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Abstract. The parameter set synthesis problem consists of identifying
sets of parameter values for which a given system model satisfies a desired
behaviour. This paper presents BioPSy, a tool that performs guaranteed
parameter set synthesis for ordinary differential equation (ODE) biolog-
ical models expressed in the Systems Biology Markup Language (SBML)
given a desired behaviour expressed by time-series data. Three key fea-
tures of BioPSy are: 1) BioPSy computes parameter intervals, not just
single values; 2) for the identified intervals the model is formally guaran-
teed to satisfy the desired behaviour; and 3) BioPSy can handle virtually
any Lipschitz-continuous ODEs, including nonlinear ones. BioPSy is able
to achieve guaranteed synthesis by utilising Satisfiability Modulo Theory

(SMT) solvers to determine acceptable parameter intervals. We have suc-
cessfully applied our tool to several biological models including a prostate
cancer therapy model, a human starvation model, and a cell cycle model.

1 Introduction

Computational modelling is central to many scientific and engineering disci-
plines. For instance, the field of systems biology [17] uses modelling to gain a
greater understanding of how biology works. Similarly, in synthetic biology [1],
models are created in an attempt to engineer new, useful biological systems.
This field typically develops models and analyses them in silico (on a computer)
before synthesising the object of the model in vitro (in a test tube in the lab)
or in vivo (within an organism). Biological systems in both systems biology and
synthetic biology are often constructed with deterministic dynamics and can be
readily translated into ordinary differential equation (ODE) models using mass

action kinetics. There are many well known methods and tools for simulating
ODEs that can be used to obtain results on the behaviour of the biological sys-
tems (e.g., MATLAB). However, obtaining reliable results requires that all parts
of a model are accurately defined. In particular, a key component to modelling
biological systems is selecting the correct model parameters. Since quantitative
parameters are often difficult or impossible to measure experimentally, a problem
that often arises is how to select parameter values to achieve desired model be-
haviours. Indeed, small parameter variations can lead to vastly different results
when simulating biological models.



In order to determine acceptable values for the parameters of a system, mod-
ellers have employed methods that perform parameter synthesis. The parameter
set synthesis problem consists of determining ranges (intervals) of parameters
for which a model’s temporal behaviour remains in satisfactory states, usually
described by time-series data. Formally, parameter synthesis is categorised as a
reachability problem [2] where the solution to a set of ODEs is known for a finite
number of time points, but some of the parameter values that lead to that solu-
tion are missing. For instance, the parameter, k, can be synthesised in the ODE
model given by x′(t) = kt. Given the time-series data in which x = {0, 1, 4, 9}
for t = {0, 1, 2, 3}, it is easy to see that k should be 2. However, if the system is
noisy and the values of x can vary by, say, 0.1, solving the parameter synthesis
problem for k will produce an interval such as [1.978, 2.022].

This paper presents BioPSy, a tool that performs parameter set synthesis
on biological models comprised not only of mass action kinetics, but also of
general Lipschitz-continuous ODEs. Models are specified using the well-known
Systems Biology Markup Language (SBML) [14]. BioPSy accomplishes param-
eter synthesis by extracting a collection of ODEs from an SBML model and
formulating these ODEs along with time-series data into a Satisfiability Modulo

Theory (SMT) problem. It then leverages the SMT solver dReal [12] to incre-
mentally narrow down the parameter search space. Given a parameter domain,
precision, and time-series data expressing desired behaviour, BioPSy returns

– a set of feasible (acceptable) parameter ranges - these are formally and nu-

merically guaranteed to satisfy the synthesis problem;
– a set of infeasible (unsuitable) parameter ranges - these are formally and

numerically guaranteed not to satisfy the synthesis problem; and
– a set of parameter ranges where, because of the given precision, BioPSy is

unable to determine if they satisfy the synthesis problem.

Note that, depending on the problem at hand, any of the three sets above may
be empty, although not all at the same time. We remark again that BioPSy can
handle nonlinear ODEs, and its answers have mathematical proof strength.

Related Work A simple way to perform parameter synthesis is first to dis-
cretise the parameter space (if necessary) and then use exhaustive simulation or
Monte Carlo methods to determine which simulations satisfy a desired behaviour.
Indeed, many tools utilise simulation-based approaches to find acceptable pa-
rameter values. For example, COPASI [13], a well known biochemical network
simulator, uses methods such as genetic algorithms, particle swarm simulations,
differential evolution, and simulated annealing among others to perform param-
eter estimation on SBML models. Tools like COPASI as well as others such as
SBML-PET [28] can also give confidence intervals for the parameters that they esti-
mate. Furthermore, there is a collection of applications that leverage the MATLAB
framework to provide similar parameter estimation methods. These tools include
AMIGO [3], a tool that uses a collection of initial value problem and non-linear
optimization methods; PottersWheel [21], a tool that uses deterministic and



stochastic optimisation techniques in concert to explore a logarithmic parame-
ter space; and SBT [23], a tool that allows users to define their own cost-functions
and use custom optimisation methods. These tools trade-off between how fine-
grained the parameter search is and how much computation time is required to
find acceptable parameter values.

Other approaches utilise numerical and formal methods to prove that a model
meets certain criteria [4, 5, 27]. For example, Bernstein polynomials and linear
programming [10], and probabilistic model checking [26] approaches can be ap-
plied to the parameter set synthesis problem. Model checking methods work by
partitioning the parameter space into classes of equivalent behaviours for the var-
ious parameter values, which are then systematically validated. Simulation and
model checking can be combined in a hybrid approach to efficiently search the
parameter space. For example, the statistical model checking technique proposed
in [16] enables parameter synthesis for stochastic biological models formulated
as continuous-time Markov chains using temporal logic specifications (bounded
LTL formulae) to express desired behaviours. Simulations can also be used to
perform sensitivity analysis limiting how much of the state space the model
checker will have to analyse [8]. Additionally, some methods formulate param-
eter synthesis as an SMT problem, but they usually handle restricted classes
of models, e.g., transition systems with linear dynamics [7] or with monotone
dynamics [22], while we support very general dynamics such as nonlinear ODEs.
Although some approaches can handle complex systems with a large number of
parameters [9], their implementations are usually problem-specific.

Finally, a notion related to parameter synthesis is that of parameter iden-
tifiability, i.e., whether parameters can be uniquely identified from data. This
notion is usually explored in the context of specific classes of dynamics and error
behaviours — see, e.g., [19] and references therein.

2 Methods

We sketch the parameter synthesis technique and give implementation details of
BioPSy. Full details of the theory will appear in a forthcoming paper.

Algorithm BioPSy takes as input an SBML model file, a time-series data file,
a list of model parameters to synthesise with their initial ranges, a noise value
(η), a precision value (δ) for the SMT solver, and a precision value (ǫ) for the
parameter synthesis algorithm. Time-series data is typically too constrictive as
it contains an exact value for each variable at each time point. Also, measured
data is often subject to noise. BioPSy utilises η to relax the time-series data and
create an interval of acceptable states for each time point, and returns:

– a set of feasible (acceptable) parameter ranges: for all the points in this
set, the model is formally and numerically guaranteed to satisfy the noisy
time-series data;

– a set of infeasible (unsuitable) parameter ranges: for no point in this set,
the model satisfies the noisy time-series data. Again, this is formally and
numerically guaranteed; and



– a set of parameter ranges where, because of the given precision, BioPSy is
unable to determine if they satisfy the noisy time-series data.

BioPSy works by extracting ODEs from the given SBML model along with the
list of model parameters. The user can select which parameters (p) to synthe-
sise and provide initial parameter ranges to search through. BioPSy converts
the ODEs, parameters, and the noisy time-series data into a collection of SMT
problems. Each problem represents an initial value problem (IVP) constrained
by the initial time point and one of the subsequent time points. Informally, the
individual SMT problems contain assertions declaring that the values of each
variable (i.e., ODE solution) should be in the interval found in the noisy time-
series data after integrating the ODEs for the amount of time between the initial
time point and the time point being processed for the file. (Note that for every
time point we solve an IVP, and therefore, the first value of the time-series data
should not be noisy.) Assertions constraining the parameters being synthesised
to be within the synthesised ranges from the previous time point are also added.
These constraints help reduce the search space.

The initial boxes for the parameter set are passed one-by-one to the param-
eter synthesis algorithm, which generates appropriate SMT problems and calls
the SMT solver dReal [12] to evaluate them. Basically, the synthesis algorithm
iteratively splits each box until the minimum size, ǫ, is reached or the current box
is either unsat or sat. (A box needing to be split is denoted undet.) An unsat

outcome means that for no value in the box, the model reaches an acceptable
state. A sat outcome means that all the values in the box lead the system to an
acceptable state. An undet outcome means that the algorithm could not decide
between unsat and sat. This indecision might be because the box contains both
sat and unsat regions, or because of the precision, δ, used when solving the
SMT problems. This process continues incrementally until all the points in the
time series are processed. A high-level workflow for the BioPSy tool is presented
in Figure 1.

As mentioned, BioPSy returns three sets of synthesised parameter ranges,
corresponding to sat, unsat, and undet. The sat and unsat parameter ranges
are formally and numerically guaranteed to be correct. Essentially, these guar-
antees are made possible by dReal, which is based on validated ODE integration
and rigorous constraint processing via interval arithmetics.

We note that the precision value, δ, for dReal can be arbitrarily small. How-
ever, it cannot be zero since solving first-order real formulae with general non-
linear functions is an undecidable problem. (For more information on the theory
behind dReal, please refer to [11].) Additionally, the precision value, ǫ, can be ar-
bitrarily small. This value determines the level of granularity that the parameter
synthesis algorithm uses to search the parameter space. Smaller values mean that
BioPSy will try to break parameter ranges into smaller segments when searching
for acceptable values. The noise parameter, η, controls the size of the intervals
produced from the time-series data. Choosing a small η makes it more difficult
to identify acceptable ranges, but it produces parameter enclosures that result
in the system having better compliance with the original time-series data.
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Fig. 1: Workflow diagram for BioPSy. Legend: p = {p1, . . . pm}: model parameters to
synthesise, B0 = initial set of parameter ranges, η = acceptable noise, δ = SMT solver
precision, ǫ = precision of parameter synthesis, n = number of points in the time-series,
Bi

unsat, B
i
undet, and Bi

sat = parameter sets for the i-th time point containing boxes for
which synthesis is not feasible, undetermined, and feasible, respectively.

Finally, we remark that the main advantage of solving the parameter syn-
thesis problem in a point-by-point manner (as we do) is that it reduces the
computational complexity, since fewer variables are passed to the SMT solver.

Implementation and Usage The BioPSy graphical user interface (GUI) is im-
plemented in Java. The parameter synthesis algorithm is implemented in C++,
and it utilises the CAPD library1 for interval arithmetics and dReal[12] as a stan-
dalone application. The algorithm is additionally parallelised using OpenMP.
The GUI is launched using the BioPSy JAR file (Java JRE 1.6 or higher re-
quired). The user can browse for a model file and a time-series data file. Once
selected, these files are shown in the SBML and Time-Series tabs, respectively.
The files are also parsed, and the data is displayed in the Parameters and Vari-
ables tabs. Under the Parameters tab, the user can select which parameters are
to be synthesised, and their precision (ǫ). For synthesised parameters, the user is
also able to define a lower bound and upper bound that is used to constrain the

1 http://capd.ii.uj.edu.pl



parameter search space. Similarly, the Variables tab allows the user to specify
bounds on the acceptable values and noise (η) for each variable in the model.
Once the bounds are set, clicking the Run button will perform the synthesis.
The Advanced Options button enables the user to specify the path to the dReal
binary as well as the desired level of precision, δ, used by dReal (δ = 0.001 is the
default value). Once the synthesis has started, the Output tab displays the out-
put file as it is being produced allowing a user to watch as the infeasible ranges,
feasible ranges, and undetermined ranges are generated for each time point in
the data. The Plot tab displays an updating in real-time graphical represen-
tation of the contents of the Output tab (for two parameters only). BioPSy’s
source code, binary, and the models used in the experiments are available at
https://github.com/dreal/biology.

3 Results

BioPSy has successfully been applied to several biological models including a
model of prostate cancer treatment [15, 20], a model on human starvation [24],
and a cell cycle model [25]. In each experiment, two parameters are selected
for synthesis while the rest are fixed to the values found in the SBML file.
Additionally, the experiments are performed on a 32-core (2.9GHz) Ubuntu
Linux machine. The models analysed and their parameters are available at
https://github.com/dreal/biology/tree/master/models/CMSB2015.

3.1 Personalized Prostate Cancer Treatment

This model tracks the level of prostate specific antigen (PSA) (v) with comprises
of two types of cancer cells: hormone sensitive cells (HSCs) (x) and castration

resistant cells (CRCs) (y). In this treatment model, a patient is deprived of an-
drogen (z) causing HRC survival rates to decline. However, lower androgen levels
cause HRCs to convert to CRCs and increase the proliferation rate of CRCs. Ad-
ministrators of this treatment must, therefore, alternate patients between phases
of being ‘on’ and ‘off’ the treatment in order to prevent both the HSC and the
CRC levels from getting out of hand. The ODEs [15, 20] describing the dynamics
of a patient on the treatment are shown in Equation (1).
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In this case study, we investigate two applications of BioPSy:

1. Parameter Synthesis: given an initial parameter domain and time-series
data, we synthesise the parameter sets for which the model is guaranteed to
satisfy the time-series; and

2. Parameter Checking: we check whether parameter estimates obtained by
other methods actually satisfy the time-series.

The first application is, in general, very computationally intensive — its worst-
case time complexity grows exponentially with the number of parameters to
synthesise. The second application is lighter and gives the user the ability to
check if a given parameter value satisfies a desired behaviour of the system.

Parameter Synthesis We perform parameter synthesis using real clinical data
[6]2 of a patient who was on treatment for 5 nonconsecutive times throughout
6 years (for about 9 months in each period). The patient was monitored every
month and some of the observations (such as PSA and androgen levels) were
documented. Overall, every period of time-series data contains around 4-5 time
points. For each time-series, we synthesise the parameter set that satisfies the
patient’s clinical data with noise η = 1.4 (ǫ = 10−3 and δ = 10−3). The syn-
thesised parameters, αy and βx, are explored on the set [0.0, 0.05] × [0.0, 0.05].
The resulting parameter set satisfying all time-series is constructed as the in-
tersection of parameter sets synthesised for each time-series. The feasible set in-
cluding the ranges [0.0225, 0.025]× [0.0325, 0.0332031] and [0.0210938, 0.0225]×
[0.0325, 0.0327344]. Each time-series evaluation on the specified range took about
12 hours of CPU time. The parameter sets synthesised for each time-series are
presented in Figure 2 and the resulting set intersection is shown in Figure 3.
We remark that the values for η and ǫ used in our experiments have been cho-
sen purely for didactic reasons. The user can choose more appropriate values
depending on the model being studied.

Parameter Checking For this application, parameter values are obtained us-
ing the different parameter estimation methods available in COPASI, and the
results are verified using BioPSy. These parameter estimation methods utilise
simulation-based techniques to explore the parameter space and find a vector of
parameters that cause the model to best approximate some time-series data. One
downside to these methods is that they are not always capable of finding a sat-
isfying vector of parameters due to the trial-and-error approaches they employ.
For the prostate cancer treatment model, every parameter estimation method in
COPASI is run using default parameters, and each result takes around 5 seconds
to obtain. Some of the methods fail to produce results, but for those methods
that are able to find parameters, the estimated values are checked and verified
in BioPSy using the same time-series data and η = 1.4. Each verification took
about 10-20s of CPU time, depending on the time-series length. The verification
results are presented in Table 1. Here, it can be seen that some of the methods

2 Data available at: http://www.nicholasbruchovsky.com/clinicalResearch.html



Fig. 2: Prostate cancer model: Parameter synthesis results for βx and αy for five time-
series (ordered clockwise) obtained for each ‘on’ treatment stage. Legend: white - in-
feasible boxes; black - feasible boxes; and gray - undetermined boxes.

produce results that only satisfy a few of the time-series data, and only one
method (Hooke & Jeeves) satisfies all of the data with its parameter values. In
contrast, three of the methods return parameters that do not formally satisfy
any of the time-series with a noise value equal to 1.4.

3.2 Human Starvation

The human starvation model [24] tracks the amount of fat (F ), protein in muscle
mass (M), and ketone bodies (K) in the human body after glucose reserves
have been depleted from three to four days of fasting. These three variables are
modelled using material and energy balances to ensure that the behaviour of
the model tracks what is observed in actual experiments involving fasting. The
ODEs for this model are presented in Equation (2).

dF

dt
= F

(
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1 +K
−

1

λF

(

C + gL0

F +M
+ κ

))

dM

dt
= −

M
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(
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F +M
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)

dK

dt
=

V aF

1 +K
− b

(2)

Two parameters are synthesised, κ and b, on the ranges [9, 11] and [0.05, 0.08], re-
spectively, using simulated time-series data that includes 25 time points, η = 0.1,



Fig. 3: Prostate cancer model: Parameter synthesis results for βx and αy over five time-
series obtained for each ‘on’ treatment stage. Legend: white - infeasible boxes; black -
feasible boxes; and gray - undetermined boxes.

Table 1: Parameter Checking of COPASI results over five time-series on cancer model.
Legend: n = parameters found invalid by BioPSy; y = parameters found valid by BioPSy

Method αx αy βx βy BioPSy

S1 S2 S3 S4 S5

Evolut.
Prog.

-0.215799 −2.67586× 10−6 0.0271774 0.000135248 n y y n y

Hooke &
Jeeves

-0.308608 -0.278566 0.029312 -0.24288 y y y y y

Levenberg-
Marquardt

-0.17045 -31.9428 0.00661261 -10.5429 n n n n n

Praxis -0.233483 -0.00697965 0.0240299 0.186801 y y y n y

Scatter
Search

-0.17045 -31.9428 0.00661261 -10.5429 n n n n n

Simulated
Annealing

-0.248778 6.3856× 10149 0.0226673 −2.27061× 10148 n n n n n

Truncated
Newton

-0.236403 -0.00791949 0.0243545 0.0116282 y y y n y

δ = 0.001, and ǫ = 0.1. BioPSy took 5 minutes and 7 feasible ranges were ob-
tained: [9.88077, 9.8832]×[0.0764844, 0.0771875], [9.92213, 10]×[0.0785938, 0.08],
[10, 10.0791] × [0.0726172, 0.0744629], [9.9416, 10] × [0.0712109, 0.0761328],
[9.8832, 10] × [0.0761328, 0.0785938], [10, 10.1187] × [0.0744629, 0.08], and
[9.88198, 9.8832]× [0.0750781, 0.0757813]. A graphical representation of the final
result is shown in Figure 4.



Fig. 4: Human starvation model: Parameter synthesis results for κ and b. Legend: white

- infeasible boxes; black - feasible boxes; and gray - undetermined boxes.

3.3 Cell Cycle

In the cell cycle model [25], two proteins, CDC2 (u) and Cyclin (v), combine
to form a heterodimer that controls major events in a cell causing it to reach a
steady state, act as a spontaneous oscillator, or act as an excitable switch. The
ODEs for this model are presented in Equation (3).

du

dt
= k4 (v − u)

(

k′4
k4

+ u2

)

− k6u

dv

dt
= κ− k6u

(3)

The cell cycle model used has reference BIOMD0000000006 in the BioModels
Database [18]. In this example, two parameters are synthesised, k′4 and k4, on the
ranges [0.01, 0.02] and [175, 185], respectively, using η = 0.001, δ = 0.001, ǫ = 0.1,
from 10 simulated data points. BioPSy took 10 minutes to find one feasible range,
[0.0166691, 0.0192934]× [175, 185]. This result is shown in Figure 5.

4 Conclusions and Future Work

Here, we present BioPSy, an open-source tool for guaranteed parameter set syn-
thesis on biological models from time-series data. BioPSy accepts SBML mod-
els, so it can be applied to a large number of existing biological models. Indeed,
BioPSy is not only limited to biological models with mass action kinetics but can
handle models involving general ODEs. An important feature about our tool is
that models using parameters synthesised with BioPSy are formally guaranteed
to behave as desired. Also, BioPSy can formally validate parameter estimates
generated by other methods. We apply BioPSy to non-trivial biological models,
including a highly nonlinear model of prostate cancer treatment. For this model



Fig. 5: Cell cycle model: Parameter synthesis results for k4 and k′

4. Legend: white -
infeasible boxes; black - feasible boxes; and gray - undetermined boxes.

in particular, BioPSy is able to synthesise parameters from real clinical data. De-
spite the complexity of parameter synthesis and of the models involved, BioPSy
performs reasonably well, and it is usable in practice. We believe BioPSy can be
useful for design space exploration in both synthetic and systems biology. In the
future, we plan to extend BioPSy to handle biological models that contain both
continuous and discrete dynamics — so called hybrid models.
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