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Biorthogonal Butterworth Wavelets Derived from
Discrete Interpolatory Splines
Amir Z. Averbuch, Alexander B. Pevnyi, and Valery A. Zheludev

Abstract—In the paper, we present a new family of biorthog-
onal wavelet transforms and a related library of biorthogonal pe-
riodic symmetric waveforms. For the construction, we used the in-
terpolatory discrete splines, which enabled us to design a library
of perfect reconstruction filterbanks. These filterbanks are related
to Butterworth filters. The construction is performed in a “lifting”
manner. The difference from the conventional lifting scheme is that
all the transforms are implemented in the frequency domain with
the use of the fast Fourier transform (FFT). Two ways to choose
the control filters are suggested. The proposed scheme is based on
interpolation, and as such, it involves only samples of signals, and it
does not require any use of quadrature formulas. These filters have
linear-phase property, and the basic waveforms are symmetric. In
addition, these filters yield refined frequency resolution.

Index Terms—Biorthogonal wavelets, Butterworth filters, dis-
crete splines, lifting scheme.

I. INTRODUCTION

T
HE CONTINUOUS polynomial splines have a rich history

as a source for wavelet constructions [3], [4], [6], [9], [18],

[19], but only a few authors [10], [13] use the discrete splines

for this purpose. However, discrete splines are a natural tool for

processing of discrete time signals. An intermediate approach

can be found in [2], where the authors used the filters that orig-

inated from the sampled B-splines for the construction of the

multiresolution analysis in .

In this work, we employed the interpolatory periodic dis-

crete splines [11] as a tool for devising a discrete biorthogonal

wavelet scheme. The proposed construction is somewhat related

to Donoho’s interpolating wavelet construction [7] as it was

modified later by Sweldens [16] into what is called the “lifting

scheme.” The lifting scheme allows custom design and fast im-

plementation of the transforms. Briefly, the idea of the compu-

tation is that values of the signal located at odd positions are pre-

dicted by values in the midpoints of the spline that interpolates

even values of the signal. Then, the odd subarray is replaced by

the difference between the current and the predicted subarrays.

On smooth well-correlated fragments of the signal, these differ-

ences will be near zero, whereas irregular fragments will pro-

duce significant differences. This result resembles the operation
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of the wavelet transform. To further extend this resemblance, we

should employ the new odd subarray for updating the existing

even subarray. The goal of this update is to smooth the even sub-

array and thus reduce the aliasing, which is a consequence of the

decimation. Based on the above strategy, we constructed a new

family of biorthogonal wavelet and wavelet packet transforms

and a related library of biorthogonal symmetric waveforms. In

[19], a similar approach was developed through the use of poly-

nomial interpolatory splines as the predicting aggregate. In that

paper as well as in the present one, all the computations are con-

ducted in the frequency domain using FFT.

Our construction results in a perfect reconstruction filterbank

that is linear phase. The corresponding wavelets are symmetric.

Our investigation revealed an interesting relation between the

decomposition splines and the Butterworth filters [12] com-

monly used in signal processing. The filterbanks constructed

in the paper comprise filters that act as bidirectional (forward

and backward) halfband Butterworth filters. The frequency

response of Butterworth filters are maximally flat, and we

succeeded in construction of the dual filters with similar

property. A few schemes were reported in the literature where

the one-pass Butterworth filters were used for devising an

orthogonal nonsymmetric wavelets [1], [8], [15], [17]. Corre-

sponding wavelets were called the biorthogonal Butterworth

wavelets. To distinguish the wavelets constructed in our scheme

from the former ones, we name our wavelets the biorthogonal

Butterworth wavelets.

The paper is organized as follows. In Section II, we outline

some facts about the discrete splines and the periodic Butter-

worth filters. In Section III, we devise a family of biorthogonal

wavelet-type transforms of signals using lifting steps. The lifting

scheme that we propose operates in the frequency domain,

contrary to the conventional lifting scheme. Both the primal and

dual schemes for construction are considered. We emphasize the

fact that the lifting scheme together with the proposed construc-

tion yields an efficient computational algorithm. Section IV is

devoted to the description of the properties of the constructed

filterbanks and basic elements of the transforms. The filterbanks

contain some control tools that allow custom design of the

wavelets. In the end of the section, we show how to use these

control tools. The transforms that were presented in Section III

are one-level (scale) wavelet-type transforms. They can be

extended into coarser scales in two ways. One way is to use the

multiscale wavelet transform when the frequency domain is

split in logarithmic fashion. Another way is to use the wavelet

packet transform when the partition of the frequency domain

is near uniform and it is being refined in each subsequent scale

of the transform. We describe in Section V the wavelet-type

1053–587X/01$10.00 © 2001 IEEE
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transform. Throughout the paper, we present a wide collection

of filterbanks, wavelets, and their spectra.

II. PRELIMINARIES

A. Discrete Periodic Splines

In this section, we outline briefly the properties of discrete

periodic splines that are needed for further constructions. For

detailed description of the subject, see [11].

Throughout the paper, we assume that , , and are natural

numbers and that . Denote . The

discrete Fourier transform (DFT) of an array , which

we denote , and its inverse (IDFT) are

We recall the following properties of DFT:

If then

(2.1)

(2.2)

(2.3)

Definition 2.1: The IDFT of the sequence

if

if :

is called the discrete periodic B-spline of order .

The discrete periodic spline of order is defined as

a linear combination, with real-valued coefficients, of shifts of

the B-spline of order :

In the paper, we are interested only in the case when

and . The corresponding splines are denoted as

and . In this case, we have

(2.4)

Definition 2.2: Let be a given

sequence. The discrete periodic spline is called the interpo-

latory spline if the following relations hold:

(2.5)

The points are called the nodes of the spline.

The interpolatory splines of any order can be explicitly con-

structed.

Proposition 2.1: The interpolatory spline that satisfies (2.5)

is represented as follows:

(2.6)

Proof: Let us rewrite (2.5) using (2.4)

and apply the -point DFT on both sides of this equation. From

(2.2), it follows that the -point DFT of the decimated B-spline

is

Hence, we have, using (2.1)

For further development, we need to know the values of the

splines in the midpoints between the nodes, which we denote as

, .

Proposition 2.2: The values of the interpolatory spline in the

midpoints are

(2.7)

(2.8)

The function is -periodic and .
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Fig. 1. (a) Lowpass filter functions h , which is the magnitude squared frequency-response functions of the lowpass halfband Butterworth filters of order r = 1

at the bottom to order r = 8 at the top. (b) Highpass filter functions ~g , which is the magnitude squared frequency-response functions of the highpass halfband
Butterworth filters. (c) Lowpass filter functions ~h of order r = 1 at the bottom to order r = 8 at the top. (d) Highpass filter functions g .

Proof: Similarly to previous considerations, we apply the

-point DFT on both sides of the following equation:

From (2.3), we derive

Hence, using (2.6), we get

B. Discrete Periodic Butterworth Filters

We recall briefly the notion of Butterworth filter. For details,

see [12]. The input and output of a linear discrete

time shift-invariant system are linked as follows:

(2.9)

Such a processing of the signal is called digital fil-

tering, and the sequence is called the impulse response

of the filter. Denote by ,

,

the Fourier transforms of the sequences. Then, we have from

(2.9) . The function is called the

frequency response of the digital filter. The digital Butterworth

filter is the filter with the maximally flat frequency response.

The magnitude squared frequency responses and

of the digital lowpass and highpass Butterworth filters of order

, respectively, are given by

where is the so-called cutoff frequency.

We are interested in the halfband Butterworth filters that is

. In this case

When the signals and and the impulse response are -pe-

riodic, the linear convolution in (2.9) becomes circular, and in

subsequent formulas, is replaced by . In particular, the

magnitude squared frequency responses of the digital periodic

lowpass and highpass Butterworth filters of order are given by

the formulas

(2.10)

These functions for various are displayed in Fig. 1.

III. BIORTHOGONAL TRANSFORMS

We introduce a family of biorthogonal wavelet-type trans-

forms that operate on the signal , ,

which we construct through lifting steps. The significant differ-

ence with the conventional lifting scheme [16] lies in the fact

that here, we operate in the frequency domain.

The lifting scheme can be implemented in a primal or dual

modes. We consider both.
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A. Primal Scheme

1) Decomposition: Generally, the lifting scheme for decom-

position of signals consists of three steps:

1) split;

2) predict;

3) update or lifting.

Let us construct and implement our proposed schemes in terms

of these steps.

Split: We simply split the array into an even and odd

subarrays

Predict: We use the even array to predict the odd array

and redefine the array as the difference between the

existing array and the predicted one.

To be specific, we use the spline that interpolates the

sequence and predict the array . The array , which is

theDFTof , ispredictedbythearray defined in(2.7)and

(2.8). The DFT of the new array is defined as follows:

(3.11)

From now on, the superscript means an update operation

of the array.

Lifting: We update the even array using the new odd array

(3.12)

Generally, the goal of this step is to eliminate aliasing that

appears while downsampling the original signal into .

By doing so, we have that is transformed into a lowpass

filtered and downsampled replica of . In Section IV-C, we

will discuss how to achieve this effect by a proper choice

of the control filter , but for now, we only require

to be a real-valued -periodic sequence, which obeys the

condition .

2) Reconstruction: The reconstruction of the signal from

the arrays and is implemented in reverse order:

1) undo lifting;

2) undo predict;

3) unsplit.

Undo Lifting: We immediately restore the even array

(3.13)

Undo Predict: We restore the odd array

(3.14)

Let us rewrite (3.14) using (3.13)

(3.15)

Unsplit: The last step represents the standard restoration

of the signal from its even and odd components. In the

frequency domain, it looks like

(3.16)

B. Dual Scheme

In the primal construction that was described above, the up-

date step followed the prediction. In some applications, it is

preferable to have the update step before prediction step and to

control the prediction step. In particular, such dual scheme al-

lows adaptive nonlinear wavelet transform [5] by choosing dif-

ferent predictors for different fragments of the signal. We now

explain the dual scheme.

1) Decomposition:

1) We start by averaging the even array with its prediction

that was derived from the odd array:

(3.17)

Such an update results in a smoother even array.

2) We form the details array by extracting from the odd array

the new even array supplied with the control function

:

(3.18)

2) Reconstruction:

1) We restore the odd array

2) To reconstruct the even array, we use :

3) Finally

IV. FILTERBANKS AND RELATED BASES

A. Filterbanks

Lifting schemes, which were presented above, yield efficient

algorithms for the implementation of the forward and backward

transform of , but these operations can be in-

terpreted as transformations of the signals by a filter bank that

possesses the perfect reconstruction properties.

First, we define two filter functions

From (2.10), it is clear that the linear phase filter is

equal to the magnitude squared frequency-response function of

the discrete-time lowpass halfband Butterworth filter of order
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Fig. 2. (a) Low-frequency reconstruction wavelets ' of order r = 1 at the bottom to order r = 8 at the top. (b) Fourier transforms of (a), which are the filters
h . (c) High-frequency decomposition wavelets ~ . (d) Fourier transforms of (c), which are the filters ~g .

Fig. 3. (a) Low-frequency decomposition wavelets ~' of order r = 1 at the bottom to order r = 8 at the top. (b) Fourier transforms of (a), which are the filters
~h . (c) High-frequency reconstruction wavelets  . (d) Filters g for the wavelet of order r. The control filter � (�) = U (�)=2.

[12]. The linear-phase filter is equal to the magnitude

squared function of the highpass halfband Butterworth filter. It

means that application of these filters on a signal is equivalent

to application of two passes (forward and backward) of the cor-

responding Butterworth filters. We call these filters the bidirec-

tional Butterworth filters.

Theorem 4.1: Define the -periodic filter functions

(4.19)

(4.20)

Then, the decomposition and reconstruction formulas of the

primal scheme can be represented as follows:

(4.21)

(4.22)

(4.23)

Proof: The proof is in the Appendix.

We call the sequences and ,

the frequency responses of the lowpass and high-pass decom-

position of filters of the first level, respectively. We call the se-

quences and the frequency responses of the

lowpass and highpass reconstruction filters of the first level,

respectively. These four filter sequences form a perfect recon-

struction filterbank [14]. We display the functions and in

Fig. 2 and the functions and in Fig. 3.

Theorem 4.2: With any -periodic sequence that

satisfies the condition , the functions

, , , and satisfy the perfect

reconstruction conditions

(4.24)

From the definitions (4.19) and (4.20), we immediately derive

The equations (4.24) can be similarly checked.

Similar facts hold for the dual transforms. Let us denote by

and the dual decomposition filters and by and

the dual reconstruction filters. The dual decomposition filters



AVERBUCH et al.: BIORTHOGONAL BUTTERWORTH WAVELETS 2687

coincide (up to constant factors) with the reconstruction filters

and vice versa, i.e.,

The following is an obvious observation.

Proposition 4.1: The filter functions are linked in the fol-

lowing way:

Remark: We stress that the dual decomposition filter

and the primal reconstruction filter are equal (up to con-

stant factors) to the bidirectional lowpass halfband Butterworth

filter of order . The primal decomposition filter and the

dual reconstruction filter multiplied by are equal to

the bidirectional highpass halfband Butterworth filter.

B. Bases for the Signal Space

The perfect reconstruction filter banks that were constructed

above are associated with the biorthogonal pairs of bases in the

space of -periodic discrete signals.

Notation:

(4.25)

(4.26)

Definition 4.1: The functions and given by (4.25),

which belong to the space , are called the low-frequency and

high-frequency reconstruction wavelets of the first scale, re-

spectively. The functions and given by (4.26), which be-

long to the space , are called the low-frequency and high-fre-

quency decomposition wavelets of the first scale, respectively.

Note that the wavelets in (4.25) and (4.26) are the IDFT of

the corresponding filters.

Theorem 4.3: The shifts of wavelets defined by (4.25) and

(4.26) form a biorthogonal pairs of bases in the space . This

means that any signal can be represented as

The coordinates and are the IDFT of the arrays

and , respectively. They can be represented as inner

products

where (4.27)

where (4.28)

Proof: The proof is in the Appendix.

Corollary 4.1: The following biorthogonal relations hold:

Remark: The decomposition wavelets of the dual scheme

are the reconstruction wavelets for the primal scheme and vice

versa.

C. Choosing the Control Filter

Thus far, we did not specify the filter sequence , which

occurs during construction of the primal filters and

and the dual ones and . The only imposed require-

ment was . Therefore, we are free to use

this function for custom design of these filters and the cor-

responding wavelets. We present two possible approaches for

choosing the control filter .

1) Retaining the Maximal Flatness of the Filters: As was

mentioned above, the dual decomposition filter [the

primal reconstruction filter ] and the primal decom-

position filter [the dual reconstruction filter ]

multiplied by are equal to the bidirectional lowpass and

highpass halfband Butterworth filters of order , respectively.

These filters are linear phase and maximally flat in their

passband and stopband due to the factors for

the lowpass filters and for the highpass filters.

In Fig. 2, we display these filters and the wavelets and ,

which are related to them. We will retain similar properties for

filters that depend on .

An easy way to achieve this is to put

(4.29)

Then, we have

(4.30)

Similarly

(4.31)

We conclude from (4.30) and (4.31) that, as in the case

of the filters and , the filters and

are also the mirrored replicas of each other. They differ

from bidirectional Butterworth filters of order by the term

, which affects only the central part

of the frequency domain. We display these filters and the
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Fig. 4. (a) Low-frequency decomposition wavelets ~' of order r = 1 at the bottom to order r = 8 at the top. (b) Fourier transforms of (a), which are the filters
~h . (c) High-frequency reconstruction wavelets  . (d) Filters g for the wavelet of order r. The control filter � (�) = U (�)=(1 + (U (�) ).

corresponding wavelets in Fig. 3. We observe that the filters

and the wavelets are similar to the previous ones but the flatness

of the filters is disturbed by the bumps (“over shooting”) near

the cutoff. These bumps appear due to the term . For higher

, we get sharper cutoff, and the “overshooting” becomes more

visible.

2) Orthogonality of the Wavelets: Another suggestion for

the choice of is triggered by the following consideration. Gen-

erally, the high- and low-frequency wavelets and ,

respectively, are not orthogonal to each other, and neither are

and . However, by proper choice of the control filter

, we can get this property. In this case, the signals and

, in the representation , become orthogonal to

each other. By this means, we are able to remarkably reduce the

redundancy that is inherent to the biorthogonal wavelet trans-

forms. Moreover, the decomposition wavelets belong to

the same subspace to which the reconstruction wavelets be-

long. The wavelets can be expressed as linear combina-

tions of the wavelets and vice versa. The same is true for the

highpass wavelets and .

Proposition 4.2: If the control filter is chosen as

(4.32)

then the following orthogonal relations hold:

(4.33)

Remark: When we doubled the order of the filer ,

which is given by (4.29), we get the filter .

Proof: The proof is in the Appendix.

When the control function , then the lowpass

filter is

and the highpass filter is

where

We see that in this case, the filters coincide with the bidirec-

tional Butterworth filters of order up to the term . The

filter is similar to the filter , which appeared when

we choose . We display the filters and the cor-

responding wavelets in Fig. 4. We observe that the filters and

the wavelets resemble the filters and wavelets with

, but now, the bumps are more visible, and the cutoffs

are steeper than before. The wavelets are somewhat smoother

but fail in spatial localization.

All the filters that are used in our wavelet transform are either

a combination of the bidirectional Butterworth filters or are very

close to it. Therefore, it is appropriate to name the corresponding

wavelets the biorthogonal Butterworth wavelets.

Remark: Note that the decomposition highpass filters of

order comprise the factor . In the time domain,

this factor corresponds to a finite difference of order . It

means that if a fragment of the signal coincides (or is near

to) a polynomial of degree , then the coefficients

are related to this fragment are equal (or near) to zero. This

property is the periodic substitution of the property of vanishing

moments.
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Fig. 5. (a) Reconstruction wavelets  , l = 1 � � � 4 of order 1 (lines 1–4) and ' , l = 4 (line 5). (b) Their spectra. (c) Decomposition wavelets ~ , l = 1 � � � 4

of order 1 (lines 1–4), and ~' , l = 4 (line 5). (d) Their spectra.

V. MULTISCALE WAVELET TRANSFORMS

Repeated applications of the transform can be achieved in an

iterative way. It can be implemented as either a linear invert-

ible transform of a wavelet type or as a wavelet packet type

transform, which results in an overcomplete representation of

the signal. In this section, we explain one multiscale advance of

the wavelet transform.

In this transform, we store the array and decompose the

array . Actually, we have at our disposal the DFT arrays

and that were derived in the previous step [see (3.11) and

(3.12) or (3.17) and (3.18)]. The IDFT is applied on the array

that yields .

Let and denote the even and odd subarrays of the array

. We can find the values of the corresponding DFT directly

from :

The filters for the first step of the transform were produced from

the function [see (2.8)]. We produce the filters for the second

step using the new function , which is the downsampled ver-

sion of : [see (2.8)].

The decomposition steps for the primal scheme are the fol-

lowing.

1) .

2) .

3) The array is derived by the application of the IDFT.

If we terminate the decomposition at this step, we apply

IDFT on as well and produce . In this case, the orig-

inal array is transformed into the array .

To proceed in getting coarser scales in the decomposition,

we use the array rather than .

The reconstruction steps are the following.

1) Apply the DFT on . If is not available from the

previous steps of the reconstruction, apply it on .

2) .

3) .

4) .

The dual scheme is implemented in a similar manner.

The described transform is linked with the -periodic fil-

ters , , , and , which are the downsam-

pled versions of the corresponding filters of the first step. It is

worth noting that the filters and are bidirectional

Butterworth filters. The filters and are applied on the array

to derive and . Conversely, and are applied on

the arrays and to restore .

The transform can be viewed as an expansion of the signal

with biorthogonal pair of bases:

(5.34)

where lowpass and highpass reconstruction wavelets of the

second scale are defined as

The coordinates in (5.34) are inner products with four-sample

shifts of the decomposition wavelets of the second scale

In Fig. 5, we display the biorthogonal Butterworth wavelets of

order 1 up to the fourth level and their spectra. Note that these

wavelets are compactly supported and have two vanishing mo-

ments. In Fig. 6, we display wavelets of order 10 up to the fourth

level and their spectra. These wavelets were outperformed by
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Fig. 6. (a) Reconstruction wavelets  , l = 1 � � � 4 of order 10 (lines 1–4) and ' , l = 4 (line 5). (b) Their spectra. (c) Decomposition wavelets ~ , l = 1 � � � 4

of order 1 (lines 1–4), and ~' , l = 4 (line 5). (d) Their spectra.

Fig. 7. (a) Wavelet packets of third scale of order 1 (compactly supported). (b) Their spectra. (c) Wavelet packets of third scale of order 15. (d) Their spectra.

the wavelets of lower orders in spatial localization but win in

frequency localization and smoothness.

Unlike the mechanism in the wavelet transform, in the

wavelet packet transform, both subarrays and of the

first scale are subject to decomposition that produces four

second-scale subarrays. In turn, these four arrays produce eight

subarrays for the third scale, and so on. All subarrays that are

related to a certain scale are stored. Without going into details,

we display in Fig. 7 the wavelet packets of the third scale of

first and 15th orders and their spectra. The wavelet packets are

derived by the primal transforms.

VI. CONCLUSIONS

We presented a new family of biorthogonal wavelet trans-

forms and a related library of biorthogonal periodic symmetric

waveforms. For the construction, we used the interpolatory dis-

crete splines, which enabled us to design a library of perfect

reconstruction filterbanks. These filterbanks are intimately re-

lated to Butterworth filters.

The construction is performed in a “lifting” manner that

allows more efficient implementation and provides tools for

custom design of the filters and wavelets. As it is common in

lifting schemes, the computations can be carried out “in place,”

and the inverse transform is performed in a reverse order. The

difference with the conventional lifting scheme [16] is that

all the transforms are implemented in the frequency domain

with the use of the fast Fourier transform (FFT). However,

the time-domain implementation is possible by means of

recursive IIR filtering similar to the implementation of the

digital Butterworth filters.

We suggested two ways to choose the control filters that are

inherent in the transforms. However, many more ways are pos-

sible. This subject deserves a special investigation.

High-frequency filters of an order in our construction com-

prise the factor . In a nonperiodic setting, it cor-

responds to the vanishing moments property up to order of

the corresponding wavelets. Thus, such a filter turns fragments

of the signal, which (almost) coincide with polynomial of de-

gree , close to zero. The low-frequency filters, on the contrary,

leave the fragments almost intact.

Our algorithm allows a stable construction of filters com-

prising these sine blocks of practically any order.

The computational complexity of the application of the

wavelet transform on a signal of length is the same as the

application of the FFT on a signal, which is .

Increase of the order in our scheme does not affect the cost of

the implementation. Therefore, especially for higher orders ,

the complexity of our algorithm is comparable if not less than

the complexity of the standard wavelet transform.

We should particularly emphasize that our scheme is based on

interpolation, and as such, it involves only samples of signals,
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and it does not require any use of quadrature formulas. This

property is valuable for digital signal and image processing.

The fact that these filters have linear phase property and the

basic waveforms are symmetric is also of great importance to

these applications. In addition, these filters yield refined fre-

quency resolution.

We anticipate a wide range of applications for the presented

library of waveforms in signal and image processing.

APPENDIX

Proof of Theorem 4.1: We start with the primal decomposi-

tion formula (4.22). We modify (3.11) using the identities

(7.35)

Therefore, we have

(7.36)

To obtain (4.22), it is sufficient to note that the function ,

which is defined in (4.19), possesses the property

. Thus, we see that (7.36) is equivalent to

(4.22).

To prove (4.21), we use the identity (7.35) and the already-

proved relation (4.22). Moreover, we recall that

. Then, the decomposition formula (3.12) can

be rewritten as

Hence, (4.21) follows.

To verify the reconstruction formula (4.23), we substitute

(3.13) and (3.15) into (3.16).

Proof of Theorem 4.3: We start with the reconstruction for-

mula (4.23), which we rewrite as

where

and

We have from (4.25)

Similarly, we derive the relation as [see (4.25)]

Let us consider the decomposition formula (4.21). The property

(2.1) implies that by using the IDFT, we get

Now, from (4.21) and (2.2), we have

which proves (4.27). Similarly, (4.28) is proved.

Proof of Proposition 4.2: Using (4.25), we can write

Since the function is -periodic with respect to , we

represent the inner product as

Equations (4.19) imply that

Hence, we have

Substitution of (4.32) results in . The second

relation in (4.33) is similarly proved.
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