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Abstract

New lapped transforms are introduced. The LBT (lapped biorthogonal transform), and HLBT (hierarchical

lapped biorthogonal transform) are appropriate for image coding, and the MLBT (modulated lapped bior-

thogonal transform) and NMLBT (nonuniform modulated lapped biorthogonal transform) are appropriate

for audio coding. The HLBT has a significantly lower computational complexity than the LOT (lapped

orthogonal transform), essentially no blocking artifacts, and less ringing artifacts than the commonly-used

DCT (discrete cosine transform). The LBT and HLBT have transform coding gains that are typically

between 0.5 and 1.2 dB higher than that of the DCT. Image coding examples using JPEG and embedded

zerotree coders demonstrate the better performance of the LBT and HLBT. The NMLBT has less ringing

artifacts and better reproduction of transient sounds than the MLT, as shown in audio coding examples.

Fast algorithms for both the HLBT and the NMLBT are presented.

EDICS: 2.4.3 – Filter Bank Design and Implementation
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I.  Introduction

Transform domain signal processing has many practical applications, such as adaptive filtering, scram-

bling, and coding [1]–[3]. Transform coding (TC) is used in many video, image, and audio coding stan-

dards, such as MPEG video, MPEG audio, and JPEG [4]. In such applications, the signal is represented as

a linear combination of the transform basis functions, and the coefficients of such combination are called

transform coefficients. Signal compression is achieved by efficient quantization and entropy coding of the

coefficients [4].

Signals such as audio and images have spectral characteristics that vary significantly in time and space.

Therefore, transform domain representations are usually performed in blocks of samples. With small

enough blocks, the signals within each block can be considered as having approximately constant spectra.

In TC, the encoder breaks the signal into blocks of M samples (or M x M for images). For each block, a

direct transform operator is used to compute the transform coefficients for that block. The resulting trans-

form coefficients are quantized (usually, via scalar quantizers [2]) and entropy encoded. The quantization

step size is chosen such that the output of the entropy encoder fits within the desired bit rate. At the

decoder, each block is reconstructed by first decoding the transform coefficients and then applying the

inverse transform operator. The inverse transform reconstructs the block as a linear combination of the

transform basis functions, weighted by the reconstructed transform coefficients.

Two kinds of reconstruction artifacts are typical in TC, mainly at low bit rates: blocking (or tiling) and

ringing. Blocking artifacts arise because the concatenation of the reconstructed blocks generates signal dis-

continuities across block boundaries. Ringing artifacts arise because the quantization errors on the trans-

form coefficients generate signal reconstruction errors that last for the entire block duration.

Blocking artifacts can be significantly reduced with lapped transforms (LTs) [1]. LT basis functions

have two key properties: (i) they are longer than the block size, and (ii) they decay smoothly to near zero at

their boundaries. The lapped orthogonal transform (LOT) [5], which is useful for image coding applica-

tions, has basis function with linear phase (even or odd symmetry). For blocks with M samples, the LOT

bases have length L = 2M. A plot of the first two basis LOT functions for M = 8 (L = 16) is shown in Fig.

1. The LOT can be computed via the discrete cosine transform (DCT) and some additional butterflies

[1],[5].

The modulated lapped transform (MLT) [1], which is a particular form of a cosine-modulated filter

bank [1],[2], has even less blocking effects than the LOT. This is because the MLT window forces its basis

functions to decay asymptotically to zero at their boundaries. The MLT bases are not linear phase, but that

is not an issue for applications such as audio coding [6].
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Ringing artifacts occur in transient signals, such as edges in images or plosive sounds in audio. One

disadvantage of lapped transforms is that their longer basis functions lead to more ringing artifacts than

block transforms such as the DCT. In image coding, ringing is perceived as ghosts around edges, and in

audio coding ringing leads to pre-echo [7].

In this paper we present new families of lapped transforms that were designed with the purpose of

reducing both blocking and ringing artifacts. For a given block size M, these new LTs have low-frequency

basis functions that are longer than those of the DCT, and high frequency basis function that are effectively

shorter than those of the DCT.

To generate the new multiresolution lapped transforms, it is necessary first to develop biorthogonal

versions of the LOT and MLT. The lapped biorthogonal transform (LBT) and the hierarchical lapped bior-

thogonal transform (HLBT) are discussed in Section II. Section III introduces the modulated biorthogonal

transform (MLBT) and the nonuniform modulated biorthogonal transform (NMLBT). Image coding exam-

ples with the HLBT are presented in Section IV, and audio coding examples with the NMLBT are pre-

sented in Section V. Section VI presents conclusions and future directions.

II.  The Lapped Biorthogonal Transform

The LOT can significantly reduce blocking artifacts in TC of images [1]. In most cases, however, some

residual artifacts are still visible [5], because the basis functions do not decay exactly to zero at their

boundaries, as shown in Fig. 1. One way to force the LOT bases to decay to zero is to use biorthogonal

transforms. In a lapped biorthogonal transform (LBT), the  direct and inverse transform matrices

Pa and Ps do not satisfy orthogonality constraints, but as a pair they still satisfy the orthogonality and

lapped orthogonality conditions

(1)

where W is the one-block shift operator [1,5], and the superscript T denotes matrix transposition. We can

say that the LOT is an LBT in which we add the additional constraint Pa = Ps .

It is clear that LBTs have more degrees of freedom than LOTs. Aase and Ramstad [8] have shown that

these extra degrees of freedom can be used to simultaneously increase coding gain and smoothness of the

synthesis basis functions (and thus reducing blocking artifacts). The optimal LBTs in [8] were obtained by

constrained optimization of the elements of Pa and Ps , and so they do not have a fast computational algo-

rithm.

2M M×

Pa
TPs I   and   Pa

TWPs I==
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Fast-computable LBTs can be obtained by direct manipulation of the branch transmittances of the fast

LOT flowgraph of [5]. Young and Kingsbury [9] suggested rescaling the DC term of the intermediate DCT

coefficients by a factor of , and Chan [10] suggested rescaling all the oddly-symmetrical DCT coeffi-

cients, and optimizing such scaling factors for maximum coding gain. We propose an LBT definition based

on a special case of Chan’s generalized lapped transform.

We define the direct and inverse LBT by the flowgraph shown in Fig. 2. It is obtained from the LOT

flowgraph in [5] by multiplying the first oddly-symmetrical DCT coefficient (i.e., the first AC coefficient)

by  in the inverse transform (synthesis), and by  in the direct transform (analysis). The tradi-

tional LOT corresponds to  c = 1 in Fig. 2.

Some basis functions of the LBT are shown in Fig. 3. They resemble quite closely those obtained in

[8]. We note that the particular choices for  c  above generate synthesis basis functions whose asymptotic

end values are exactly zero. That leads to less blocking artifacts than the LOT, as discussed in Section IV.

For coding applications, an important measure of performance for a particular transform is the trans-

form coding gain GTC , which is defined as the ratio of the reconstructed error variance for straight PCM

quantization to the reconstructed error variance for transform coding [2]:

(2)

For high-rate coding and biorthogonal transforms,  GTC  can be computed by the formula [8]

(3)

where    is the variance of the input signal,    is the variance of the i-th transform coefficient, and

|| fi ||
2  is the norm of the i-th synthesis basis function (the i-th column of Ps). It is usual to express GTC in

decibels (dB).

A commonly used input signal model for image coding is a first-order Gauss-Markov process with

intersample autocorrelation coefficient  [2],[5],[8]. For such signals, the GTC  is  8.83 dB for the

DCT,  9.22 dB for the fast LOT, 9.52 dB for the fast LBT of Fig. 2, and 9.63 dB for the optimal LBT of [8].

We see that our fast LBT performs quite closely to the optimal (for which there is no fast algorithm).

The GTC formula in Eqn. (3) is usually employed to compare the performance of transforms, even
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though in most applications the high bit rate assumption does not apply. The usual thinking is that the rela-

tive GTC performances of different transforms should scale proportionally at low bit rates. We will see later

in this section that this is not the case, and so a new GTC formula that takes into account the bit rate is intro-

duced in the Appendix.

Nonuniform Transforms

The LBT is a better alternative to the LOT for coding applications. It achieves higher coding gain and less

blocking artifacts at the small cost of one additional multiplication in the direct and inverse transforms.

However, the LBT leads to as much ringing artifacts as the LOT, because of the long high-frequency func-

tions. An efficient way to reduce the ringing artifacts is to start with an LBT of half the desired block size,

and combine two blocks via the hierarchical structure described in [11]. Young and Kingsbury used such a

hierarchical construction in [9], with very good results for video coding.

The hierarchical lapped biorthogonal transform (HLBT) is defined, for a given block size M,  as a hier-

archical transform formed with an LBT of size M/2 in the first level, and a length-2 DCT in the second

level, as shown in Fig. 4.The basis function of the HLBT are shown in Fig. 5. The first two functions, #0

and #1, have length 1.5M = 12 (shorter than those of the LBT, which have length 2M = 16). All other basis

functions have length M = 8, i.e. half the length of the LBT functions. We note that the DC synthesis func-

tion #0 is quite smooth, decaying asymptotically to zero at its boundaries. This is due to the use of LBTs in

the first level of the hierarchy in Fig. 4. The analysis DC function #0 does not decay smoothly to zero, but

that is not an issue because the blocking artifacts are generated by the synthesis functions. If we had used

an LOT for the first level of the hierarchy in Fig. 4, the analysis and synthesis functions would be identical,

and both DC basis functions would not decay to zero at the boundaries (furthermore, they would also have

discontinuities within the block).

The computational complexity of the HLBT is lower than that of the LOT. The structure of Fig. 4 leads

to 16 multiplies and 42 adds per block [12], whereas the LOT uses 22 multiplies and 54 adds per block [1]

(compared to 13 multiplies and 29 adds for the DCT).

The transform coding gain GTC of the HLBT, for the first-order Gauss-Markov process with intersam-

ple autocorrelation coefficient  is 9.10 dB, that is, only 0.12 dB below the LOT and 0.27 dB

above the DCT. Using the formulas in the Appendix, we have computed GTC at low bit rates for the DCT,

LOT, LBT, and HLBT. The results are shown in Fig. 6. We note that the HLBT has a higher coding gain

than the LOT at rates below 0.5 bits/sample. Therefore, for low bit rate image coding applications, the

ρ 0.95=



Malvar – Lapped Biorthogonal Transforms 10/20/97 Page 6 of 29

HLBT is better than the LOT in three aspects: reduced blocking and ringing artifacts, lower computational

complexity, and higher coding gain (i.e. less quantization noise).

III.  The Modulated Biorthogonal Transform

For audio coding applications, frequency selectivity of the basis functions is an important property. The

better the selectivity the less the audible effects of uncanceled aliasing due to coding [1]. Thus, the modu-

lated lapped transform (MLT) is better suited than the LOT for audio coding applications. The M-channel

MLT is defined as a particular instance of the oddly-stacked TDAC [6] cosine-modulated filter bank:

(4)

where   is the n,k-th element of the direct transform matrix Pa and   is the n,k-th element

of the inverse transform matrix Ps . The frequency index k varies from 0 to M-1, and time index n varies

from 0 to 2M-1. The modulating cosine functions in Eqn. (4) are windowed by   for the direct trans-

form (analysis filter bank), and by  for the inverse transform (synthesis filter bank). Assuming sym-

metric and identical windows

(5)

then the filter bank in Eqn. (4) achieves perfect reconstruction (which leads to orthogonal basis functions)

if the Princen-Bradley condition is satisfied [1],[6]:

 (6)

The MLT is defined by the unique window that makes   for all  (that is, DC

signals are captured entirely by the first basis function), a necessary condition for maximum coding gain

[1]. That window is given by

(7)

A plot of the first two (k = 0 and 1) MLT basis functions for  M = 64 subbands is shown in Fig. 7.
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To generate biorthogonal MLTs within the formulation in Eqn. (4), we need to relax the constraint of

identical analysis and synthesis windows, as suggested by Smart and Bradley [13], Cheung and Lim [14],

Jawerth and Sweldens [15], and Matviyenko [16]. Assuming a symmetrical synthesis window

, and applying the biorthogonality conditions in Eqn. (1) to Eqn. (4), it is easy to

verify that Eqn. (4) generates a modulated lapped biorthogonal transform (MLBT) if the analysis window

 satisfies the generalized Princen-Bradley conditions [13]–[16]

(8)

and  .

If we try to optimize the windows for maximum transform coding gain GTC (using the equations in the

Appendix), we arrive at the result that the optimal windows converges to the MLT window of Eqn. (7) as

. Therefore, unlike the LBT of Section II, the extra degrees of freedom of the MLBT cannot be used

to significantly improve the coding gain. They can be used, however, to improve the frequency selectivity

of the synthesis basis functions responses, as in the optimized bases of Matviyenko [16]. They can also be

used as a building block for nonuniform MLTs, as we will see later in this Section.

We define the MLBT as the modulated lapped transform of Eqn. (4) with the synthesis window 

(9)

and the analysis window defined by Eqn. (8). The parameter α controls mainly the width of the window,

whereas β controls its end values. A plot of the analysis and synthesis windows for α = 0.85 and  β = 0  is

shown in Fig. 8, and Fig. 9 shows some of the basis functions. The MLT window (which can be approxi-

mated closely by Eqn. (9) with α = 0.627 and β = 0) is also shown in Fig. 8.

 Fig. 10 shows the frequency responses of some of the basis functions of the MLT and MLBT. The main

advantage of the MLBT over the MLT is an increase of the stopband attenuation of the synthesis functions,

at the expense of a reduction in the stopband attenuation of the analysis functions.

 The first sidelobe level of the MLBT frequency responses can be improved by controlling the param-

eter β. For example, for β = 0.25 the first sidelobe level of the synthesis responses improves from –27 dB

to –30 dB (approximating quite closely the optimal functions of [16]), but the rate of decay of the sidelobes
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also reduces, with the lower sidelobe level for the frequency range in Fig. 10 changing from –53 dB to –42

dB. In audio coding applications, decaying stopband gains such as the ones in Fig. 10 are better than the

quasi-equiripple responses of [16], because aliasing distortions are more perceptible to the ear for fre-

quency bands that are farther apart.

For M = 8, the transform coding gain GTC of the MLBT is actually lower than that of the MLT. For a

Gauss-Markov signal with , the MLBT has a coding gain of only 8.85 dB, significantly lower

than that of the LBT of Section II. Thus, the MLBT would not be suitable for image coding applications,

but it is well suited for audio coding, as shown in Section V.

A fast computational algorithm for the MLBT can be easily derived from the MLT algorithm of [1], by

simply using the corresponding windows for the direct and inverse transforms. The resulting flowgraph is

shown in Fig. 11. We note that the butterfly window operators in Fig. 11 are not orthogonal.

The main reason for the particular choice of the MLBT window in Eqn. (9) is the generation of good

basis functions in the nonuniform filterbank structure to be discussed next.

Nonuniform Transforms

As discussed above, the main application for modulated transforms is in speech and audio coding applica-

tions. For those, blocking and ringing artifacts are even more disturbing than in image coding, due to the

high sensitivity of the human ear. Blocking artifacts lead to disturbing periodic clicks, and ringing artifacts

lead to reverberation and pre-echo.

The MLT is essentially free from blocking artifacts, but it still leads to noticeable ringing artifacts in

audio coding, mainly at low bit rates [17]. They are more noticeable during high-frequency transients,

whose durations are shorter than the MLT basis functions. One approach to alleviate the problem, used in

the MPEG-2 audio coding standard [18], is to switch to a shorter block length M during transient sounds.

Such a switching strategy requires special nonsymmetric windows during the switching periods [18] and

increases encoding complexity.

To reduce the ringing artifacts of the MLT/MLTBT, we need to generate shorter high-frequency basis

functions. That is equivalent to generating a nonuniform filter bank, in which the high-frequency subbands

have larger bandwidths [1]. The hierarchical transform approach [11] that was used in Section II can be

employed, but only if an MLT or better is used at the second level of the tree; a DCT would lead to poor

stopband rejection of the low-frequency functions [17]. With an MLT in the second level, the basis func-

tions would be about twice as long, increasing delay for real-time processing.

ρ 0.95=
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An alternative approach to generate a nonuniform MLT is to merge high-frequency subbands, as sug-

gested originally by Cox [19] and applied specifically for cosine-modulated filter banks by Lee and Lee in

[20]. The nonuniform modulated lapped biorthogonal transform (NMLBT) is defined by the flowgraph in

Fig. 12. The use of the  +1/–1 butterflies makes the NMLBT a perfect reconstruction transform, unlike

those in [19] and [20]. 

As shown in Fig. 12, the first N  basis functions are not modified, and each pair of the remaining  N–M

functions is combined to generate a new pair. The original two basis functions were centered at frequencies

(r+1/2)π/M and (r+3/2)π/M, with bandwidths π/M. Their combination via the +1/–1 butterflies generates

two new basis functions that are both centered at  (r+1)π/M  with bandwidths 2π/M .  Their difference now

becomes time localization, as shown in Fig. 13.

We can view the NMLBT construction of Fig. 12 as a dual of the HLBT construction of Fig. 4. With

the HLBT, we start with two length-M/2 LBTs and combine low-frequency functions via +1/–1 butterflies

to generate longer low-frequency functions. With the NMLBT, we start with length-M MLBTs and com-

bine high-frequency functions via +1/–1 butterflies to generate shorter high-frequency functions. The

HLBT approach leads to perfect time domain separation and a loss of frequency resolution, whereas the

NMLBT approach leads to good frequency resolution but imperfect time domain separation.

In Fig. 13, the ratio of the peak absolute value of a basis function in its central region to its peak values

in the central region of its pair is approximately 7.7. That ratio can be viewed as a stopregion attenuation of

about 17.7 dB. If we had used the same construction starting with the MLT, the stopregion attenuation

would be only 5.8 (15.2 dB).

An example of the frequency responses of the NMLBT is shown in Fig. 14. We note that the high-fre-

quency basis functions have better frequency resolution than the low-frequency ones, because they came

from merging of two adjacent bands of the original filterbank. One advantage of the NMLBT over the

dual-bank approach suggested by Princen [21] is that perfect reconstruction is preserved, and no special

transition filter is needed. Applications of the NMLBT to audio coding are discussed in Section V.

IV.  Image Coding Examples

We tested the transforms in Section II with two DCT-based image coding algorithms: the JPEG coder [22],

and the embedded zerotree DCT coder (EZDCT) recently introduced  by Xiong et.al. [23]. The EZDCT

coder replaces the wavelet transform of the SPIHT (set partitioning in hierarchical trees) coder of Said and

Pearlman [24] (one of the best image coders reported to date) by DCTs, with appropriate coefficient order-

ing. As discussed in [12], for both coders we tested the lapped transforms by simply replacing the DCT by
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the LOT, LBT, and HLBT, without any other change in the coder.

The coders were tested with the “lena2” image (a 256x256 cut from the well known 512x512 “lena”

image). The peak signal-to-noise ratio (PSNR) results are shown in Fig. 15. For the JPEG coder, the HLBT

has a PSNR improvement of 0.4 dB over the DCT, whereas the LBT shows a PSNR gain of about 0.7 dB at

rates around 0.5 bits/sample. These results are consistent with the coding gain calculations of Section II.

For the embedded zerotree coder, the performance of the HLBT is quite close to that of the LBT. Both

perform closely (within 0.8 and 0.4 dB, respectively) to the optimized wavelet-based SPIHT coder, but the

HLBT-based embedded coder is faster. Compared to the DCT, the HLBT improves the embedded coder by

0.6 dB.

Fig. 16 shows 160x160 portions of the reconstructed images, for the rate of 0.5 bits/sample. In the top

row (JPEG results), we see that all lapped transforms have less blocking than the DCT. The LOT still

shows some artifacts, and the LBT is virtually free from blocking, but both show more ringing artifacts

than the DCT. The HLBT has less blocking and less ringing than the DCT. The embedded zerotree coded

images in Fig. 16 show the significant improvement achieved with the biorthogonal lapped transforms.

The results with the HLBT and LBT images are quite similar, as expected from the curves in Fig. 15, and

they both represent a visible improvement over the DCT-coded image.

V.  Audio Coding Examples

To test the performance of the NMLBT for audio coding, we simulated an audio encoding system in the

following way. For each input signal block, the direct transform is computed, and all transform coefficients

are uniformly quantized. The quantization step size for the block is chosen as the product of a constant

parameter γ times the block standard deviation. The quantized coefficients are inverse transformed and

added to the reconstructed signal. The parameter γ is chosen such that the measured entropy of the quan-

tized transform coefficients for all blocks equals a prescribed value.

As a test signal, we used an audio waveform sampled at 16 kHz, containing four concatenated sound

segments. Each segment had a length of about 1.5 s, and came from the following sources: castanets,

horns, female speech, and male speech. We ran the coder simulation with three transforms: the MLT for M

= 64 (MLT64), the MLT for M = 32 (MLT32), and the NMLBT for M = 64, N = 16, α = 0.85, and β = 0. The

quantized coefficient entropy was fixed at 1.5 bits/sample by proper choice of  γ  in each case. The average

segmental signal-to-noise ratio (SSNR) was 18.0, 17.1, and 17.8 dB, respectively. So, although 75% of the

basis functions of the NMLBT had about the same length of the MLT32, the NMLBT performance was
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much closer to that of the MLT64.

An example of the results for the castanets segment is shown in Fig. 17. In terms of SSNR for the seg-

ment shown, the NMLBT is about 0.5 dB better than the MLT64, and 1.1 dB better than the MLT32. The

MLT32 has the shortest pre-echo, but the highest reconstruction error in the pre-echo region. The NMLBT

has less pre-echo artifacts than the MLT64.

Results for a portion of the female segment are shown in Fig. 18. To stress the transient signal perfor-

mance, that segment shows the onset of an utterance. The SSNR for the NMLBT is about the same as that

for the MLT64, and about 1.5 dB higher than that for the MLT32. As with the castanets signal, the NMLBT

leads to less pre-echo artifacts than the MLT64,

The better performance of the NMLBT for transient signals comes at only a small penalty in perfor-

mance for approximately stationary signals. This can be seen in Fig. 19, which shows the results for a por-

tion of the male segment. The SSNR of the NMLBT is only 0.2 dB below that of the MLT64, and about 1.1

dB higher than that for the MLT32.

From the audio coding results, it is clear that the NMLBT is a good alternative to the MLT, leading to

better reproduction of transient sounds, with less pre-echo. That is achieved with only a small penalty in

SNR performance (around 0.1–0.2 dB) for stationary signals.

For adaptive audio coding, an interesting property of the NMLBT is that the choice of N can change on

a block-by-block basis. During stationary regions, we can make N = 0, which turns the NMLBT into a

length-M MLBT. During transient sounds, we can choose N among a few predetermined values, for best

reproduction of the block. By setting N = M,  for example, we can effectively halve the length of all basis

functions. In that way, we have a time-varying adaptive transform which maintains good frequency and

time resolutions at all times, without the use of transitional filter banks. Since the SNR performance of the

NMLBT is better than the MLT for the same block size  M  for transient signals, the adaptive approach

above would lead to a better SNR performance than a fixed MLT.

VI.  Conclusions and Further Directions

We have introduced new families of lapped transforms, based on biorthogonal constructions. The lapped

biorthogonal transform (LBT) is generated from the LOT flowgraph by a simple modification, which leads

to higher transform coding gains and less blocking artifacts. The hierarchical lapped biorthogonal trans-

form (HLBT), built from the LBT, has two levels of resolution, which leads to shorter high-frequency
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functions and smoother low-frequency functions than the LOT. For image coding applications, the HLBT

is a better choice than the DCT, because the HLBT has a higher coding gain, much less blocking and less

ringing artifacts. These advantages come at a computational overhead of only 30% (compared to 80% for

the LOT or LBT) over the DCT. For the embedded zerotree coder, replacing the DCT by the HLBT can

improve the PSNR performance by more than 0.5 dB. An HLBT-based embedded zerotree coder

approaches the performance of the best wavelet image coders reported to date, with the advantage of keep-

ing the bulk of its computation on the DCTs that are part of the HLBT flowgraph. Thus, an embedded

zerotree HLBT coder can leverage existing DCT software or hardware, and runs faster than the EZW or

SPIHT coders (because good wavelet decompositions use more multiplies and adds per sample than the

HLBT).

The modulated lapped biorthogonal transform (MLBT) is obtained by relaxing the constraint of identi-

cal analysis and synthesis windows in the MLT filterbank. The use of different windows does not improve

on transform coding gain (for low-order autoregressive Gauss-Markov signals), but leads to improved

stopband attenuation. Using a simple subband merging technique, the nonuniform modulated lapped bior-

thogonal transform (NMLBT) achieves two levels of resolution, by effectively halving the time duration

and doubling the bandwidth of the high-frequency basis functions. Audio coding simulations show that an

NMLBT-based coder can achieve SNR performance close to that of the MLT, but with a better reproduc-

tion of transient sounds. The NMLBT also allows for efficient implementation of time-varying transforms

with good frequency and time resolutions at all times, without the use of transitional filters.

There are many directions in which further research could improve on the results presented in this

paper. For the HLBT, JPEG encoding performance may be improved by optimization of the quantization

tables, for example. For the NMLBT, new window designs and optimized coefficients for merging of sub-

bands may lead to better time/frequency resolution trade-offs.
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Appendix

Computation of Coding Gain for Low Bit Rates

Consider a Gaussian input signal x with variance  and block autocorrelation matrix  . The vari-

ance of the transform coefficients are given by  , where   is the i-th column of the

direct transform matrix Pa [1].

Assuming the i-th transform coefficient is quantized with Bi bits, its quantization distortion is given by

, assuming ideal quantizers [2]. Under the mild assumption that the quantization noises  qi

are uncorrelated, the total output noise variance is given by [8]

(A.1)

where  is the norm of the i-th synthesis basis function. 

An optimal bit allocation procedure finds the set of Bi that minimizes , subject to the condition

that the total bit rate should match the  B  available bits for each block:

 (A.2)

Using standard nonlinear optimization techniques, the solution is a simple variation of the usual log-

variance formula [2]

(A.3)

where  is a Lagrange multiplier that is chosen such that Eqn. (A.2) is satisfied. The transform coding

gain is then given in dB by , i.e. the ratio of the noise for straight

quantization of the input signal to the output noise in Eqn. (A.1).
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Figures

Figure 1.  The first two LOT basis functions for M = 8.

Figure 2.  Flowgraph of the LBT, with   defined in [1],[5]. For the direct transform (left to right)

  and for the inverse transform (right to left)  . 
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Figure 3.   The first two LBT basis functions for M = 8. Left: analysis (direct transform); right: syn-
thesis (inverse transform).

Figure 4.  Simplified block diagram of the HLBT for M = 8. The length-2 DCT in the second level

corresponds to the  +1/-1 butterfly with the  scaling factors (those can be replaced by factors
equal to one in the inverse transform and 1/2 in the direct transform, for example).
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Figure 5.   HLBT basis functions # 0, 2, and 3, for M = 8. Left: analysis (direct transform); right:
synthesis (inverse transform).

Figure 6.  Improvement in transform coding gain over the DCT, as a function of bit rate, for several
lapped transforms. Gauss-Markov input signal with . For bidimensional signals (e.g.

images) the gain is approximately doubled [1], [2].
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Figure 7.  The first two MLT basis functions for M = 64.

Figure 8.  MLBT windows for M = 64, α = 0.85, and  β = 0. For comparison, the MLT sine
window is shown as a heavier line.
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Figure 9.   The first two MLBT basis functions for M = 64, α = 0.85, and β = 0. Left: analysis
(direct transform); right: synthesis (inverse transform).
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Figure 10.  Frequency responses for basis functions #7, #8, and #9, for M = 64. Top: MLT; middle:
MLBT, synthesis (α = 0.85, β = 0); bottom: MLBT, analysis.
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Figure 11.  Flowgraph of the fast MLBT. Top: direct transform (analysis); bottom: inverse trans-
form (synthesis).

Figure 12.  Simplified block diagram of the NMLBT. Each pair of high-frequency coefficients is
merged into two new coefficients that correspond to the same subband and different time localiza-
tions.
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Figure 13.  An example of NMLBT synthesis basis functions #20 and #21, for  M = 64 and  N = 16,
based on an MLBT with α = 0.85, and β = 0. They correspond to the same frequency subband,
but have different time localizations.

Figure 14.  Frequency responses of some of the subbands of the NMLBT synthesis filterbank, for
M = 64 and  N = 16, based on an MLBT with α = 0.85, and β = 0.
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Figure 15.  Peak SNR for Performance for transform-based coders with N = 8, for the “lena2”
image. Dashed lines: embedded zerotree; solid lines: JPEG. Reference: SPIHT (top solid line).
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Figure 16.  Coding examples for image “lena2” at 0.5 bits/pixel. Top row, left to right: original,
JPEG encoding with DCT, and JPEG/LOT, PSNR (dB) = 32.0 and 32.3. Middle row: JPEG/LBT,
JPEG/HLBT, and EZDCT with PSNR (dB) = 32.7, 32.4, and 32.9. Bottom row: EZ/LOT, EZ/LBT,
and EZ/HLBT, with PSNR (dB) = 33.4, 34.0, and 33.5.
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Figure 17.  Audio coding results at 1.5 bits/sample for a castanets sound sampled at 16 kHz. From
top to bottom: original and coded with the MLT for M = 64, MLT for M = 32, and NMLBT for M =
64, N = 16, α = 0.85, and β = 0. The segmental SNR for the reconstructed signals are 14.7, 14.1,
and 15.2 dB, respectively.

Figure 18.  Audio coding results at 1.5 bits/sample for a female speech sound sampled at 16 kHz.
From top to bottom: original and coded with the MLT for M = 64, MLT for M = 32, and NMLBT
for M = 64, N = 16, α = 0.85, and β = 0. The segmental SNR for the reconstructed signals are 16.2,
14.6, and 16.1 dB, respectively.
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Figure 19.  Audio coding results at 1.5 bits/sample for a male speech sound sampled at 16 kHz.
From top to bottom: original and coded with the MLT for M = 64, MLT for M = 32, and NMLBT
for M = 64, N = 16, α = 0.85, and β = 0. The segmental SNR for the reconstructed signals are 19.6,
18.3, and 19.4 dB, respectively.
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Figure 11.  Flowgraph of the fast MLBT. Top: direct transform (analysis); bottom: inverse transform (syn-

thesis).

Figure 12.  Simplified block diagram of the NMLBT. Each pair of high-frequency coefficients is merged

into two new coefficients that correspond to the same subband and different time localizations.

Figure 13.  An example of NMLBT synthesis basis functions #20 and #21, for  M = 64 and  N = 16, based

on an MLBT with α = 0.85, and β = 0. They correspond to the same frequency subband, but have different

time localizations.

Figure 14.  Frequency responses of some of the subbands of the NMLBT synthesis filterbank, for  M = 64

and  N = 16, based on an MLBT with α = 0.85, and β = 0.
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(dB) = 32.7, 32.4, and 32.9. Bottom row: EZ/LOT, EZ/LBT, and EZ/HLBT, with PSNR (dB) = 33.4, 34.0, and 33.5.

Figure 17.  Audio coding results at 1.5 bits/sample for a castanets sound sampled at 16 kHz. From top to

bottom: original and coded with the MLT for M = 64, MLT for M = 32, and NMLBT for M = 64, N = 16,

α = 0.85, and β = 0. The segmental SNR for the reconstructed signals are 14.7, 14.1, and 15.2 dB, respec-

tively.

Figure 18.  Audio coding results at 1.5 bits/sample for a female speech sound sampled at 16 kHz. From top

to bottom: original and coded with the MLT for M = 64, MLT for M = 32, and NMLBT for M = 64, N = 16,

α = 0.85, and β = 0. The segmental SNR for the reconstructed signals are 16.2, 14.6, and 16.1 dB, respec-

tively.

Figure 19.  Audio coding results at 1.5 bits/sample for a male speech sound sampled at 16 kHz. From top to

bottom: original and coded with the MLT for M = 64, MLT for M = 32, and NMLBT for M = 64, N = 16,

α = 0.85, and β = 0. The segmental SNR for the reconstructed signals are 19.6, 18.3, and 19.4 dB, respec-

tively.


