prefer-
ence of plant-associated microbes and their importance in 
plant germination. It will be interesting to fashion out how 
these modern approaches can be employed in the science of 
endophytes to better understand endosphere biology.

Different molecular approaches exist for the identification 
of endophytic bacteria and the combination of recent molec-
ular approaches, such as genome sequencing and metagen-
ome. The use of DNA extracted from the root of plants can 
be employed in unraveling microbial community structure 
and functions in soybean. The extracted DNA from plant 
tissues after surface sterilization with water, hypochlorite, or 
ethanol for endophytic studies might contain a certain pro-
portion of plant DNA, which is needed to be depleted using 
appropriate sequencing techniques and plantforms (e.g., Illu-
mina, PacBio, and DNA fingerprinting). Many techniques 
exist for DNA fingerprinting. These include restriction frag-
ment length polymorphism (RFLP), simple sequence repeat 
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(SSR), terminal-RFLP, rapid amplified polymorphic DNA, 
amplified fragment length polymorphism, inter-SSR, sin-
gle-stranded conformation polymorphism, and DGGE [75]. 
The analysis of diverse plant microbiomes based on genetic 
composition can be achieved by the real-time polymerase 
chain reaction, FISH, automated version of ribosomal inter-
genic spacer analysis, terminal restriction fragment length 
polymorphisms, and DGGE, and phospholipid and fatty acid 
have also been documented [72, 76–78].

It is noteworthy to understand the use of molecular 
methods in identifying yet-to-be microbial endophytes by 
using appropriate methods to maximally recover endophytic 
DNA after the extraction process. The advent of PCR-based 
approaches in the Plant-Microbial Genome Project has pro-
vided vast advantages and opportunities for the detection, 
multiplication, quantification, and synthesis of copies of 
DNA in large amounts, differentiated from one another [79]. 
PCR techniques have been widely employed for the detec-
tion of diverse genes responsible for microbial functions 
[80]. The PCR and DNA sequencing aims at measuring the 
presence, taxonomy, and functions of plant microbiome from 
various samples, although, despite the importance of these 
techniques, there are limitations surrounding the PCR ampli-
fication process and DNA sequencing, mostly when extract-
ing DNA from plant samples. The limitations include (i) 
contamination during the DNA extraction for PCR reaction 
and library preparation which may affect the DNA integrity, 
resulting in result errors and false outcome; (ii) primers’ 
design which require some previous sequence information; 
and (iii) the specific PCR product obtained during amplifi-
cation process may be altered from one microbe to another 
based on non-specific binding of primers to other identical 
targeted sequences [81]. Piccolo, Ferraro, Alfonzo, Settanni, 
Ercolini, Burruano, and Moschetti [67] demonstrated the 
use of FISH technique in studying endophytic microbes; 
however, this can only be done in the natural habitat, thus 
making the laboratory isolation complicated. Furthermore, 
addressing these limitations specific to sequences may help 
devise approaches for the normalization of sequenced data to 
reveal microbial composition in its entirety. The use of PCR 
coupled with other sequence-based approaches is promising 
with more insights into plant microbiome gene combina-
tions [71].

The advent of advanced molecular techniques for endo-
phytes’ identification has succeeded in DNA fingerprinting, 
for instance, the use of omics approaches where DNA is 
retrieved from bacteria to evaluate the diversity, functions, 
genes, metabolites, transcripts, and proteins with the aid of 
next-generation sequencing. The DNA fingerprinting meth-
ods have been overtaken by more technical procedures, such 
as metagenomics which involves DNA extraction from the 
total bacteria population using next-generation sequenc-
ing [82]. This method has proven to better unravel the total 

endophytes from plant tissues compared to the fingerprint-
ing techniques. Aside from omics approaches, the use of 
microscopy techniques, epifluorescence light microscopy, 
bright-field light microscopy, interferential and differential 
contrast light microscopy, scanning electron, and transmis-
sion electron microscopy in determining visual evidence of 
microbial colonization patterns in plants, has been docu-
mented [72, 76, 83].

The use of culture-independent techniques, which 
involved DNA/RNA extraction from environmental sam-
ples coupled with omics approaches, has revolutionized 
the science of endophyte microbiology in generating 
large sequence datasets. This next-generation sequencing 
approach involving no DNA cloning has been employed to 
unveil the community structure, diversity, taxonomic and 
functional profiling, metabolites, and metabolic pathways of 
the plant microbiome [72]. So far, the few research efforts 
utilizing next-generation sequencing from soybeans and 
other food crops revealed their taxonomic and functional 
attributes of endophytes in different plant species (Table 2).

Furthermore, addressing these limitations specific to 
sequences may help devise approaches for the normaliza-
tion of sequenced data to reveal microbial composition in 
its entirety. The use of PCR coupled with other sequence-
based approaches is promising with more insights into plant 
microbiome gene combinations [71]. The combination of 
recent molecular approaches, such as genome sequencing 
and metagenome using DNA extracted from the root of 
plants, can be employed in unraveling microbial commu-
nity structure and functions in soybean. More importantly, 
the specific metabolic functions of endophytic microbes can 
be better understood by combining SIP with other molecular 
methods, such as qPCR, finger printing, and cloning.

The advancement in plant microbiome studies has 
revealed certain traits, which mediate their functions, 
such as secondary metabolites, genetic information, pro-
teins, and transcripts using culture-dependent and culture-
independent techniques [84–86]. Modern approaches to 
studying diverse endophytic microbes and functions are 
being employed to understand the colonization pattern 
for plant–microbe interactions based on host specificity 
and signaling networking for microbial communications 
linked to root exudation [87]. The genes involved in flag-
ellation, chemotaxis, motility, and biofilm formation has 
been reported in many bacteria strains, which facilitate 
their attachment/adherence, penetration, and colonization 
in the host plants [88, 89]. The host plants’ specific signal-
networking and plant–microbe communications can reveal 
how microbes exhibit mutual relationships and antagonis-
tic toward the phytopathogens by triggering host immune 
responses [12]. Aside from genes involved in beneficial 
bacterial colonization, other genes have also been docu-
mented to partake in microbial biological processes. For 
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1 3

instance, the genes involved in carbohydrate metabolism, 
phytohormone synthesis, secretion systems, biocontrol 
activity, and oxidative stress identified in the genome of 
endophytic bacteria from sunflower, apricot, and pop-
lar that are important in agriculture, biotechnology, and 
industry have been documented [90–92].

In line with the aforementioned approaches and conven-
tional techniques, studying the plant microbiome can be 
easier. Hence, it is recommended to compare the different 
recovering or identifying endophytes. This would assist 
in selecting the best method to use to identify endophytic 
microbe from plant samples. On the other hand, both the 
culture-dependent and culture-independent methods of 
endophyte analysis can help have a broader view of the 
diversity and population of plant endophytes and their 
functional attributes in the ecosystem. Briefly, the advan-
tages and disadvantages of the techniques and approaches 
employed in the study of plant-associated microbes are 
highlighted in Table 3.

Complexity of Plant Microbiome in Plant 
Ecosystem

The microbes recruited into the plant endosphere and those 
inhabiting the external root environment contribute to 
plant growth in diverse ways, as shown in Fig. 1. Reports 
by Ku et al. [93] showed root surface and hair colonization 
by an endophytic bacterium, B. cereus, in Chinese cab-
bage, soybean, and wheat, with evidence in understand-
ing the mode of actions of plant microbes and how they 
influence plant growth. Aside from endosphere and rhizo-
sphere research findings, fewer studies have documented 
the microbiome inhabiting the antosphere, caulosphere, 
carposhere, and spermosphere. Research into microbiome 
in the plant environments, such as rhizosphere, root, seed, 
and stem, have been documented, and their possible use 
in agricultural biotechnology is profound.

For instance, Kumawat et al. [94] reported an increase 
in the growth, symbiotic efficacy, nutrient acquisition, 
and yield of soybean co-inoculated with endophytic Pseu-
domonas oryzihabitans and Bradyrhizobium spp. Also, an 
increase in the crop yield, oil content, antioxidant content, 
seed quality, carbohydrates, and chemical composition 
(protein and lipid) of soybean inoculated with endophytic 
Bacillus amyloliquefaciens has been reported by Sheteiwy 
et  al. [23], which suggests their future exploration as 
bioinoculants in growing soybean under drought stress. 
Because plants harbor diverse number of microorganisms, 
the better understanding of their complexity and functional 
traits will help unraveled their biological activities.

Rhizosphere and Bulk Soil Microbiome

The rhizosphere (plant microhabitats) represents soil regions 
closer to the plant root environment [95]. The rhizosphere 
is often referred to as a “hotspot” for microbial activities 
due to the excess release of root exudates, which supply 
the required energy for microbial metabolic activities [96]. 
The response of soil microbes to the diverse chemical com-
pounds and varied soil parameters, which favors soil micro-
flora, can be an indicator for selecting them over others. 
The shaping of the rhizosphere microbiome can be a func-
tion of the quantity of exudate released from one plant to 
another. Some examples of secondary metabolite organic 
compounds include amino acids, phenols, organic acids, 
sugars, siderophores, polysaccharides, etc. When released 
from plant roots, it influences a higher microbial population 
in the rhizosphere than in bulk soil [97].

Bulk soil is the soil that is equidistance away from the 
rhizosphere region without root penetration [98]. The micro-
bial inhabitant in the bulk soil can be less in diversity due 
to the fewer organic compounds than the rhizosphere soil 
inhabitants with identical species. Some examples of bac-
teria occupying the rhizosphere root environment include 
Bradyrhizobium diazoefficiens, Bacillus subtilis, B. velezen-
sis, etc. [99–101]. High microbial colonization, diversity, 
and activities are easily mediated by rhizodeposition, reduc-
ing compared to the adjacent or bulk soil [102].

Usually, the variations in the rhizosphere microbial com-
munities in soybean and other food crops can be linked to the 
geographical locations, growing seasons, crop rotation, plant 
growth stages, cultivars, farm practices, etc. The identifica-
tion of diverse bacterial phyla, such as Acidobacteria, Act-
inobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, 
and Proteobacteria from rhizosphere soils under the differ-
ent growing conditions and soil types, has been reported 
with greater influence on the bacterial diversity [103, 104]. 
Hence, there is a need for further research to ascertain if 
the microbes present in soybean across multiple locations 
are different, since there is less information of the soybean 
rhizosphere microbial communities.

Due to the nodule formation in the root of soybean, the 
endosymbiotic relationship with nitrogen-fixing bacteria can 
be an advantage in releasing excess quality, and quantity of 
root exudate different from non-nodulating plants to help 
establish discreet microbial biomass in the rhizosphere [18]. 
High-throughput sequencing in determining the rhizosphere 
bacterial and fungal communities of rapeseed have revealed 
varied operational taxonomic units at seedling, flowering, 
and maturity stages [105]. The assessment of a bacterial 
community in rapeseed using a molecular ecology network 
with random matrix theory showed bacteria genera, such 
as Rhizobium, Flavobacterium, and Pseudomonas, at the 
network level [106].
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Interestingly, research on rhizosphere microbiome with 
the view of mapping out strategies for their incorpora-
tion into agriculture has been emphasized in recent times 
[107–109]. Nevertheless, the presence of pathogens may 
influence rhizosphere microbes in many ecological pro-
cesses. Furthermore, the source of rhizosphere microbes is 
important as most of them may be introduced into the soil 
through seed planting [110].

Seed Microbiome

Aside from the rhizosphere microbiome [111], research 
advancements have shown microbial composition on the 
surface and internal tissue of seeds [76, 112] can be benefi-
cial or pathogenic. The beneficial microbes influence seed 
growth at pre-germination, germination, flowering, and 
maturation stages [113]. The recruitment of microbiome in 
seeds can be achieved by vertical (from the mother plant) 
or horizontal (environment) transmission [114]. Vertical 
transmission of seed endophytes is believed to originate 
from the leaves and flowering parts. Upon planting into the 
soil, the seed undergoes imbibition, which enables them to 
absorb soil nutrients and then germinate. During the imbi-
bition process, the release of metabolic compounds in the 
spermosphere region, i.e., soil-seed environment, creates 
an attractive environment for the soil microbes to compete 
with the natural soil pathogens [115]. At this stage, the seed 
microbiome infiltrate or release to the soil environment via 
horizontal transfer.

Seed endophytic bacteria and their mode of transmission 
enabled them to occupy diverse niches, such as the peri-
carp, seed embryo or cotyledon, and endosperm [116]. The 
transmission of seed endophytes may differ depending on 
the organ location. For instance, endophytic in the pericarp 
are horizontally transmitted, while those colonizing the 
endosperm and embryo are easily transmitted by vertical 
processes [117]. More research should be done on soybean 
to understand how endophytes are transferred in their root 
region.

Microscopy and high throughput sequencing approaches 
have been employed to characterize seed microbiome, espe-
cially endophytic bacteria in some leguminous plants [118]. 
Sánchez-López et al. [119] reported dominant endophytic 
bacteria phyla, Proteobacteria, Firmicutes, Chlamydiales, 
and Bacteroidetes while investigating endophytic bacteria 
in the seed of Low Rattlebox. Information on the micro-
bial community structure of endophytic bacteria in the 
seed of soybean and other leguminous food crops using 
high-throughput sequencing are scanty in literature. Con-
sequently, differentiating seed endophyte and soil microbi-
ome are still less understood. Also, seed endophytes can be 
found in other plant parts via infiltration from the rhizos-
phere to the above ground level. Interestingly, the synergistic Ta
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cooperation between the soil microbes and seed endophytes 
has contributed to plant health and nutrition [120].

Root and Shoot Microbiome

The root and shoot form a key component in the study of 
the plant microbiome [71]. The microbes found in the root 
and shoot can be less in number compared to the higher 
microbial profiling in the rhizosphere due to the nutrients 
and exudate secretion attributes [96, 121]. The detection of 
genes involved in bacteria attachment due to specialized cell 
organelles, such as fimbriae, flagella, and pili in the plant 
surface, assisted bacteria adhesion to the cell surfaces to 
form a biofilm [122]. The plant-bacteria interaction and 
transient within the plant tissue can result due to a rise in 
water flux during transpiratory processes in plants. Across 
the plant parts, the presence of the targeted microorganisms 
may be influenced by the organ location and accessibility to 
plant nutrients [123].

For microbes to efficiently colonize the host plant, the 
line of mode of actions involved includes (i) adherence 
to the root surface, (ii) multiplication, (iii) invasion from 
the external root environment, and (iv) colonization [124]. 
After the colonization process, the movement of endophytic 
microbe from the belowground to the shoot through micro-
bial networking can be achieved. The type and quantity of 

nutrients available in the plant endosphere can modulate the 
extent of bacteria diversity. Adeleke et al. [61] and Jie et al. 
[125] reported diverse endophytic bacteria phyla Chloro-
flexi, Nitrospirae, Planctomycetes, Palescibacteria, Acido-
bacteria, Actinobacteria, Cyanobacteria, Saccharibacteria, 
Firmicutes, Gemmatimonadetes, Bacteroidetes, and Proteo-
bacteria from the root of sunflower and soybean. Recently, 
endophytic bacteria genera Bacillus, Staphylococcus, Serra-
tia, Stenotrophomonas, Pseudomonas, Enterobacteria, and 
Erwinia from healthy rapeseed has been reported as part 
of the shoot microbiome [25]. Endophytic bacteria in the 
external root environment are usually higher compared to the 
internal part of roots. In the findings by Adeleke et al. [61], 
the authors reported a dominant and high bacteria population 
in the root of growing sunflower compared to the stem due 
to the agricultural practices, geographical locations, plant 
type, organ location, etc., which contribute to the bacterial 
diversity.

The reason for microbial differences in the rhizosphere, 
endosphere, and phyllosphere can be biological, chemical, 
or physical factors, which may exert selective pressure on 
endophytic bacteria to infiltrate the root endosphere [126]. 
The endophytic microbiome tends to adjust to a plant envi-
ronment with stable biomass, while the rhizosphere microbi-
ome may vary due to niche complexity. Acknowledging the 
fact that plants harbor a multifunctional microbiome in the 

Fig. 1   Endophytic bacteria recruitment mechanisms and benefits in plant growth promotion. Key: IR, induced resistance; HCN, hydrogen cya-
nide; SAR, systemic acquired resistance
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root and shoot can be a pointer to understanding factors that 
modulate the shape of the microbiome in plants.

Plant Growth Stimulation Attributes 
of Endophytic Bacteria

Beneficial plant microbiome helps in sustaining the ecosys-
tem [100]. The ecological services range from plant growth 
promotion, pathogen control, phytoremediation, biofertiliza-
tion, and abiotic stress mitigation to human safety [86, 127]. 
In recent times, the multifunctional attributes of endophytic 
microbes as plant growth stimulators and bioinoculants 
promise to revolutionize agriculture without negative eco-
logical effects [128]. Also, the role of endophytic microbes 
in agricultural biotechnology has been focused on; yet, 
research is still ongoing to meet zero ecological threats for 
maximum food production [129]. Exploration of endophytic 
resources to provide alternative measures in ensuring a safe 
environment and sustainable agricultural productivity have 
been emphasized due to the negative impact of chemical 
fertilizers on the ecosystem [130].

From the multifaceted application perspective, the mecha-
nisms employed by endophytic microbes immensely con-
tribute to plant growth and health [22]. Microbes employ 
direct or indirect mechanisms in sustaining plant growth and 
health [131]. The core attributes of endophytic microbes in 
enhancing plant growth include nutrient acquisition and 
mineralization, phosphate solubilization, nitrogen fixation, 
siderophore and enzyme production, and synthesis of growth 
hormones, such as indole-3-acetic acid, gibberellic acid, and 
abscisic acid, while indirectly, ACC deaminase, exopoly-
saccharide, and hydrogen cyanide production by endophytic 
microbes contribute to plants survival under drought stress 
[132]. All the aforementioned processes, specifically, have 
been screened from endophytic microbes associated with 
sunflower and soybean [15, 40]. In addition, the suppres-
sion of phytopathogens through the induction of systemic 
resistance and antibiosis activities of endophytic microbes 
boost plant immunity against soil and host invading patho-
gens [133]. Also, findings by Zhao, Xu, and Lai [9] reported 
high inhibitory activity of soybean nodule endophytic bacte-
rium Acinetobacter calcoaceticus against pathogenic fungus 
Phytophthora sojae due to their close association with the 
root of the plants.

Endophytic microbes are said to deliver effectively in 
enhancing plant growth due to their close interaction, colo-
nization, less composition in plants, and non-exposure to 
harsh environmental conditions [134]. These attributes make 
endophytic studies interesting compared to the rhizosphere 
microbes. The synergistic effect of nodule endophytic bac-
teria, Pseudomonas aeruginosa (LSE-2) and Bradyrhizo-
bium sp. (LSBR-3) from soybean, has been investigated as 

a source of bioinoculants and biofertilizers due to their root 
colonization potential through molecular crosstalk, which 
supports plant growth and nutrition [135].

Some endophytic microbes solubilize phosphate in natu-
ral form by producing organic acids, which lower soil pH 
and chelate iron for easy phosphate assimilation by plants 
in soluble form [136]. The ability of endophytic bacteria to 
produce phosphatases also helps in the mineralization of 
organic phosphorus [137]. In vitro screening of phosphate-
solubilizing endophytic bacteria has been investigated from 
soybean, sunflower, and rapeseed [138–140]. For example, 
Acinetobacter calcoaceticus, Ochrobactrum haematophilum, 
B. panacihum, Bacillus subtilis, B. australimaris, B. thur-
ingiensis, B. zhangzhouensis, and Lysinibacillus pakistan-
ensis have been isolated from leguminous crops [9, 18, 30]. 
Kenasa, Nandeshwar, and Assefa [141] reported the identi-
fication of cowpea root endophytic bacteria, Pseudomonas 
putida, and Bacillus subtilis phosphate producers in their 
study. Also, a study by Yasmeen and Bano [142] reported 
an increase in soybean yield co-inoculated with phosphate-
solubilizing bacteria, Rhizobium and Enterobacter.

The rhizobacteria in the root nodule of leguminous plants 
naturally fix nitrogen in the soil, which is needed for plant 
nutrition [18]. The nitrogen fixation potential of endophytic 
bacteria in the root nodules of leguminous crops, effec-
tively, has enhanced the nitrogen pool in soil deficient in 
nitrogen supply [143]. The nitrogen fixation by endophytic 
bacteria may differ compared to rhizobacteria found in the 
root of legumes [144, 145]. Interestingly, exploration of the 
endophytic bacterium Gluconacetobacter diazotrophicus 
with exceptional nitrogen fixation in plants has long been 
reported in reclaiming nitrogen loss in the soil [146].

The ability of endophytic bacteria to produce sidero-
phores also plays a major role in plant health sustainability 
[147]. For instance, biocontrol activity which limits iron 
supply to the pathogens, heavy metal reduction, and induc-
tion of systemic resistance can be linked to the siderophore 
compounds, i.e., catecholate and hydroxamate, produced 
by endophytic bacteria [148]. Diverse endophytic bacteria 
associated with soybean have been reported as siderophore 
producers [15]. Bhutani et al. [18] and Maheshwari et al. 
[149] reported siderophore-producing endophytic bacteria 
strains from legumes. The suppressive and biocontrol activ-
ity of endophytic Burkholderia contaminans against Mac-
rophomina phaseolina causing root rot, stem rot, seedling 
blight, damping off, and charcoal rot in jute due to sidero-
phore biosynthesis has been reported [150]. Since the pres-
ence of nitrogen-fixing and siderophore-producing bacteria 
has been established in soybean, other functions of these 
bacteria should be further studied.

Similarly, phytohormones, such as ethylene, IAA, cyto-
kinins, and gibberellin, modulating plant growth via diverse 
pathways are evident in endophytic microbes [9]. Notably, IAA 
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biosynthesis facilitates root development, which enables plants 
to absorb nutrients and water from the soil [151]. Tryptophan, 
which serves as a precursor for IAA production by endophytic 
microbes in a growth media, helps differentiate IAA-producing 
bacteria from non-IAA-producing bacteria [152]. Evidence 
of IAA and other phytohormones, such as gibberellin, and 
cytokinin production by endophytic bacteria to enhance plant 
growth, have been documented [63, 153]. Some endophytic 
bacteria, which produce 1-aminocyclopropane-1-carboxylate 
(ACC), a precursor for ethylene production, contribute to plant 
growth and are resilient to drought stress [154]. The ability 
of endophytic bacteria to circumvent the effect of pathogens 
by producing jasmonic acid, antibiotics, salicylic acid, vola-
tile compounds, siderophore, and lipopolysaccharide, elicit 
induced systemic resistance, and abiotic stress amelioration 
in the host plants [155].

The actual mode of actions employed by endophytic bacte-
ria in oilseed crop soybean is yet to be fully understood. Simi-
larly, the biosynthesis and metabolism of reacting molecules 
as precursors for the synthesis of novel metabolites or enhanc-
ing already identified metabolites are poorly understood. The 
synthesis of secondary metabolites, such as alkaloids, terpe-
noids, phenols, organic acids, and flavonoids, which induce 
antibiosis, can be achieved by endophytic microbes specific 
to the host plants [156]. Some examples of purified secondary 
metabolites produced by endophytic bacteria from some eco-
nomic plants with related biological functions are presented 
in Table 4. Information relating to secondary metabolites 
sourced from endophytic bacteria associated with soybean is 
less documented in the literature. Hence, research focusing 
on secondary metabolites from endophytic bacteria associated 
with soybean and their exploration will further reveal their 
bioprospecting in plant disease management.

The biomolecules sourced from endophytic bacteria stand 
promising in agriculture, environment, industry, and human 
safety. Hence, genomic insights into plant microbiome aim 
to reveal their functions and activity in plant physiology 
and metabolism. Additionally, it is imperative to unravel 
soybean-associated endophytic bacteria’s biological func-
tions and physiological attributes, using culture-dependent 
and culture-independent techniques to identify secondary 
metabolites in the bacteria genome [24]; making informa-
tion available on secondary metabolites produced by endo-
phytic bacteria will help find a solution to diverse agricul-
tural problems.

Current Status of Plant Microbiome 
Collaborative Research

The interdisciplinary synergies among researchers in 
studying plant–microbe interactions continue to progress. 
Research efforts to study and explore endophytic bacteria 

from the leguminous crop as bioinoculants for plant growth 
and sustainable ecosystem have increased tremendously 
with driven biotechnological advances and low-cost anal-
ysis [124]. Interestingly, the commercialization of endo-
phytic bioinoculants is possible in sustainable agriculture 
[128]. The computational knowledge about next-generation 
sequencing and other innovative techniques have informed 
scientists with accurate information on microbial diversity 
and related genes [109].

Better still, there is a need to develop robust bioinformat-
ics tools and analytical techniques with the existing tech-
nologies to generate microbiome data as a guide for further 
experiments. Adeleke et al. [40] and Adeleke et al. [157] 
reported the genomic characterization of plant growth-pro-
moting endophytic bacteria, Bacillus cereus T4S and Steno-
trophomonas maltophilia JVB5 as copious sunflower growth 
enhancers. Furthermore, effort on the use of these endo-
phytic bacteria as biocontrol agent against phytopathogens is 
expected to be investigated in the future studies. Employing 
this approach by ecologists, environmental and computa-
tional scientists, microbiologists, agriculturists, and industri-
alists aim to provide insights into plant microbiome research 
as a reference for further studies. Furthermore, understand-
ing the dynamics and role of endophytic microbes in plants 
using up-to-date techniques and bioinformatics tools, how-
ever, can help develop multiple strategies in understanding 
their functions in diverse fields, such as agriculture, ecology, 
medicine, forensics, and exobiology.

The dominant bacteria phyla, Actinobacteria, Firmicutes, 
Proteobacteria, Bacteroidetes, and Chloroflexi in the root 
endosphere of food crops, such as maize, cowpea, sorghum, 
sunflower, soybean, have been reported using culture-inde-
pendent techniques [61, 158, 159]. Yet, there is a need to 
investigate further using appropriate techniques to access 
plant growth-promoting endophytic bacteria in different 
legumes and other food crops under different climatic con-
ditions. Hence, identifying these bacteria for bioinoculants 
formulation can serve as a pointer to achieving ecofriendly 
agriculture sustainably.

Conclusions

This review evaluates endophytic bacteria in soybean and 
other food crops. The bioprospecting of these bacteria 
enhances their potential for sustainable yield enhancement. 
Soybean was discussed as a reference crop for oilseed crops 
due to its economic importance, high yield, and nutritional 
value. Soybean harbors some endophytic microbes impor-
tant in agriculture. Beneficial endophytic microbes inhabit-
ing different parts of the plants can potentially contribute to 
the growth of soybeans and other food crops. For instance, 
root nodule bacteria and endophytic bacteria enhanced 
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nitrogen fixation in soybean, which promotes their yield and 
other yield parameters, enhance immunity, and boost plant 
defense against diseases. However, the root endophytes are 
emphasized because of high metabolic activities occurring 
below ground level due to the high quantity of metabolite 
secretion, which contributes to plant physiological functions.

Different conventional and molecular techniques have 
been employed in the past to unravel endophytic microbes 
in some plants; nevertheless, each method comes with short-
comings. For instance, some endophytes can be difficult to 
culture on media despite their viability, such that culturing 
method can only unravel a lesser percentage (i.e., 0.1%) of 
endophytic populations. Hence, the advancement of endo-
phytic microbes discovery using molecular techniques has 
proven more promising, although, with diverse challenges. 
Extracted endophytic bacteria DNA might contain traces of 
plant DNA, the chloroplast, and mitochondria DNA, which 
are identical to the targeted endophytic bacteria DNA [160]. 
Host depletion techniques have been employed to remove a 
substantial amount of plant DNA that might be present in the 
DNA extracted from the plant tissues. Conversely, the use 
of fluorescence in situ hybridization (FISH) is inefficient, 
because it can only be carried out in a natural habitat.

Oilseed crop soybean is economically important due 
to their high yield, and nutritional value. The mechanism 
employed by the endophytes present in the seed, shoot, 
leaves, roots, and other microbes inhabiting the rhizosphere, 
bulk soil in plant growth promotion, and disease control still 
needs to be emphasized, although some research informa-
tion are available on them. The variation in the diversity 
and population of microbes inhabiting different plant parts 
can be due to difference in the geographical locations, crop-
ping system, developmental stage of the plants and the 
farming practices adopted. These key factors may affect 
the crop yield, microbial diversity and their ability to pro-
duce secondary metabolites. It is therefore very important 
to understand the mechanisms behind the production of 
secondary metabolites in soybean as a measure to improve 
their production, oil content, antioxidant content, seed qual-
ity, carbohydrates, chemical composition, and yield in dif-
ferent environments and also as a model to the research of 
other crops. More research should also be carried out to 
help understand the use of endophytes in the agriculture, 
industry, and medical industries, owing to the production 
of bioproducts. Better still, there is a need to develop robust 
bioinformatics tools and analytical techniques with the exist-
ing technologies to generate microbiome data as a guide for 
further experiments. Employing this approach by ecologists, 
environmental and computational scientists, microbiologists, 
agriculturists, and industrialists aims to provide insights into 
plant microbiome research as a reference for further studies. 
Hence, the authors conclude and recommend that the cur-
rent approaches highlighted in this review will be of help to 

researchers in understanding the dynamics, prospect, and 
potential of endophytic microbes in soybeans and other food 
crops as agricultural bio-input to ensure food security and 
sustainable agriculture.
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