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Abstract

For years, the field of drug delivery has focused on (1) controlling the release of a therapeutic and (2) targeting the

therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of

new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond

to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within

a particular site. These novel biomaterials, usually termed “smart” or “intelligent”, are able to deliver a therapeutic

agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit

a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH,

light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehi-

cles. This review describes the most recent advances in “smart” drug delivery systems that respond to one or multi-

ple stimuli.

Introduction
Polymeric materials that respond to a stimulus are often

called “smart” or “intelligent” due to their intrinsic ability

to alter their physical or chemical properties. For the

majority of the polymers that fall into this category, the

response to a change in the surrounding environment is

not only quick, on the order of minutes [1,2] to hours

[3,4], but also reversible, mimicking the dynamics

observed in natural polymers, such as proteins, polysac-

charides, and nucleic acids in living organic systems [5].

The response to stimuli is manifested in many forms: indi-

vidual chain dimension/size, shape, surface characteristics,

secondary structure, solubility, and degree of intermolecu-

lar association. These unique capabilities have been

applied to a diverse range of applications, including: drug

delivery [4,6-8], diagnostics [9,10], biological coating tech-

nologies [11,12], biosensing [10,13], and microfluidics [14].

Conventional drug delivery methods physically entrap

molecules within a polymer lattice; drug is released

slowly by diffusion or upon degradation of the network.

These methods typically result in an early peak in

plasma drug concentration followed by a steady, linear

release. This is far from ideal because the local drug

concentration and location of delivery is not precisely

controlled. Below the therapeutic dose, the drug is inef-

fective whereas high concentrations of drug may be

toxic or lead to undesirable side effects. Polymers have

been used to tailor drug release, which maintains the

drug concentration within the desired therapeutic range.

However, such controlled release systems are insensitive

to metabolic changes in the body and are unable to

modulate drug release nor target the drug to diseased

tissue. This lack of control has motivated the exploita-

tion of bioresponsive polymers as drug carriers.

As early as the 1950 s, stimuli responsive hydrogels

have been studied for drug release [15]. Since then,

polymers that react to different stimuli have been devel-

oped. These stimuli include pH [16-20], ionic strength

[21], and the presence of metabolic chemicals (e.g.,

enzymes or antigens) [22,23]. Such stimuli may enable a

drug carrier to distinguish between diseased and healthy

tissue. More recently, drug carriers that respond to mag-

netic fields [24], light [25], radiation [26], and ultra-

sound [27] have also been developed. These external

stimuli allow for greater control over when and where

the drug is released. By tuning the formulation or che-

mical moieties of the polymer, the sensitivity to the sti-

muli can be precisely controlled. This review aims to

provide an overview of how responsive polymers may be

used to improve drug delivery.

Stimuli-responsive materials for drug delivery
pH-sensitive drug delivery

pH-sensitive polymers (see Table 1) have garnered much

attention in the fields of drug delivery [28,29], gene
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delivery [30], and insulin delivery [31]. Generally,

pH-sensitive polymers have weak acids or bases with

pKa values between 3 and 10 [32]. Carboxylic, sulfonate,

and primary or tertiary amino groups exhibit a change

in ionization state as a function of pH. Transitions in

solubility, conformation, and swelling arise due to

changes in ionization, where specific polymer groups

switch between a neutral and charged state (e.g., poly(N,

N-dimethylaminoethyl methacrylate (DMAEMA)

[33-35]) or a hydrophilic and hydrophobic state (e.g.,

poly(N-iso-propylacrylamide) (PNIPAm) [36-38]).

Eisenberg et al. investigated pH-sensitive polymer

swelling to control the release of drug molecules [15].

Since then, several biocompatible and biodegradable

pH-sensitive polymers have been developed. Unfortu-

nately, few pH-sensitive polymers have been used for

drug delivery systems because of their limited sensitivity

near the pH of blood (pH 7.4). For example, natural

polymers (alginate [39,40], chitosan [41,42], and carra-

geenan [43]) and synthesized polymers (poly(acrylic

acid) (AA) [44] and poly(methacrylic acid) (MAA) [45])

exhibit a high swelling property at high pH due to ioniz-

able functional groups on the polymer backbone or side

chain. These polymers are not responsive under most

physiological conditions, albeit the gastrointestinal

system.

Systemic delivery requires that drug carriers respond to

small changes in pH, near pH 7.4. In 2005, Heffernan

and Murthy developed an acid-sensitive biodegradable

drug delivery vehicle using poly(1,4-phenyleneacetone

dimethylene ketal) (PPADK), which contains ketal lin-

kages allowing for acid-catalyzed hydrolysis of the poly-

mer into low molecular weight hydrophilic compounds.

Thus, the release of drug molecules is accelerated under

acidic conditions [46]. You and Auguste synthesized a

series of pH-sensitive nanoparticles comprised of

DMAEMA and 2-hydroxyethyl methacrylate (HEMA)

(Figure 1) [3]. DMAEMA is a pH-responsive monomer

that has a tertiary amine functional group with a pKa of

7.5 [47]. In vitro results support that the drug would

remain within the particle during circulation; upon expo-

sure to a low pH environment (e.g., a tumor [48]), the

particle would swell resulting in release of the drug.

Monodisperse, pH-sensitive DMAEMA/HEMA nanocar-

riers encapsulating paclitaxel exhibited pH-dependent

release kinetics (Figure 2). The particles had a high

volume swelling ratio at low pH, low crosslinking density,

and high content of DMAEMA. A similar series of parti-

cles were used for gene delivery, where triggered release

of plasmid DNA within the low pH endosome was opti-

mized [49,50]. Plasmid DNA for green fluorescent pro-

tein was encapsulated. HeLa cells were successfully

Table 1 Stimuli-sensitive drug delivery.

Stimulus Carrier type Payload Reference

pH PPADK Dexamethasone [45]

DMAEMA/HEMA Paclitaxel [3]

PC/DAP liposomes siRNA [51]

Temperature PNIPAm/PLGA Paclitaxel [36]

MPPC/DPPC/HSPC/DSPEC-PEG-2000 Doxorubicin [54]

FA/PDMA/PNIPAm Dipyridamole [57]

Light Cu chlorophyllin/PNIPAm None reported [60]

Quinone-methide Nile Red [63]

Au/meso porous silica Paclitaxel [61]

Ultrasound Pluronic P105/N,N-diethylacrylamide Doxorubicin [66]

DPPC:DPPE-PEG2000 liposomes Calcein [67]

Glucose poly(methacrylic acid-g-ethylene glycol) with glucose oxidase, PNIPAm with
phenylboronic acid

Insulin [69-72]

PNIPAm or carboxymethyl dextran with con. A None reported [73,74]

Enzyme PEG diacrylate/human neutrophil elastase-sensitive peptide None reported [75]

Fibrin/b-nerve growth factor fusion proteins b-nerve growth factor [76]

sPLA2-degradable retinoid lipid pro-drug Retinoid lipid pro-drug [77]

Magnetic Magnetite Squalenoyl gemcitabine
(SQdFdC)

[78]

Poly[aniline-co-N-(1-one-butyric acid)] aniline (SPAnH)/iron oxide Epirubicin [79]

Polylactide/nanocrystalline magnetite Paclitaxel [80]

Egg-PC/maghemite/PAH/PSS Calcein [81]
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transfected with a dependence on the swelling ratio and

crosslinking density (Figure 3).

pH-dependent liposomes have also been used to trig-

ger the release of drug within acidic environments.

Auguste et al. formulated liposomes with variable sur-

face charge by varying the lipid composition [51]. pH-

sensitive liposomes were composed of a zwitterionic

lipid (phosphatidylcholine) and a titratable lipid

(dimethylammonium propane) with a pKa of 6.7. This

allowed the liposome’s net charge to become cationic

upon decreasing the pH. pH-dependent liposomes may

be shielded from the immune system using poly(ethy-

lene glycol) (PEG)-b-polycation polymers. The polyca-

tion block electrostatically anchored the PEG polymer

to the liposome surface at pH 7.4, but released the

polymer at pH 5.5 due to electrostatic repulsion

between the cationic polymer and cationic liposome sur-

face. The triggered release of adsorbed PEG-b-polyca-

tion polymers from pH-dependent liposomes may

protect the drug carrier from immune recognition dur-

ing circulation (pH 7.4) and allow subsequent intracellu-

lar delivery of siRNA within the endosome. The bare

liposome maintains the membrane disruption/fusion

capability [52,53].

Temperature-sensitive drug delivery

Increases in temperature are associated with several dis-

ease states (e.g., cancer [54,55]). Thermo-responsive

drug carriers have been employed to release their pay-

load within environments above the physiological

Figure 1 Transmission electron microscope image of DMAEMA/HEMA nanoparticles used for drug delivery. Scale bar is 500 nm [3].
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temperature. Thermo-sensitive polymers exhibit a phase

transition in solution at a temperature known as the

lower critical solution temperature (LCST). For example,

PNIPAm, a well-studied thermo-responsive polymer,

undergoes a reversible phase transition in aqueous solu-

tion from hydrophilic to hydrophobic at its LCST of

approximately 32°C. Chemical modifications of PNIPAm

have been effective in controlling the LCST [56]. In

2005, Liu et al. synthesized poly(N-isopropylacrylamide-

co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glyco-

lide) micelles for controlled paclitaxel delivery [36].

Paclitaxel release was accelerated when the physiological

temperature was raised above the LCST. The paclitaxel-

loaded micelles were more effective in killing human

breast carcinoma cells at 39.5°C than 37°C. De and col-

leagues developed folate-conjugated, thermo-responsive

block copolymer micelles. Folate is known to bind to

several cancer cell types [57]. The drug release studies

from folate-conjugated PNIPAm-DMA micelles demon-

strated a temperature-responsive drug release. Delivery

of paclitaxel at the tumor site can alter the overall drug

biodistribution. Needham et al. developed temperature-

sensitive liposomes containing doxorubicin [54]. Their

liposome formulation, composed of 1-palmitoyl-2-

hydroxy-sn-glycero-3-phosphocholine (MPPC), 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), hydro-

genated soy sn-glycero-3-phosphocholine (HSPC), and

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

polyethylene glycol 2000 (DSPE-PEG-2000), was opti-

mized to rapidly release the drug under mild hyperther-

mic temperatures (39°C to 40°C). Changing the drug

biodistribution can increase therapeutic efficacy.
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Figure 2 Triggered paclitaxel release was observed by incubating 10/90 (mol/mol) DMAEMA/HEMA nanoparticles crosslinked with 3

mol% TEGDMA for 2 hours at pH 7.4 (black triangle) followed by a reduction in pH to either 6.8 (black circle), 7.0 (black square), or

7.2 (black diamond) for 4 hours. The error is the standard deviation of the mean, where n = 3 [3].
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Light-sensitive drug delivery

Light (ultraviolet or visible) is a desirable external stimu-

lus for drug delivery systems because it is inexpensive

and easily controlled. Light-sensitive drug carriers are

fabricated from polymers that contain photo-sensitizers

such as azobenzene, stilbene, and triphenylmethane

[37,58,59]. Suzuki and Tanaka have investigated visible

light-responsive hydrogels using the trisodium salt of

copper chlorophyllin in PNIPAm hydrogels [60]. When

light is applied to the hydrogels, the chromophore

absorbs the light, increasing the local temperature of the

hydrogel. The resulting temperature change alters the

swelling behavior. Vivero-Escoto et al. prepared gold-

capped mesoporous silica nanospheres for photo-

induced intracellular release of drugs in human cells

[61]. The 100 nm silica nanospheres were capped with 5

nm gold nanospheres and functionalized with a cationic

photo-reactive linker. Photoirradiation using ultraviolet

(UV) light for 10 min at 0.49 mW/cm2 cleaved the

photolabile linker, causing uncapping of the silica due to

charge repulsion between the gold and silica nano-

spheres, allowing drug to be released [61,62]. Fomina et

al. developed a novel light-sensitive polymer containing

a quinone-methide moiety [63]. Nile Red, a hydrophobic

dye, was released from nanoparticles after only one min-

ute of 350 nm light exposure. Light can be effective in

modulating drug release because it can be used to

increase the local temperature and to cleave bonds.

Ultrasound-sensitive drug delivery

Ultrasound has been shown to trigger drug release by

raising the local temperature or causing cavitation [64].

Both processes can increase the permeability of cell

membranes and accelerate polymer degradation [65].

Ultrasound-sensitive vehicles have the potential to treat

tumorigenic cancers due to their invasive character, abil-

ity to penetrate deeply into the human body, and ease of

control. In 2002, Pruitt and Pitt investigated ultrasound-

mediated doxorubicin release using stabilized Pluronic

P105 micelles [66]. Doxorubicin was encapsulated

within polymeric micelles composed of 10% Pluronic

P105 and N,N-diethylacrylamide and delivered systemi-

cally to rats. Application of low-frequency ultrasound at

the tumor site resulted in doxorubicin release; this

resulted in a significant reduction in tumor volume. Lin

et al. have investigated the physical and chemical prop-

erties of lipid membranes subjected to ultrasound treat-

ment [67]. They showed that high permeability resulting

from ultrasound treatment is correlated with lipid pack-

ing and can be useful for efficient drug release and

ultrasound-mediated DNA transfection. In 2007, Ferrara

et al. reviewed that small gas bubbles, used to enhance

Nucleus
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Figure 3 Schematic illustration of the delivery of pH-sensitive gene carriers. For example, the DMAEMA/HEMA nanoparticle releases DNA

in the low pH endosome [49].
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ultrasound contrast, can be used for drug delivery appli-

cations and monitoring [68]. When driven by an ultra-

sonic pulse, small gas bubbles oscillate with a wall

velocity on the order of tens to hundreds of meters per

second and can be deflected to a vessel wall or fragmen-

ted into particles on the order of nanometers. Also, a

focused ultrasound beam can be used for disruption of

delivery vesicles and blood vessel walls, which offer the

opportunity to locally deliver a drug or gene. Ultrasound

does not damage the surrounding tissue, making it

attractive for triggering drug release.

Biomolecule-responsive drug delivery

The presence of biomolecules specific to an organ or

disease state may be useful to regulate the release of

drugs. Biomolecules can either participate in a chemical

reaction or result in cleavage of a chemical bond. In this

section, we will discuss the use of hydrogels that are (1)

responsive to glucose and (2) use enzymes to facilitate

hydrogel degradation.

Glucose-responsive hydrogels have been investigated

for self-regulating the release of insulin for the treat-

ment of diabetes. Early studies have been largely based

on the combination of glucose oxidase with polyelectro-

lyte hydrogels that exhibit pH-responsive swelling or

shrinking behavior [69,70]. As glucose diffuses within

the hydrogel, entrapped glucose oxidase catalyzes its

conversion to gluconic acid, lowering the local pH of

the gel and resulting in swelling and the subsequent

release of insulin. However, the efficiency of glucose oxi-

dase decreases with pH. PNIPAm coupled with phenyl-

boronic acid has been investigated as a glucose-

responsive system [71,72]. Introduction of phenylboro-

nic acid decreases the volume phase transition tempera-

ture. The hydrogel swells in the presence of glucose.

More recently, Miyata et al. demonstrated that biomole-

cular complexes such as the carbohydrate-binding lectin,

concanavalin A (Con. A), could be coupled with PNI-

PAm to achieve reversible swelling or shrinking in

response to stepwise changes in glucose concentration

[73]. Zhang et al. also utilized Con. A as the cross-linker

for carboxymethyl dextran (CM-dextran) based hydro-

gels. Competitive displacement between Con. A and

terminal glucose moieties on dextran by free glucose

changed both the morphology and permeability of the

gel [74]. Although these systems triggered insulin release

through volumetric changes, regulating the rate and

reliability of release remains a challenge.

Researchers have also exploited the presence of site or

disease specific enzymes in drug delivery by incorporat-

ing enzyme-cleavable peptides within hydrogels. For

example, Aimetti et al. prepared a PEG hydrogel drug

delivery system which incorporated human neutrophil

elastase (HNE)-sensitive linkers for the treatment of

inflammation. HNE is a serine protease secreted by neu-

trophils, which accumulates at sites of inflammation.

HNE-sensitive peptides were synthesized using solid

phase Fmoc chemistry and their degradation kinetics

were characterized. The rate of substrate degradation

can be tailored by the incorporation or substitution of

specific amino acids. Local, controlled release from

hydrogels containing HNE-sensitive peptides was

achieved in the presence of HNE as visualized by fluor-

escence energy resonance transfer (FRET) [75].

Growth factor delivery, controlled by enzymes

involved in tissue regeneration, has also been investi-

gated. Sakiyama-Elbert et al. designed the delivery of

beta-nerve growth factor (b-NGF) from fibrin matrices

as a nerve regeneration therapy. They synthesized b-

NGF fusion proteins with an enzymatically degradable

linker that served as the covalent anchor to the fibrin

matrix and thus prevented a potential loss of enzymatic

activity [76]. Researchers have also exploited the

enzyme-triggered degradability of certain prodrugs. Ped-

ersen et al. investigated anti-cancer retinoid lipophilic

drugs that are covalently attached to phospholipids.

These prodrugs have a lipid backbone that is degradable

by secretory phospholipase A2 (sPLA2) IIA. The pro-

drugs self-assembled into liposomes, which were suscep-

tible to degradation by (sPLA2) IIA. In vitro studies

utilizing MT-3 breast carcinoma and HT-29 colon ade-

nocarcinoma cell lines demonstrated high cytotoxicity of

prodrug liposomes only in the presence of the (sPLA2)

IIA enzyme [77].

Magnetic-sensitive drug delivery

Magnetic drug delivery systems possess three main

advantages: (1) visualization of drug delivery vehicles,

(2) ability to guide and control movement of drug car-

riers through magnetic fields, and (3) thermal heating

which has been used to control drug release or produce

tissue ablation. Magnetic drug carriers like magnetite,

maghemite, cobalt ferrite, and carbonyl iron are biocom-

patible, non-toxic and non-immunogenic [78]. Arias et

al. utilized magnetite to produce magnetic core/shell

nanoparticles for drug delivery. The nanoparticles con-

sisted of a magnetite core with a self-assembling squale-

noyl gemcitabine, an amphiphilic anti-cancer drug, shell.

Optical microscopy images showed the alignment of the

core/shell nanoparticles under the influence of a 0.2 T

magnetic field [78]. Liu et al. reported in vitro and in

vivo studies of poly[aniline-co-N-(1-one-butyric acid)]

aniline (SPAnH) nanoparticles encapsulating iron oxide

(Fe3O4). To overcome the blood-brain barrier, the

authors utilized focused ultrasound to temporarily dis-

rupt the barrier and increase permeability. Their results

showed that an estimated 0.16 ± 0.03 mM of magnetic

nanoparticles were delivered to brain tumors in
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Sprague-Dawley rats; this was estimated to be 15-fold

higher than the therapeutic range [79]. Magnetic nano-

particles have also been proposed as a component in

drug eluting stents for the treatment of vascular dis-

eases. Chorny et al. reported the use of polylactide

nanoparticles incorporating magnetite nanocrystals and

encapsulating paclitaxel. In vitro studies demonstrated

cell growth inhibition with a relatively low dose and

brief (five minute) magnetic field exposure. In vivo stu-

dies performed in a rat carotid artery model of stent

restenosis showed a significant benefit over the control

group. Additionally, 13.2 ± 2.0 μg of magnetic nanopar-

ticles delivered to the stented carotid segment under a

magnetic field were retained in the artery compared to

only 3.4 ± 1.9 μg of particles delivered without a mag-

netic field [80].

Magnetic nanoparticles have also been encapsulated

within liposomes. da Silva Gomes et al. synthesized lipo-

somes encapsulating magnetic nanoparticles with an

outer polyelectrolyte shell using a layer by layer deposi-

tion technique. The lipid vesicles were characterized by

dynamic light scattering, cryo-transmission electron

microscopy and atomic force microscopy. Polyelectrolyte

coated-liposomes were highly stable as they showed no

significant membrane disruption or leakage of encapsu-

lated contents in the presence of detergent Triton TX-

100 [81].

Multiple responsive-matrices in drug delivery
Substantial benefits may be gained from the develop-

ment of polymeric macromolecules that are responsive

to small environmental changes and consequently elicit

a response. Despite the many advances that have been

accomplished, the field of stimuli-responsive biomater-

ials still faces many challenges. Most of the “smart”

materials that have been investigated are primarily

focused on a single type of stimulus. Developing a mate-

rial that is responsive to more than one stimulus may

combine the delivery of a drug with other capabilities

such as detection, imaging, or feedback. Attention has

been focused on materials that respond to more than

one stimulus (Table 2).

Temperature- and pH-responsive matrices

Temperature- and pH-responsive matrices have been

extensively studied in drug delivery because these two

parameters often deviate from the norm in diseased tis-

sue. Both environmental changes offer the ability for

self-regulated control over the delivery of a drug, avoid-

ing the need for external stimuli. Poly(N-isopropylacry-

lamide-co-methacrylic acid) and PNIPAm are well-

established thermo-responsive polymers [6,38,82-94].

These polymers may be combined with pH-responsive

polymers, like AA and its alkyl esters such as MAA

[6,82,85,94,95]. Zhang et al. prepared temperature and

pH-responsive nanoparticles from combinations of PNI-

PAm and MAA at different molar ratios [82]. The rela-

tive permeability of the nanoparticles increased

significantly when the temperature was increased from

37°C to 43°C and when the pH decreased from 6 to 4.

Nanoparticles encapsulating vitamin B12 exhibited a par-

tition coefficient that decreased from 0.8 to 0.3 with

increasing temperature and decreased from 0.8 to 0.6

with decreasing pH. Gu et al. prepared PNIPAm-co-AA

hydrogels with hollow “cages” [6]. They showed that iso-

niazid (INH), an antitubercular drug, was located inside

the cavity of the gel “cages” and also within the shell.

The “cages,” which were synthesized by SiO2-templated

polymerization, had a silica core that was subsequently

etched away by hydrofluoric acid leaving a hollow inter-

ior. The hydrodynamic diameter of the hydrogel “cages”

decreased from 367 nm to 200 nm with increasing tem-

perature and decreasing pH. Salehi et al. synthesized an

injectable hydrogel system composed of PNIPAm, acry-

lamide (AAm), and vinyl pyrrolidone (VP) to encapsu-

late naltrexone, an opiate receptor antagonist [94]. The

swelling ratios of the gel increased when the pH

decreased from 8.5 to 7.4 and decreased when the tem-

perature increased from 25°C to 37°C. They also per-

formed in vitro release studies where a low burst effect

and a slow release profile of naltrexone was observed

over the course of 28 days.

In addition to PNIPAm, other temperature-responsive

polymers have been investigated in dual-responsive drug

delivery systems [41,96-100]. Moon et al. prepared and

characterized amphiphilic, pH- and temperature-respon-

sive polyaspartamide derivatives, which formed micelles

with an average diameter of 100 nm at 25°C [41]. A sol-

gel transition was observed when the temperature was

increased from 15°C to 25°C and when the pH was

increased from 6 to 10. Ding et al. fabricated injectable

hydrogels based on glycol chitosan and benzaldehyde-

capped poly(ethylene glycol)-block-poly(propylene gly-

col)-block-poly(ethylene glycol) (PEO-PPO-PEO) [98]. In

vivo tests using a rat model demonstrated that the

hydrogel underwent a sol-gel transition at physiological

conditions. These hydrogels have the ability to encapsu-

late both hydrophilic and hydrophobic drugs and can

control the release profile by varying temperature or pH.

Light- and pH- or temperature-responsive matrices

Light-responsive materials are combined with a second-

ary stimulus such as temperature or pH to increase

control over drug release. Light responsiveness is

usually introduced to a temperature or pH-sensitive

material by conjugating a photo-reactive moiety [95].

Jochum et al. synthesized a thermo- and light-respon-

sive polyacrylamide copolymer having salicylideneaniline
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as a photo-sensitive group [101]. Salicilideneaniline iso-

merizes from the enol to keto form and changes its

dipole moment upon exposure to UV light. To synthe-

size the polymer, the authors performed a double poly-

mer analogous reaction of poly(pentafluorophenyl

acrylate) (PPFPA) and varied the molar composition of

salicylideneaniline from 1 to 15 mol%.

Light- and pH-responsive materials have also been

investigated. Angelatos et al. designed light- and pH-

responsive polyelectrolyte/gold nanoparticle microcap-

sules via the layer by layer colloid-templating method

[58]. Microcapsules were prepared by depositing the

electrolytes poly(sodium 4-styrenesulfonate) (PSS) and

poly(allylamine hydrochloride) (PAH) in a layer by layer

fashion onto a template of melamine formaldehyde

(MF) microparticles. The MF core was subsequently

etched away with hydrochloric acid, and gold nanoparti-

cles were introduced into the microcapsule shell. Fluor-

escein isothiocyanate (FITC)-dextran was encapsulated

and was shown to be released after a decrease in pH

and upon irradiation of 10 ns pulses of light at 1064 nm.

Magnetic- and pH- or temperature-responsive matrices

Magnetic fields can be remotely applied to localize drug

carriers and to induce a temperature change. There

have not been an extensive number of studies focusing

on magnetic- and temperature-responsive materials, but

this area has received increasing attention within the

last few years [102-106]. Luo et al. prepared micro-

spheres by encapsulating silica-coated superparamag-

netic magnetite nanoparticle clusters with a crosslinked

PNIPAm shell [105]. The microspheres exhibited a tem-

perature-dependent swelling ratio; the hydrodynamic

diameter decreased from 750 nm to 500 nm when the

temperature increased from 20°C to 60°C. Additionally,

the microspheres had greater magnetic responsivity at

temperatures higher than the volume phase transition

temperature due to the decrease in size at higher tem-

peratures. A faster separation-redispersion behavior of

the microspheres was observed at 60°C, above the

volume phase transition temperature, compared to that

at 25°C. In another study, a different temperature-

responsive material, poly(ethyleneimine)-modified poly

(ethylene oxide)-poly(propylene oxide)-poly(ethylene

oxide) (PEO-PPO-PEO) block copolymer, was used

instead of PNIPAm to coat iron oxide nanoparticles

[102]. The nanoparticle hydrodynamic diameter

decreased from 45 to 25 nm when the temperature

increased from 20°C to 35°C. One of the most attractive

features of this drug delivery system is the ability to

reversibly control the payload release by changing the

PEO-PPO-PEO polymer shell conformation. The poly-

mer shell acts as a gate; it is in an extended conforma-

tion at room temperature but changes to a coiled

conformation upon heating to 37°C. In vitro release of

hydrophobic and hydrophilic model drugs was achieved

by switching the temperature from 37°C to 20°C. In

addition, the nanoparticles showed good biocompatibil-

ity and effective nerve regeneration when loaded with a

ganglioside in a spinal cord injury rat model.

Magnetic- and pH-responsive materials have also been

investigated [107-110]. Superparamagnetic Fe3O4 nano-

particles were coated with different pH-responsive block

copolymers [109]. Four different block copolymers,

methoxypoly(ethylene glycol)-b- (N,N-diethylamino)

ethyl methacrylate-b-poly(glycidyl methacrylate)

(MPEG-b-PDEAEMA-b-PGMA), methoxypoly(ethylene

glycol)-b-(N,N-diethylamino)methyl methacrylate-b-poly

(glycidyl methacrylate) (MPEG-b-PDMAEMA-b-

PGMA), PDEAEMA-b-PGMA and MPEG-b-PGMA,

were synthesized. The block copolymers were conju-

gated to the surface of Fe3O4 nanoparticles stabilized

with HClO4 via a ligand exchange method. The authors

performed drug release studies with MPEG-b-

PDEAEMA-b-PGMA-Fe3O4 and MPEG-b-PDMAEMA-

b-PGMA-Fe3O4 nanocarriers encapsulating chlorambu-

cil (CLB), an anti-cancer agent, and indomethacin

(IND), an anti-inflammatory agent. Their results showed

Table 2 Multiple stimuli-sensitive drug delivery

Stimuli Carrier type Payload Reference

Temperature/pH PNIPAm/MAA Vitamin B12 [82]

PNIPAm/AA Isoniazid [6]

PNIPAm/AAm/VP Naltrexone [94]

Light/pH or light/
temperature

Polyacrylamide/Salicylideneaniline None reported [101]

PSS/PAH/Au FITC-dextran [58]

Magnetic/temperature or
magnetic/pH

PEO/PPO/PEO/Fe2O3 Ibuprofen and Eosin Y [102]

PNIPAm/g-Fe2O3/SiO2 None reported [105]

MPEG-b-PDEAEMA-b-PGMA, MPEG-b-PDMAEMA-b-PGMA, PDEAEMA-b-PGMA
and MPEG-b-PGMA/Fe3O4

Chlorambucil and
indomethacin

[109]
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that upon a decrease in pH (below the pKa of each

drug), the percentage of drug release increased up to

90% for CLB and 70% for IND. At pH 7.4 the percent

of drug release for both IND and CLB was approxi-

mately 25%.

Concluding remarks
The ability to alter the biodistribution of a drug by

modulating its release profile through the use of smart

polymers could transform drug delivery from passive

controlled release to active stimuli-regulated delivery.

Altering the drug biodistribution has the ability to

reduce toxicity and side effects while improving thera-

peutic outcomes due to the ability to deliver higher

doses of drug to the site of interest. The stimuli-respon-

sive polymers reviewed here serve to provide a snapshot

of the utility and complexity of polymers that can sense,

process, and respond to stimuli in modulating the

release of a drug. Stimuli-responsive drug delivery vehi-

cles come in the form of polymersomes [111,112], lipo-

somes [113-115], micelles [116-118], and dendrimers

[119,120]. All of these systems aim to deliver an effec-

tive dose of drug at a specific time and place.

Despite many advances, there are still numerous

challenges and opportunities that exist to translate

responsive polymers from the laboratory the clinic.

There is a need to develop polymers with greater sen-

sitivity to a more diverse range of stimuli. In terms of

biochemical signals or biomarkers, this is usually in

the range of nano to picomolar concentrations [121].

This may require both a highly sensitive sensing

mechanism and/or an amplification system to elicit a

response from the polymer. In terms of the physical

microenvironment, there are only minor differences in

pH and temperature between diseased and normal tis-

sues. Therefore, smart polymers must be able to accu-

rately sense the changes in their surroundings to target

drug release.

There is also a significant opportunity for smart poly-

mers to respond to multiple stimuli. Hybrid polymers

created in this manner will offer more parameters to

tune drug delivery, which may be necessary for more

complex and dynamic environments. It is worth noting

that in addition to drug delivery applications, smart

polymers in general have broad applications in tissue

engineering and regenerative medicine (e.g. as injectable

systems for delivery of cells or self-regulating scaffolds

for cell growth or infiltration), and in actuators (e.g. as

smart valves and coating in microfluidics or shape mem-

ory devices). Given the continuous development of new

responsive polymer compositions, we expect increasingly

elaborate and versatile drug carriers to be introduced in

the future.
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