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BIORTHOGONAL BASES WITH LOCAL SUPPORT
AND APPROXIMATION PROPERTIES

BISHNU P. LAMICHHANE AND BARBARA I. WOHLMUTH

Abstract. We construct locally supported basis functions which are biorthog-
onal to conforming nodal finite element basis functions of degree p in one di-
mension. In contrast to earlier approaches, these basis functions have the same
support as the nodal finite element basis functions and reproduce the conform-
ing finite element space of degree p − 1. Working with Gauß–Lobatto nodes,
we find an interesting connection between biorthogonality and quadrature for-
mulas. One important application of these newly constructed biorthogonal
basis functions are two-dimensional mortar finite elements. The weak conti-
nuity condition of the constrained mortar space is realized in terms of our new
dual bases. As a result, local static condensation can be applied which is very
attractive from the numerical point of view. Numerical results are presented
for cubic mortar finite elements.

1. Introduction

We construct basis functions which are biorthogonal to conforming nodal one-
dimensional finite element basis functions of degree p with respect to the L2-norm.
By definition our newly constructed basis functions have the same support as the
conforming nodal basis functions. Using Gauß–Lobatto nodes to define the con-
forming nodal basis functions of degree p, our biorthogonal basis functions span a
nonconforming finite element space which includes the conforming finite element
space of degree p − 1, p > 1. Using this type of nonconforming space as Lagrange
multiplier space for two-dimensional mortar finite elements results in an optimal
discretization scheme. We note that the Lagrange multiplier space has to be mod-
ified in a suitable way in the neighborhood of the crosspoints to satisfy a uniform
inf-sup condition. The natural norm in the mortar setting for the Lagrange multi-
plier is the broken H−1/2-norm on the interior interfaces. Thus to obtain an order
hp a priori result, it is sufficient to reproduce polynomials of degree p − 1 in the
Lagrange multiplier space. Due to the biorthogonality, the arising mass matrices on
the slave side of the mortar formulation are diagonal, and a local static condensation
can be carried out. Physically, this corresponds to a lumping of the mass matrix,
and the locality reflects the fact that a local perturbation influences the solution
only in a small neighborhood. Therefore, these dual Lagrange multiplier spaces are
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234 B. P. LAMICHHANE AND B. I. WOHLMUTH

very attractive from computational and physical points of view. Such a biorthog-
onal basis was introduced in [Woh00] for lowest order mortar finite elements, i.e.,
for degree p = 1, and was called the dual Lagrange multiplier base. Recently low
order mortar finite elements with a dual Lagrange multiplier has become an active
area of research; see [KLPV01, Mar05, Ben04, HT04a, HT04b]. The idea has also
been extended to higher order elements; see [LW02, LSW05, OW01]. We refer to
[DS99, Ste03] for related work in biorthogonal multiresolution analysis. However,
the construction of biorthogonal bases is not straightforward, and preserving the
locality of the support is not trivial. In [OW01], one-dimensional higher order dual
finite element bases are considered. The drawback of this technique is that the
support has to be extended, resulting in a more complex density pattern in the
mass matrices. Here, we focus on the construction of biorthogonal basis functions
having the same support as the nodal basis functions.

The rest of the paper is organized as follows. In the next section, introducing
some notation and the concept of biorthogonality, we construct our dual basis
starting from a given set of nodal basis functions on a reference element. Using
Gauß–Lobatto nodes, the dual basis reproduces the finite element space of degree
p− 1. In Section 3, we consider the application to mortar finite elements. We work
out the required modification at the endpoints of the interfaces. Finally, numerical
results are presented in Section 4.

2. Dual basis in one dimension

Before giving the explicit construction, we consider an abstract framework. Let
V and W be finite-dimensional subspaces of a Hilbert space H with inner product
(·, ·). We assume that dim V = dim W and associate the space V with the basis
set Φ := {φ1, . . . , φn} and W with the basis set Λ := {λ1, . . . , λn}. To make a
consistent matrix notation, all basis sets are also thought of as column vectors.
We denote by GΦ,Λ = (Φ,ΛT ) the Gram matrix associated with the two finite
systems Φ and Λ based on the inner product (·, ·), i.e., GΦ,Λ is an n × n matrix
with (GΦ,Λ)ij = (φi, λj).

Definition 2.1. The set Λ will be called a dual basis with respect to Φ if and only
if GΦ,Λ = Dn, where Dn is a nonsingular n × n diagonal matrix.

Let Sp := {−1 =: xp
1 < xp

2 < · · · < xp
p+1 := 1} be a set of distinct points in

the reference interval Ī := [−1, 1], and let Φ̂p := {φp
1, φ

p
2, . . . , φ

p
p+1}, φp

i ∈ Pp(I),
1 ≤ i ≤ p + 1, be the associated set of nodal finite element basis functions, i.e.,
φp

i (x
p
j ) = δij , where δij is the Kronecker symbol. Here, Pp(I) denotes the (p + 1)-

dimensional space of polynomials of degree less than or equal to p. From now on, we
simply call this basis a finite element basis of degree p based on Sp. Associated with
Φ̂p is the dual basis Λ̂p := {λp

1, λ
p
2, . . . , λ

p
p+1}, where the λp

i ∈ Pp(I), 1 ≤ i ≤ p + 1,
are uniquely defined by

(2.1)
∫

I

λp
i (ŝ)φ

p
j (ŝ) dŝ = dp

i δij , dp
i �= 0.

We set dp
i :=

∫
I
φp

i (ŝ) dŝ if the integral is nonzero, and dp
i :=

∫
I
dŝ otherwise. It is

trivial to see that the spaces spanned by Φ̂p and Λ̂p are the same. Moreover for
q ≤ p there exists a unique (q + 1) × (p + 1) matrix Nq;p such that

(2.2) Φ̂q = Nq;pΛ̂p.
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To define our global spaces, we introduce a locally quasi-uniform finite element mesh
Ih which is formed by partitioning a segment γ into K subintervals (elements), Ik,
1 ≤ k ≤ K, with γ̄ =

⋃K
k=1 Īk. The ordering of the Ik is done in a lexicographical

way from the left to the right. Associated with each element Ik is a unique affine
mapping Fk : Ī −→ Īk which maps −1 to the left and 1 to the right endpoint of
Ik. Due to the ordering, we find that Fk(xp

1) = Fk−1(x
p
p+1), 2 ≤ k ≤ K. We

transform the basis functions φp
i and λp

i on I in the standard way, and set Φk
p :=

{φp
k;1, φ

p
k;2, . . . , φ

p
k;p+1} and Λk

p := {λp
k;1, λ

p
k;2, . . . , λ

p
k;p+1}, where φp

k;i := φp
i ◦ F−1

k

and λp
k;i := λp

i ◦ F−1
k . Then it is easy to see that the following biorthogonality

relation holds: ∫
Ik

λp
k;i(s)φ

p
k;j(s) ds =

|Ik|
2

dp
i δij ,

and we have Φk
q = Nq;pΛk

p with the same Nq;p as in (2.2). Associated with each
node xj ∈ γ̄, 1 ≤ j ≤ pK + 1, x1 := F1(−1), xp(k−1)+j := Fk(xp

j ), 1 ≤ k ≤ K,
2 ≤ j ≤ p + 1, is exactly one basis function in Φp and Λp. We define

φp
j :=

⎧⎪⎪⎨
⎪⎪⎩

φp
k;i, j = p(k − 1) + i, 2 ≤ i ≤ p, 1 ≤ k ≤ K,

φp
1;1, j = 1,

φp
K;p+1, j = pK + 1,

φp
k;p+1 + φp

k+1;1, j = pk + 1, 1 ≤ k < K,

where all basis functions φp
k;j are extended by zero outside of Īk, and the addition of

two basis functions “φp
k;p+1+φp

k+1;1” has to be interpreted such that φp
j |Īk

= φp
k;p+1

and φp
j |Īk+1

= φp
k+1;1 for j = pk + 1, 1 ≤ k < K. We note that this is well

defined because φp
k;p+1(xpk+1) = φp

k+1;1(xpk+1). It is well known that the basis
Φp := {φp

1, . . . , φ
p
pK+1} spans the conforming finite element space V p

h of degree p
associated with the one-dimensional mesh Ih. The elements of the dual basis Λp :=
{λp

1, . . . , λ
p
pK+1} of Φp are constructed from the local basis functions similarly as

those of Φp. We note that the global basis functions λp
j are in general discontinuous

at the endpoints of the elements. As a result, the space W p
h spanned by the basis

functions in Λp is a nonconforming finite element space. Moreover, we will find that
the finite element space of degree less than or equal to p on γ will not be included
in W p

h . A first result in this direction is provided by the following lemma.

Lemma 2.2. V q
h ⊂ W p

h if and only if

nq;p
1,1 = nq;p

q+1,p+1 and nq;p
q+1,1 = nq;p

1,p+1 = 0,
nq;p

i,1 = nq;p
i,p+1 = 0 for all 2 ≤ i ≤ q,

(2.3)

where nq;p
i,j is the (i, j)-th entry of the matrix Nq;p.

Proof. The dimension of V q
h is given by qK + 1. In a first step, we consider the

basis functions φq
j , j = q(k − 1) + i, 2 ≤ i ≤ q, 1 ≤ k ≤ K, in more detail. Using

the definition of the global basis functions, we find

φq
j = φq

k;i = (Nq;pΛk
p)i =

p+1∑
l=1

nq;p
i,l λp

k;l = nq;p
i,1 λp

k;1 +
p∑

l=2

nq;p
i,l λp

p(k−1)+l + nq;p
i,p+1λ

p
k;p+1.

As a result, we obtain that φq
j ∈ W p

h , j = q(k− 1) + i, 2 ≤ i ≤ q, 1 ≤ k ≤ K, if and
only if nq;p

i,1 = nq;p
i,p+1 = 0, 2 ≤ i ≤ q. Secondly, we consider the basis functions of

V q
h which are associated with an endpoint of one element. We do not work out the
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236 B. P. LAMICHHANE AND B. I. WOHLMUTH

details for φq
1 and φq

qK+1 but concentrate on φq
qk+1, 1 ≤ k < K. Each φq

qk+1 can be
written as an element-wise sum of two local basis functions

φq
qk+1 = φq

k;q+1 + φq
k+1;1, = (Nq;pΛk

p)q+1 + (Nq;pΛk+1
p )1

=
p+1∑
l=1

(nq;p
q+1,lλ

p
k;l + nq;p

1,l λ
p
k+1;l)

= nq;p
q+1,1λ

p
k;1 + (nq;p

q+1,p+1 − nq;p
1,1)λ

p
k;p+1 + nq;p

1,p+1λ
p
k+1;p+1

+nq;p
1,1λ

p
pk+1 +

p∑
l=2

(nq;p
q+1,lλ

p
p(k−1)+l + nq;p

1,l λ
p
pk+l).

Now, it is easy to see that φq
qk+1 ∈ W p

h , 1 ≤ k < K, if and only if nq;p
q+1,p+1 −nq;p

1,1 =
nq;p

q+1,1 = nq;p
1,p+1 = 0. �

The case q = p − 1 will be of special interest for mortar finite elements. For
simplicity of notation, we denote from now on Np−1;p by Np and np−1;p

i,j by np
i,j .

Therefore, we rewrite the general condition (2.3) and obtain that V p−1
h ⊂ W p

h if
and only if

(2.4)
np

1,1 = np
p,p+1 and np

p,1 = np
1,p+1 = 0,

np
i,1 = np

i,p+1 = 0 for all 2 ≤ i ≤ p − 1.

To get a better feeling, we consider the case p = 2 in more detail. Then the
conditions (2.4) can be simply written as

np
1,1 = np

2,3 and np
2,1 = np

1,3 = 0.(2.5)

Let us consider xp
1 := −1, xp

2 := 0 and xp
3 := 1. Then the basis functions of Λ̂p are

given by

λp
1 =

5
4
x2 − 1

2
x − 1

4
, λp

2 = −5
2
x2 +

3
2
, λp

3 =
5
4
x2 +

1
2
x +

1
4
,

λp
1 = φp

1 −
3
4
φp

2 +
1
2
, λp

2 =
5
2
φp

2 − 1, λp
3 = φp

3 −
3
4
φp

2 +
1
2
;

see [LW02]. Using φp−1
1 = φp

1 + 1
2φp

2 and φp−1
2 = φp

3 + 1
2φp

2, we find for the entries
of the 2 × 3 matrix N2

np
1,1 = 1, np

1,2 =
1
2
, np

1,3 = 0,

np
2,1 = 0, np

2,2 =
1
2
, np

2,3 = 1,

and thus (2.5) is satisfied. Unfortunately for p = 3 and xp
1 := −1, xp

2 := −1/3,
xp

3 := 1/3 and xp
4 := 1, (2.4) is not satisfied. A straightforward calculation shows

that the matrix Np for p = 3 is given by

N3 =

⎡
⎢⎣

11
15

2
5 −1

5 0
4
15

4
5

4
5

4
15

0 −1
5

2
5

11
15

⎤
⎥⎦ .

Although the conditions n3
1,1 = n3

3,4 and n3
3,1 = n3

1,4 = 0 are satisfied, we find
n3

2,1 = n3
2,4 = 4

15 �= 0. As a result, working with cubic Lagrange finite elements
and dual Lagrange multipliers does not yield optimal a priori results for the mor-
tar discretization. To test the performance of the dual Lagrange multiplier space
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Table 1. Discretization errors with equidistant nodes (cubic exact solution)

level # elem. ‖u − uh‖L2(Ω) ‖u − uh‖1 ‖λ − λh‖h

0 24 2.935203e−05 1.970982e−03 9.234661e−02

1 96 5.862444e−06 2.32 8.170738e−04 1.27 4.589376e−02 1.01

2 384 1.071774e−06 2.45 3.040267e−04 1.43 1.854690e−02 1.31

3 1536 1.916484e−07 2.48 1.097294e−04 1.47 6.966565e−03 1.41

4 6144 3.402984e−08 2.49 3.915526e−05 1.49 2.535323e−03 1.46

5 24576 6.027017e−09 2.50 1.390406e−05 1.49 9.091418e−04 1.48

6 98304 1.067999e−09 2.50 4.926273e−06 1.50 3.236870e−04 1.49

for cubic mortar finite elements, we solve the Poisson equation −∆u = f in the
domain Ω := (−1, 1)× (0, 1) decomposed into two squares and with a nonmatching
triangulation. The right-hand side function f and the Dirichlet boundary condition
on ∂Ω are computed by using the exact solution

u(x, y) = x3 − 3 y3 + 3 x2 + 4 xy2 − 5 yx2 + 5 y + 12.

Since the given solution is a cubic polynomial, we expect to obtain the exact solution
by cubic finite elements and by optimal cubic mortar finite elements. The non-
optimal behavior of cubic mortar finite elements with the dual Lagrange multiplier
space can be seen in Table 1. We observe that the convergence rates in the L2-
and H1-norms are only of order 2.5 and 1.5, respectively, and the convergence rate
in the weighted Lagrange multiplier norm is also only of 1.5. The error in the L2-
and H1-norms are measured in the norm as defined in Lemma 3.1, whereas the
error in the flux is measured in a weighted L2-norm defined by (4.1). Although the
finite element space has optimal approximation property, we can only show that
the Lagrange multiplier space contains the constant function. Therefore, under the
assumption that the error is equally distributed the error in the flux converges with
order 1.5; see [LW02]. The convergence rate of order 1.5 in the H1-norm can be
explained by using the fact that the error in the H1-norm is bounded by the best
approximation property of the finite element space and the Lagrange multiplier
space; see [LSW05].

In the rest of this section, we construct for general p nodal points xp
1, . . . , x

p
p+1

such that (2.4) holds. To start with, we consider Np in more detail. The Gram
matrix of the finite element base Φ̂p is given by Mp = GΦ̂p,Φ̂p

with the (i, j)-th
entry mp

i,j =
∫

I
φi(ŝ)φj(ŝ) dŝ. We note that Mp ∈ R

(p+1)×(p+1) is positive-definite
and symmetric. The set of biorthogonal basis functions satisfying (2.1) can be
formally given by

(2.6) Λ̂p = Dp+1M
−1
p Φ̂p with GΦ̂,Λ̂ = Dp+1,

where the entries of the diagonal matrix Dp+1 are given by dp
i �= 0. Moreover, we

can find a unique restriction matrix Pp such that Φ̂p−1 = PpΦ̂p, yielding

PpMpD
−1
p+1Λ̂p = Φ̂p−1,

and thus Np = PpMpD
−1
p+1. We recall that the set Φ̂p forms a nodal basis associated

with the nodes xp
i , 1 ≤ i ≤ p + 1. Then the entries P p

ij of the restriction matrix Pp

are given by P p
ij = φp−1

i (xp
j ), 1 ≤ i ≤ p, 1 ≤ j ≤ p + 1. Using the product form of
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238 B. P. LAMICHHANE AND B. I. WOHLMUTH

Np, we find

(2.7) np
i,j =

1
dp

j

p+1∑
k=1

φp−1
i (xp

k)
∫

I

φp
k(ŝ)φp

j (ŝ) dŝ =
1
dp

j

∫
I

φp−1
i (ŝ)φp

j (ŝ) dŝ.

From now on, we assume that the nodal points are symmetric with respect to the
origin, i.e.,

(A1) xp
i = −xp

p+2−i, 1 ≤ i ≤ p + 1.

Lemma 2.3. Let us assume that (A1) holds for p and p − 1; then

np
1,1 = np

p,p+1.

Proof. The assumption (A1) guarantees that
∫

I
φp

i (ŝ) dŝ =
∫

I
φp

p+2−i(ŝ) dŝ and,
moreover, ∫

I

φp−1
1 (ŝ)φp

1(ŝ) dŝ =
∫

I

φp−1
p (ŝ)φp

p+1(ŝ) dŝ.

�
Combining (2.4) and Lemma 2.3, we obtain the following corollary.

Corollary 2.4. Under assumption (A1), V p−1
h ⊂ W p

h if and only if∫
I
φp

1(ŝ)φ
p−1
i (ŝ) dŝ = 0, 2 ≤ i ≤ p,∫

I
φp

p+1(ŝ)φ
p−1
i (ŝ) dŝ = 0, 1 ≤ i ≤ p − 1.

(2.8)

We remark that (2.8) is equivalent to the condition that φp
1 and φp

p+1 are in a
suitable orthogonal subspace of dimension two, i.e.,

φp
1 ∈ span{φp−1

2 , . . . , φp−1
p }⊥ ⊂ Pp(I), φp

p+1 ∈ span{φp−1
1 , . . . , φp−1

p−1}⊥ ⊂ Pp(I).

Observing xp−1
1 = xp

1 and xp−1
p = xp

p+1, we find

φp
l (x

p
j )φ

p−1
i (xp

j ) = 0, l = 1, 2 ≤ i ≤ p and l = p + 1, 1 ≤ i ≤ p − 1.

Now, we can easily relate condition (2.8) to quadrature formulas. Let us assume
for the moment that associated with the symmetric set of nodal points −1 = xp

1 <
· · · < xp

p+1 = 1 is a quadrature formula which is exact for all polynomials of degree
less than or equal to 2p − 1. Then

(2.9)
∫

I

φp
l (ŝ)φ

p−1
i (ŝ) dŝ =

p+1∑
j=1

wp
j φp

l (x
p
j )φ

p−1
i (xp

j ) = 0

for l = 1, 2 ≤ i ≤ p and l = p + 1, 1 ≤ i ≤ p − 1. Here wp
j denote the weights

of the quadrature formula. It is well known that there exists a unique quadrature
formula on Ī with p + 1 nodes satisfying xp

1 = −1 and xp
p+1 = 1, and being exact

for all polynomials of degree less than or equal to 2p − 1. This is the family of
Gauß–Lobatto quadrature formulas. The nodes are based on Legendre polynomials
and satisfy that the set of nodes is symmetric and all weights wp

i are positive. We
note that

wp
j =

∫
I

φp
j (ŝ) dŝ, 1 ≤ j ≤ p + 1,

and thus we have dp
j =

∫
I
φp

j (ŝ) dŝ for all 1 ≤ j ≤ p + 1. For convenience of the
reader, we recall some characteristic properties of the Legendre polynomials Ln(x)
and of the Gauß–Lobatto points which are relevant to our applications:
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L1. For some N ∈ N, the set LN := {L0(x), L1(x), . . . , LN (x)} forms an or-
thogonal system on (−1, 1) with respect to the L2-inner product.

L2. The Legendre polynomial of degree n has exactly n distinct real zeros in
(−1, 1).

L3. If Zn := {xn
1 < xn

2 < · · · < xn
n} is the set of n-zeros of the Legendre

polynomial Ln(x), then the identity
∫ 1

−1
f(x) dx =

∑n
k=1 wn

k f(xn
k ) holds

for all f ∈ P2n−1(−1, 1) with wn
k = 2

nLn−1(xn
k )L′

n(xn
k ) for 1 ≤ k ≤ n, where

L′
n(x) = dLn(x)

dx .
L4. The polynomial (1 − x2)L′

n(x) is orthogonal to all polynomials of degree
less than n−1 and has n+1-distinct zeros in [−1, 1]. If Sn := {−1 =: xn

1 <
xn

2 < · · · < xn
n+1 =: 1} is the zeros of polynomial (1− x2)L′

n(x), then Sn is
the set of Gauß–Lobatto nodes of order n.

L5. If Sn := {xn
1 < xn

2 < · · · < xn
n+1} is the set of Gauß–Lobatto nodes of

order n, then
∫ 1

−1
f(x) dx =

∑n+1
k=1 wn

kf(xn
k ) for all f ∈ P2n−1(−1, 1) with

wn
1 = wn

n+1 = 2
n(n+1) and wn

k = 2
n(n+1)(Ln(xn

k ))2 for 2 ≤ k ≤ n.

By construction, we specified a set of nodal points such that V p−1
h ⊂ W p

h . The
following theorem shows that this set is unique.

Theorem 2.5. V p−1
h ⊂ W p

h if and only if the finite element basis Φ̂p which defines
W p

h is based on the Gauß–Lobatto points Sp := {−1 =: xp
1 < · · · < xp

p+1 := 1}.

Proof. Let Sp := {−1 =: xp
1 < xp

2 < · · · < xp
p+1 := 1} be the Gauß–Lobatto points;

then the assumption (A1) is satisfied and, moreover, (2.9) holds. Thus, we are in
the setting of Corollary 2.4, and we find V p−1

h ⊂ W p
h . Now, let us assume that we

have Φ̂p such that the associated space W p
h satisfies V p−1

h ⊂ W p
h . We observe that

the zeros of the polynomial (ŝ+1)φp
1(ŝ) are exactly the nodes in Sp. In a next step,

we show that the polynomial (ŝ + 1)φp
1(ŝ) is orthogonal to the polynomial space

Pp−2(I). Let R(ŝ) be in Pp−2(I). We find that T (ŝ) := (ŝ + 1)R(ŝ) is in Pp−1(I)
and T (−1) = 0, and thus it can be written as T (ŝ) =

∑p
k=2 T (xp

k) φp−1
k (ŝ). In

terms of (2.4) and (2.7), we find
∫

I

(ŝ + 1)φp
1(ŝ)R(ŝ) dŝ =

∫
I

φp
1(ŝ)

p∑
k=2

T (xp
k) φp−1

k (ŝ) dŝ = 0.

The properties of the Legendre polynomials guarantee that the p + 1-zeros of (ŝ +
1)φp

1(ŝ) are the same as of (1 − ŝ2)L′
p(ŝ). �

We note that Theorem 2.5 guarantees existence and uniqueness of the set of
points. Now, we reconsider the cases p = 2 and p = 3. For p = 2, we find
for the Gauß–Lobatto nodes S2 := {−1, 0, 1}, which corresponds to the case of
Lagrange finite elements. However, for p = 3 the Gauß–Lobatto nodes are given
by S3 := {−1,−

√
5

5 ,
√

5
5 , 1}. This set of nodes is not equidistributed. A simple

calculation shows that

N3 :=

⎡
⎢⎢⎣

1
6

1+
√

5
12

1−
√

5
12 0

0 2
3

2
3 0

0 1−
√

5
12

1+
√

5
12

1
6

⎤
⎥⎥⎦ D−1

4 =

⎡
⎢⎢⎣

1 1+
√

5
10

1−
√

5
10 0

0 4
5

4
5 0

0 1−
√

5
10

1+
√

5
10 1

⎤
⎥⎥⎦ .
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Figure 2.1. The finite element basis functions based on Gauß-
Lobatto nodes S3 (left) and the associated biorthogonal basis func-
tions (right).

Having computed N3, we can directly verify the conditions (2.4) and find V p−1
h ⊂

W p
h . Figure 2.1 shows the cubic nodal basis functions on the reference element

associated with the Gauß–Lobatto nodes and the corresponding biorthogonal basis
functions.

Remark 2.6. Recently, spectral element methods with nodal polynomial interpola-
tion have been of research interest; see, e.g., [WPH00, Hes98]. Most often Gauß–
Lobatto quadrature nodes are used to get a set of interpolation points for the ap-
proximation of smooth functions on rectangular meshes. On simplicial meshes such
types of nodes are not known. In this case, Fekete points seem to be a natural and
good choice; see, e.g., [TWV00, PR04]. Computational results, [TWV00], support
the conjecture of Bos [Bos91] that Fekete points along the one-dimensional bound-
ary of the triangle are the one-dimensional Gauß–Lobatto points. Additionally, it
has been shown in [BTW00] that tensor product Gauß-Lobatto points are Fekete
points. Hence, working with Fekete points in two-dimensional finite elements one
obtains the Gauß-Lobatto nodes along the boundary of triangle or quadrilateral,
and the biorthogonal base can easily be formed for the Lagrange multiplier space
leading to an optimal scheme for the mortar finite elements in two dimensions.

The next remark is concerned with the quality of convergence of the finite element
interpolant based on Gauß–Lobatto and Fekete points.

Remark 2.7. It is well known that working with equally spaced interpolation points,
uniform convergence in p of the polynomial interpolation cannot be obtained. The
so-called Lebesgue constant CL(p) (see, e.g., [TWV00]) characterizes the quality
of the approximation of the polynomial interpolant. In the case of equally spaced
points, CL(p) grows exponentially in p. Although the construction of best approxi-
mation polynomials are, in general, not known, it can be shown that working with
Fekete points reduces the exponential growth of CL(p) to a linear growth [TWV00].
Moreover, numerical results suggest that CL(p) grows like

√
p on triangles. In the

univariate case, the bound for the Gauß–Lobatto nodes is well known to be loga-
rithmic in p [Bru97].

Recently it has been shown that we can find optimal a priori estimates for mor-
tar finite elements if the Lagrange multiplier space has a smaller dimension than
the trace space of the finite elements on the slave interface side with zero bound-
ary condition; see [LSW05]. However, to get an optimal estimate, the Lagrange
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multiplier space has to reproduce the piecewise polynomial space of degree p − 1.
In the rest of this section, we consider the construction of a biorthogonal basis of
smaller dimension. This construction will also be useful for the modification of
Lagrange multipliers around some crosspoint considered in the next section. Let
Rq := {y1 < y2 < · · · < yq} be a proper subset of Sp consisting of q distinct points
of Sp with q ≤ p, and Φ̂q := {φp

l(1), . . . , φ
p
l(q)}, 1 ≤ l(k) ≤ p + 1, be the subset of

Φ̂p associated with the nodes in Rq, i.e., xp
l(k) = yk, 1 ≤ k ≤ q. We note that Φ̂q

spans a q-dimensional space and that the set Ψ̂q := {ψ1, . . . , ψq} with the prop-
erty ψi ∈ Pq−1(I), ψi(yj) = δij spans the polynomial space of degree q − 1. The
following lemma states the biorthogonality between the elements of Φ̂q and Ψ̂q.

Lemma 2.8. If Sp is the set of (p + 1) Gauß–Lobatto nodes in [−1, 1], then the
basis Φ̂q is biorthogonal to Ψ̂q.

Proof. Using φl(k) ∈ Pp(I), 1 ≤ k ≤ q, ψj ∈ Pq−1(I), 1 ≤ j ≤ q and q ≤ p, and
applying an exact quadrature formula based on the (p + 1) Gauß–Lobatto nodes
Sp, we find

∫
I

φl(k)(ŝ)ψj(ŝ) dŝ =
p+1∑
i=1

wp
i φl(k)(x

p
i )ψj(x

p
i ) =

p+1∑
i=1

wp
i δil(k)ψj(x

p
i )

= wp
l(k)ψj(x

p
l(k)) = wp

l(k)ψj(yk) = wp
l(k)δjk.

�

Of special interest for our application are the choice q = p and

Rl
p := {xp

2 < xp
3 < · · · < xp

p+1}, Rr
p := {xp

1 < xp
2 < · · · < xp

p}.

The associated biorthogonal sets will be denoted by Ψ̂l
p = {ψl

1, . . . , ψ
l
p} and Ψ̂r

p =
{ψr

1, . . . , ψ
r
p}, respectively.

3. Application to mortar finite elements

Here, we briefly recall the mortar finite element method. We consider the fol-
lowing elliptic second order boundary value problem:

−div(a∇u) + cu = f in Ω,
u = 0 on ∂Ω,

where 0 < a0 ≤ a ∈ L∞(Ω), f ∈ L2(Ω), 0 ≤ c ∈ L∞(Ω), and Ω ⊂ R
2, is a

bounded polygonal domain. Let Ω be decomposed into L nonoverlapping polygonal
subdomains Ωl, possibly nonconforming, such that Ω =

⋃L
l=1 Ωl. Each subdomain

Ωl, 1 ≤ l ≤ L, is associated with a simplicial or quadrilateral triangulation Tl;hl

with mesh-size bounded by hl. The discrete space of conforming piecewise finite
element space of degree p on Ωl satisfying the homogeneous Dirichlet boundary
conditions on ∂Ω ∩ ∂Ωl is denoted by Xp

l . We assume that we work with nodal
finite element basis functions based on Gauß–Lobatto nodes. Then the mortar
method is characterized by the introduction of a discrete Lagrange multiplier space
Mp

m on the interfaces γm, 1 ≤ m ≤ M , of the decomposition. For each interface
γm, there exists a pair 1 ≤ r(m) < s(m) ≤ L such that γm = ∂Ωr(m) ∩ ∂Ωs(m).
We assume that γm is a straight line, and we associate with γm a one-dimensional
mesh Um;hm

, inherited either from Tr(m);hr(m)
or from Ts(m);hs(m)

. The subdomain
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Ω1

Ω2

Figure 3.1. A decomposition of Ω into Ω1 and Ω2 satisfying as-
sumption (3.1) if Ω2 is the slave side.

from which the interface inherits its mesh is called a slave or nonmortar side, and
the opposite one a master or mortar side. We do not insist that our decomposition
is geometrically conforming. However, to avoid technicalities in the construction of
the Lagrange multiplier space, we assume the following:{

γm is the union of complete one-dimensional faces of
elements on the slave side.(3.1)

Note that (3.1) covers special geometrically nonconforming decompositions and is
always satisfied for geometrically conforming decompositions. In particular γm does
not have to be a full face of Ωr(m) or Ωs(m); see Figure 3.1.

To obtain the mortar approximation uh, as a solution of a discrete variational
problem, there are two main approaches. The first one has been introduced in
[BMP93, BMP94] and gives rise to a positive definite nonconforming variational
problem. It is defined on a subspace Up

h of the product space Xp
h := {v ∈

L2(Ω) | v|Ωl
∈ Xp

l , 1 ≤ l ≤ L}. The elements of Up
h satisfy a weak continuity

condition across the interfaces. The constrained finite element space Up
h is given by

Up
h :=

{
v ∈ Xp

h |
∫

γm

[v]µ ds = 0, µ ∈ Mp
m, 1 ≤ m ≤ M

}
,

where [v] is the jump of the solution across the interface of the decomposition.
Then, the nonconforming formulation of the mortar method can be given in terms
of the constrained space Up

h : Find uh ∈ Up
h such that

(3.2) a(uh, vh) = (f, vh)0, vh ∈ Up
h .

Here, the bilinear form a(·, ·) is defined as

a(v, w) :=
L∑

l=1

∫
Ωl

a∇v · ∇w + cv w dx, v, w ∈
L∏

l=1

H1(Ωl).

The second approach is based on equivalent saddle point formulation; see [Ben99]. It
is obvious that the quality of the nonconforming approach (3.2) and the properties
of Up

h depend on the discrete Lagrange multiplier space Mp
h :=

∏M
m=1 Mp

m. The
optimality of the discretization scheme depends on the verification of the properties
of the Lagrange multiplier space presented in [LSW05]. In the case of dual Lagrange
multiplier spaces, it is sufficient to show that V p−1

h (γm) ⊂ Mp
m, 1 ≤ m ≤ M . Here

V p−1
h (γm) denotes the conforming finite element space of degree p − 1 associated

with the mesh Um;hm
on γm. The error in the Lagrange multiplier µ is measured

in a broken dual norm defined by

‖µ − µh‖2
M =

L∑
m=1

‖µ − µh‖2
−1/2,γm

,
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where ‖.‖−1/2,γm
is the dual norm of H

1/2
00 (γm) and µ := a ∂u

∂n .

Lemma 3.1. Under the assumption that the weak solution is smooth enough, we
obtain the following a priori estimates for the discretization error:

1
h
‖u − uh‖0 + ‖u − uh‖1 + ‖µ − µh‖M = O(hp),

where ‖u − uh‖2
s :=

∑K
k=1 ‖u − uh‖2

Hs(Ωk) and h := max{h1, . . . , hK}.

Unfortunately, we cannot directly apply the results of the previous section to
the general mortar situation. The crucial points are the so-called crosspoints. In a
geometrical conforming decomposition of the domain of interest in nonoverlapping
subdomains, at least three subdomains meet at interior crosspoints, and several
interfaces can have crosspoints as a common endpoint. On each interface, we use our
newly constructed spaces W p

h as a discrete Lagrange multiplier space. Working with
the product space of Lagrange multipliers associated with the different interfaces,
we obtain too many constraints for the nodal values of the finite element solution
at the crosspoints. In other words, the inf-sup condition of the arising saddle point
formulation cannot be uniformly satisfied. To obtain a uniform bound for the
discretization error, we have to reduce the dimension of the Lagrange multiplier
space, and to keep the approach as local as possible we have to reduce the dimension
of W p

h associated with each interface. Roughly speaking, we have to remove the two
degrees of freedom of the Lagrange multiplier space associated with the endpoints
of the interfaces. In the rest of this section, we consider the required modifications
of the Lagrange multipliers in detail. From now on for simplicity of notation, we
skip the index m of the interface γm and call it γ. Using the same notation as in
Section 2, we find that Φ0;p := {φp

2, . . . , φ
p
pK} spans the conforming finite element

space V p
0;h := V p

h ∩ H1
0 (γ) with zero boundary conditions. Here K denotes the

number of edges on the slave side. Now we define a (pK−1)-dimensional Lagrange
multiplier space by Λ0;p := {λ̃p

2, . . . , λ̃
p
pK}, where

λ̃p
j :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψl
j−1 ◦ F−1

1 , 2 ≤ j ≤ p,

ψl
p ◦ F−1

1 + λp
2;1, j = p + 1,

λp
j , p + 2 ≤ j ≤ p(K − 1),

ψr
1 ◦ F−1

K + λp
K−1;p+1, j = p(K − 1) + 1,

ψr
j−p(K−1) ◦ F−1

K , p(K − 1) + 2 ≤ j ≤ pK.

As before, element-wise addition is applied for the sum of two basis functions.

Theorem 3.2. The set Λ0;p is a dual basis with respect to Φ0;p. Moreover Mp
m :=

span Λ0;p satisfies V p−1
h (γ) ⊂ Mp

m.

Proof. By definition of the elements in Λ0;p and by means of Lemma 2.8, the
biorthogonality holds. Following the lines as in the proof of Lemma 2.2, we have
to consider the first and the last edge of γ. We only work out the details for the
first edge. Observing φp−1

j (F1(x
p
p+1)) = 0, 1 ≤ j ≤ p − 1, we find

φp−1
j =

p−1∑
i=1

φp−1
j (F1(x

p
i+1))ψ

l
i ◦ F−1

1 =
p−1∑
i=1

φp−1
j (F1(x

p
i+1))λ̃

p
i+1 ∈ Mp

m.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



244 B. P. LAMICHHANE AND B. I. WOHLMUTH

1 0.5 0 0.5 1

2

0

2

4

6

1 0.5 0 0.5 1

2

0

2

4

6

Figure 3.2. The modified Lagrange multiplier basis functions at
the crosspoints for the cubic case, the first edge (left), and the last
edge (right).

A similar consideration for j = p yields that φp−1
p ∈ Mp

m if and only if np
1,1 = 1.

Using the explicit form (2.7) of np
1,1 and φp−1

1 (−1) = 1, we find

np
1,1 =

1
dp
1

∫
I

φp−1
1 (ŝ)φp

1(ŝ) dŝ =
wp

1∫
I
φp

1(ŝ) dŝ
= 1.

�

We have shown the modified Lagrange multiplier basis functions in the case of
the first and the last edge in Figure 3.2.

Using this type of Lagrange multiplier space in the definition of a mortar finite
element method, we obtain optimal a priori estimates, and the mass matrix on
the slave side is a diagonal one. Now, we briefly discuss the extension of our one-
dimensional construction of dual Lagrange multiplier space to the two-dimensional
case in a reference element T , where T is a square (−1, 1) × (−1, 1) or a triangle
{(x, y), x ≥ 0, y ≥ 0, x + y ≤ 1} depending on the quadrangulation or triangula-
tion of the domain. The following remark is concerned with the extension to the
two-dimensional case. Unfortunately, in the case of triangle, the straightforward
construction as in the case of a quadrilateral is not possible.

Remark 3.3. Working with a tensor product finite element space from one dimen-
sion in quadrilateral mesh, we can apply the idea of one-dimensional construction in
a straightforward way. However, since Gauß–Lobatto nodes are not known for the
triangle, the situation with simplicial mesh is much more complicated. The Fekete
points in a triangle do not show the nice property of Gauß–Lobatto nodes that
any polynomial of degree 2p − 1 can be integrated exactly with a suitable choice
of weights. Hence one can easily show that a basis biorthogonal to a nodal finite
element base does not exist for a triangle with optimal approximation property for
p ≥ 2. In this case, one can look for a basis biorthogonal to a proper subset of
finite element space Φ̂p as described above or a basis Λ̂p which leads to a lower or
upper triangular mass matrix. We refer to [LSW05] for the quadratic and cubic
case. Although there does not exist a straightforward relation between a quadrature
formula and a biorthogonal base in a triangle as in quadrilaterals, from the theory
presented above one can figure out that there exists some form of relationship even
in this case.
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4. Numerical results

In this section, we present numerical results illustrating the performance of cubic
mortar finite elements based on our new dual Lagrange multiplier space. In par-
ticular, we present the discretization errors in the L2- and H1-norm for the primal
variable, and a weighted Lagrange multiplier norm defined by

‖λ − λh‖2
h :=

M∑
m=1

∑
e∈Um;hm

he‖λ − λh‖2
0;e ,(4.1)

where he is the length of the edge e on the slave side. Numerical results on linear
and quadratic mortar finite elements with dual Lagrange multiplier spaces can be
found in [Woh01, LW02]. The flexibility of mortar methods allows us to consider
geometrically nonconforming decompositions, nonconvex subdomains, and cross-
points. Starting with a conforming coarse triangulation on each subdomain, we
apply uniform refinement in each step.

In our first example, we consider a problem with many crosspoints. Here, we
consider −∆u = f in Ω, where Ω is the unit square (0, 1)2. The domain Ω is
decomposed into nine squares with Ωij := ((i − 1)/3, i/3) × ((j − 1)/3, j/3), 1 ≤
i ≤ 3, 1 ≤ j ≤ 3. The right-hand side f and the Dirichlet boundary conditions are
chosen such that the exact solution is given by

u(x, y) = sin (3.5 π y + x) ey+(1−x)2 + cos (3.5 π x + y) ex+(1−y)2 .

In Figure 4.1, the decomposition of the domain, the initial finite element partition,
and the isolines of the solution are shown. Here, we have four interior crosspoints
and 12 interfaces, and the master and slave sides are chosen randomly. The dis-
cretization errors versus the number of elements along with the order of convergence
at each refinement step are given in Table 2. We observe the optimal asymptotic

Figure 4.1. Decomposition of the domain and initial partitions
(left) and isolines of the solution (right) for Example 1.

Table 2. Discretization errors for Example 1

level # elem. ‖u − uh‖L2(Ω) ‖u − uh‖1 ‖λ − λh‖h

0 80 9.428500e−04 8.682827e−03 9.036892e−03

1 320 5.753638e−05 4.03 1.039127e−03 3.06 5.542193e−04 4.03

2 1280 3.539360e−06 4.02 1.268866e−04 3.03 5.572755e−05 3.31

3 5120 2.208067e−07 4.00 1.575260e−05 3.01 6.857704e−06 3.02

4 20480 1.375295e−08 4.00 1.960257e−06 3.01 5.880097e−07 3.54

5 81920 8.586956e−10 4.00 2.445284e−07 3.00 5.020655e−08 3.55
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Figure 4.2. Decomposition of the domain and initial partitions
(left) and isolines of the solution (right) for Example 2.

Table 3. Discretization errors for Example 2

level # elem. ‖u − uh‖L2(Ω) ‖u − uh‖1 ‖λ − λh‖h

0 49 1.709480e−03 1.323415e−02 1.293947e−03

1 196 1.533203e−04 3.48 2.584120e−03 2.36 7.148655e−05 4.18

2 784 9.767404e−06 3.97 3.289095e−04 2.97 9.127343e−06 2.97

3 3136 6.127065e−07 3.99 4.124910e−05 3.00 7.273459e−07 3.65

4 12544 3.833414e−08 4.00 5.160192e−06 3.00 6.608121e−08 3.46

5 50176 2.396388e−09 4.00 6.451090e−07 3.00 5.678886e−09 3.54

rates of convergence both in the L2- and H1-norms. We find that the convergence
in the energy error is of order h3, whereas the convergence of the error in the L2-
norm is of order h4. The rate of convergence in the weighted Lagrange multiplier
norm is of order 7

2 , which is the same order as the best approximation.
In our second example, we consider the decomposition of the unit square into

three subdomains with two nonconvex subdomains. The middle subdomain is cho-
sen as the slave side. We have shown the decomposition of the domain and initial
nonmatching triangulation in the left picture of Figure 4.2, and the isolines of the
solution are shown in the right. The right-hand side f and the Dirichlet boundary
conditions of −∆u = f are chosen from the exact solution, which is given by

u(x, y) = x (x − y) e−10.0 (x−0.5)2−6.0 (y−0.5)2 .

The discretization errors in the L2-, H1-, and in the weighted Lagrange multiplier
norm are presented in Table 3. Although two subdomains are nonconvex, we observe
optimal convergence rates for all considered norms.

In our third example, we decompose the unit square in four subdomains defined
by

Ωij := ((i − 1)/2, i/2) × ((j − 1)/2, j/2), 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

In this example, the problem is defined by

−div(a∇u) + u = f in Ω,

where a is chosen to be one in Ω11 and Ω22, and three in Ω21 and Ω12. Fig-
ure 4.3 shows the decomposition into four subdomains, our initial nonmatching
triangulation and the isolines of the solution. Here, we choose the exact solution
u(x, y) = (x−1/2)(y−1/2) exp(−10 (x−1/2)2−5 (y−1/2)2)/a; see Figure 4.3. We
point out that the normal derivative of the solution across the interface has a jump,
but the flux is continuous. We have given the discretization errors in Table 4. As
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Figure 4.3. Decomposition of the domain and initial partitions
(left), isolines of the solution (middle), and exact solution (right)
for Example 3.

Table 4. Discretization errors for Example 3

level # elem. ‖u − uh‖L2(Ω) ‖u − uh‖1 ‖λ − λh‖h

0 44 3.096840e−03 1.532198e−02 1.954521e−03

1 176 2.053727e−04 3.91 1.877596e−03 3.03 1.396639e−04 3.81

2 704 1.290557e−05 3.99 2.348717e−04 3.00 1.025518e−05 3.77

3 2816 7.940191e−07 4.02 2.917781e−05 3.01 8.292942e−07 3.63

4 11264 4.913603e−08 4.01 3.636055e−06 3.00 7.165627e−08 3.53

5 45056 3.055406e−09 4.01 4.538339e−07 3.00 6.169664e−09 3.54

in the previous two examples, we observe the optimal asymptotic convergence rates
in the L2 and H1-norms and a better convergence rate in the weighted Lagrange
multiplier norm.

In our last example, we decompose the domain, shown in Figure 4.4, into three
subdomains in a geometrically nonconforming way satisfying assumption (3.1). The
subdomains are given by Ω1 := (1.5, 2.5) × (0, 1), Ω2 := (0, 4) × (1, 2), and Ω3 :=
(1.5, 2.5)×(2, 3), where the slave sides are set to be on Ω1 and Ω2. Our last problem
is defined by

−∆u = f in Ω with
∂u

∂n
|ΓN

= 0, and u|ΓD
= g,

where
ΓN = {(x, 1) ∈ R

2 : 0 < x < 1.5} ∪ {(x, 1) ∈ R
2 : 2.5 < x < 4}

∪ {(x, 2) ∈ R
2 : 0 < x < 1.5} ∪ {(x, 2) ∈ R

2 : 2.5 < x < 4}
and

ΓD := ∂Ω\ΓN .

The right-hand side and the function g of the problem are determined from the
exact solution

u(x, y) = e−1.5 (y−1.5)2x (x − 4) y (y − 3) (y − 1)2 (y − 2)2 (sin (5 x) + cos (5 y)) ,

which satisfies the homogeneous natural boundary condition on ΓN . The isolines
of the solution are given in the right picture of Figure 4.4, and the discretization
errors in the L2-, H1-, and the weighted Lagrange multiplier norm are given in
Table 5. Having a geometrically nonconforming decomposition does not affect the
optimality of the method.
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Figure 4.4. Decomposition of the domain and initial partitions
(left) and isolines of the solution (right) for Example 4.

Table 5. Discretization errors for Example 4

level # elem. ‖u − uh‖L2(Ω) ‖u − uh‖1 ‖λ − λh‖h

0 32 6.514124e−02 1.547446e−01 2.777673e−01

1 128 5.454630e−03 3.58 3.295539e−02 2.23 4.888302e−02 2.51

2 512 3.409338e−04 4.00 3.839702e−03 3.10 2.402761e−03 4.35

3 2048 2.117516e−05 4.01 4.820277e−04 2.99 1.647853e−04 3.87

4 8192 1.317693e−06 4.01 6.030857e−05 3.00 1.459654e−05 3.50

5 32768 8.217674e−08 4.00 7.539048e−06 3.00 1.362018e−06 3.42

6 131072 5.137190e−09 4.00 9.423127e−07 3.00 1.198391e−07 3.51
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