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Abstract

We consider the class of biorthogonal polynomials that are used to solve the inverse spectral problem
associated to elementary co-adjoint orbits of the Borel group of upper triangular matrices; these orbits
are the phase space of generalized integrable lattices of Toda type. Such polynomials naturally interpolate
between the theory of orthogonal polynomials on the line and orthogonal polynomials on the unit circle
and tie together the theory of Toda, relativistic Toda, Ablowitz-Ladik and Volterra lattices. We estab-
lish corresponding Christoffel-Darboux formulæ. For all these classes of polynomials a 2 × 2 system of
Differential-Difference-Deformation equations is analyzed in the most general setting of pseudo measures
with arbitrary rational logarithmic derivative. They provide particular classes of isomonodromic deforma-
tions of rational connections on the Riemann sphere. The corresponding isomonodromic tau function is
explicitly related to the shifted Töplitz determinants of the moments of the pseudo-measure. In particular
the results imply that any (shifted) Töplitz (Hänkel) detereminant of a symbol (measure) with arbitrary
rational logarithmic derivative is an isomonodromic tau function.
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1 Introduction

The connection between orthogonal polynomials on the line and Toda lattices is rather well known [3], as well as
the relations to the KP hierarchy [1]. Dynamical variables of the Toda lattice are arranged into a tri-diagonal Lax
matrix, that can be viewed as a recurrence matrix for a system of orthogonal polynomials. In the (semi)finite case,
the evolution of the corresponding measure provides a linearization of the Toda flows. More generally, one can set-up
(in)finite-dimensional Hamiltonian systems on R2n (n ≤ ∞) with Hamiltonians

HI(q, p) =
1
2

n∑

i=1

pi
2 +

∑

i 6∈I

pieqi+1−qi +
|I|∑

j=1

eqij+1−qij (1-1)

I := {i1 < i2 < . . . < ik} . (1-2)

As it is noted in [10] such family of Hamiltonians (labeled by the multi-index I) contains integrable lattice hierarchies
of Toda, relativistic Toda, Volterra and Ablowitz-Ladik type. These integrable Hamiltonian systems have a Lax
representation with Lax operator given as a n× n lower Hessenberg matrix which we denote by Q (in [9, 10] it was
denoted by X), belonging to a certain “elementary” (2n − 2)-dimensional co-adjoint orbit of the solvable group of
upper triangular matrices. These systems are linearized by the Moser map

Q 7→ W(z;Q) := (z1−Q)−1
11 =

∞∑

j=0

µ̂j(Q)
zj+1

(1-3)

µ̂j(Q) = Qj
11 (1-4)
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In the case of infinite lattices these expressions take on a formal meaning in terms of power series but the analysis is
unchanged.
The moments µ̂j of Q define a normalized moment functional L and the reconstruction of Q from its moments
(the “inverse moment problem”) can be accomplished by constructing a suitable sequence of biorthogonal (Laurent)
polynomials {ri, pi}i∈N

L(ripj) = δij ,

where pi’s are polynomials in x of degree i while ri’s are, in general, polynomials in x and x−1. The (infinite) Lax
operator Q corresponding to the chosen orbit is then reconstructed by [10]

Qij = L(ri x pj) .

Explicit formulæ for these biorthogonal polynomials in terms of shifted Töplitz determinants can be found in [9, 10]
and will be recalled here in due time. Vice versa, one could assign an arbitrary (generic) moment functional L :
C[z, z−1] → C, a multi-index I and then reconstruct the Lax operator QI (i.e. view the Lax operator as a function
of L rather than the other way around)

L 7→ QI(L).

>From this point of view, the linearization of the (infinite) Hamiltonian hierarchy is accomplished simply by

Lt(•) = L(e
P

i 1/itiz
i•) , (1-5)

where the series may have to be understood formally. This procedure displays the common nature of all the above-
mentioned integrable lattices, inasmuch as the linearizing space is always the same (the space of moment functionals)
and what changes from one lattice to another is only the orbit, namely the map QI .

Finite dimensional systems(of dimension 2n − 2) on an elementary orbit QI correspond to those moment-
functionals for which certain shifted Töplitz determinants of size ≤ n do not vanish whereas all larger ones do.
In such cases, the tau function of the hierarchy defined by the (closed) differential

d ln τ =
n∑

J=1

1
J

Trn(QI)dtJ (1-6)

and coincides with the largest non-vanishing (shifted) Töplitz determinant.
One of the main purposes of this paper is to connect this determinant to a different notion of “tau” function,

namely the one introduced by Jimbo, Miwa and Ueno in [13, 14]. It was shown in [6, 4] that the Hänkel determinants
of an arbitrary (generic) “semiclassical” moment functional on the space of polynomials can be identified with the
isomonodromic tau function introduced by our Japanese colleagues.
Similarly, it was shown in [16] that Töplitz determinants of a particular class of symbols on the unit circle are also
identifiable with the same kind of isomonodromic tau functions.

These two apparently distinct situations are in fact the two ends of a “continuous” spectrum of situations: in fact
the case of Hänkel determinants is dealt with in the setting of (generalized) ordinary orthogonal polynomials, whereas
that of Töplitz determinants uses orthogonal polynomials on the unit circle; in this latter situation one considers
polynomials pi(z) orthogonal in the usual L2(S1, dµ) sense

∫

S1
pj(z)pk(z)dµ(z) = δjk . (1-7)

Here one defines rj(z) = pj(z−1) and the orthogonality is recast into

L(rjpk) = δjk , (1-8)

where - in this special case -

L : C[z, z−1] → C ; L(zj) =
∫

S1
zjdµ(z) . (1-9)

We see that we can regard the case of orthogonal polynomials on the circle as a special case of biorthogonal Laurent
polynomials with respect to a moment functional satisfying the reality condition µk = µ−k.

According to the previous description of integrable lattices, the two situations correspond to two different ele-
mentary orbits and hence we should be able to treat them on a common ground, together with all the other lattices
associated with the orbits QI . Indeed, we will show that this is the case and that for the class of moment functionals
of the semiclassical type introduced in [4] all the shifted Töplitz determinants which arise as tau functions of the
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corresponding integrable lattices are also isomonodromic tau functions for a rational 2 × 2 connection on C1 which
will be explicitly constructed in the paper.

The approach to this problem follows the strategy used in [4] rather the one in [16]; in the course of our analysis we
will obtain generalized Christoffel-Darboux identities which naturally interpolate between the ordinary CD identity
for orthogonal polynomials on the line and the one for orthogonal polynomials on the unit circle.

Moreover we will show that the Töplitz and Hänkel determinants of the same size for one such moment functional
are connected by a sequence of elementary Schlesinger transformations, at each step of which we obtain tau functions
associated to interpolating orbits; in figurative terms, we show that the papers [16] (see Example 10.1) and [4] are
connected by a Schlesinger transformation (when specializing the semiclassical measure to the one relevant for [16])
and that “neighboring” elementary co-adjoint orbits are also connected by an elementary Schlesinger transformation.

Acknowledgements. The authors thank John Harnad for stimulating discussions. M. G. is grateful to Lab-
oratoire de Physique Mathematique, Centre de Recherches Mathematique and the Concordia University for their
hospitality during his visit to Montreal, where the work on this project has started. During the later stages of
preparation of the manuscript he also enjoyed hospitality of Institut des Hautes Études Scientifiques.

2 Setting

We start in the most general and abstract setting, without any reference to a (pseudo) measure. We consider an
arbitrary moment functional

L : C[z, z−1] → C (2-1)

on the space polynomials in z and z−1 and denote its moments with µj = L(zj) , j ∈ Z. We introduce the following
shifted Töplitz determinants and polynomials

∆`
n = det




µ` µ`+1 · · · µ`+n−1

µ`−1 µ` · · · µ`+n−2

. . . . . .
µ`−n+1 µ`−n+2 · · · µ`


 (2-2)

∆`
0 ≡ 1 , ∆`

−n ≡ 0

℘`
n(x) := det




µ` µ`+1 · · · µ`+n

µ`−1 µ` · · · µ`+n−1

. . . . . .
µ`−n+1 µ`−n+2 · · · µ`+1

1 x · · · xn




(2-3)

Using some classical identities for determinants we can derive recurrence relations for the shifts n → n + 1 and
`→ `+ 1 for the above polynomials. We first need the following

Proposition 2.1 For any (n+ 1)× (n+ 1) matrix A the following determinant identity holds true (Jacobi identity)

A1..n
1..nA

2..n+1
2..n+1 −A2..n+1

1..n A1..n
2..n+1 = A1..n+1

1..n+1A
2..n
2..n , (2-4)

where the sub/super-script ranges denote the rows/columns of the submatrix we are computing the determinant of.
As a corollary, for any (n+ 1)× (n+ 2) matrix B we have

B1..n+1
2..n+2B

1..n
1..n + B1..n+1

1..n+1B
1..n
2..n,n+2 = B1..n+1

1..n,n+2B
1..n
2..n+1 (2-5)

which can be obtained from (2-4) by adjoining an appropriate row.

Using (2-4) on the determinant defining ℘`
n we find

x∆`
n℘

`
n−1 −∆`+1

n ℘`−1
n−1 = ∆`

n−1℘
`
n . (2-6)

Applying (2-5) to the determinant defining ℘`
n adjoined of the next row of moments on the top we find

℘`−1
n ∆`

n + ∆`
n+1℘

`−1
n−1 = ℘`

n∆`−1
n (2-7)

℘`−1
n ∆`+1

n + x∆`
n+1℘

`
n−1 = ℘`

n∆`
n (2-8)

x∆`
n℘

`
n−1 −∆`+1

n ℘`−1
n−1 = ℘`

n∆`
n−1 (2-9)
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We now use these identities to express ℘`
n := [℘`

n, ℘
`−1
n−1] in terms of ℘`

n−1 = [℘`
n−1, ℘

`−1
n−2]

[
℘`

n

℘`−1
n−1

]
=




x∆`
n

∆`
n−1

− ∆`+1
n ∆`−1

n−1

(∆`
n−1)2

∆`+1
n ∆`

n

(∆`
n−1)2

∆`−1
n−1

∆`
n−1

− ∆`
n

∆`
n−1




[
℘`

n−1

℘`−1
n−2

]
(2-10)

℘`
n = C`

n℘`
n−1 (2-11)

det C`
n = −x (∆`

n)2

(∆`
n−1)2

Circle Case (2-12)

jC`
n(x)−1C`

n(y)− j =
(
1− y

x

)



∆`−1
n−1

∆`
n

0

−1 0


 (2-13)

where

j :=
[

0 1
−1 0

]
. (2-14)

We have named this the “circle case” because this sort of recursion is relevant for orthogonal polynomials on the unit
circle. We next derive a recursion in `

[
℘`

n

℘`−1
n−1

]
=




∆`
n

∆`−1
n

+
∆`

n+1∆
`−1
n−1

x(∆`−1
n )2

∆`
n+1∆

`
n

x(∆`−1
n )2

∆`−1
n−1

x∆`−1
n

∆`
n

x∆`−1
n




[
℘`−1

n

℘`−2
n−1

]
(2-15)

℘`
n = T `

n ℘`−1
n (2-16)

det T `
n =

1
x

(∆`
n)2

(∆`−1
n )2

Circle to Line Transform (2-17)

jT `
n (x)−1T `

n (y)− j =
(

1− x

y

)



∆`−1
n−1

∆`
n

1

0 0


 (2-18)

The name “circle-to-line” refers to the fact that this recursion relation interpolates between the previous “circle” case
and the next one, which will be named the “line” case. Indeed, composing these two we can express ℘`

n = [℘`
n, ℘

`−1
n−1]

in terms of ℘`−1
n−1 = [℘`−1

n−1, ℘
`−2
n−2]

[
℘`

n

℘`−1
n−1

]
=




∆`
n

∆`−1
n−1

(
x+

∆`−1
n−2∆

`
n −∆`+1

n ∆`−1
n−1

∆`
n−1∆

`−1
n−1

)
(∆`

n)2

(∆`−1
n−1)2

1 0



[
℘`−1

n−1

℘`−2
n−2

]
(2-19)

℘`
n = L`

n℘`−1
n−1 Line case (2-20)

detL`
n = − (∆`

n)2

(∆`−1
n−1)2

(2-21)

jL`
n(x)−1L`

n(y)− j = (x− y)




∆`−1
n−1

∆`
n

0

0 0


 (2-22)

This recursion is called “line” case because it is the relevant recursion relation for ordinary orthogonal polynomials
on the line.
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2.1 Second–kind polynomials

Let us define the following second-kind polynomials

R`
n(x) = Lz

(
℘`

n(x)− ℘`
n(z)

x− z

)
(2-23)

The three types of recursion (2-10, 2-15, 2-19) involve at most a multiplication or division by x and have otherwise
constant coefficients (in x): moreover we find

xR`
n(x) = Lz

(
x℘`

n(x)− z℘`
n(z)

x− z

)
− Lz(℘`

n(z)) (2-24)

x−1R`
n(x) = Lz

(
x−1℘`

n(x)− z−1℘`
n(z)

x− z

)
− 1
x
Lz(z−1℘`

n(z)) (2-25)

The last terms in these identities vanish because of the determinant structure of ℘`
n, provided that n ≥ 1 and

0 ≤ ` ≤ n− 1 for the first case and −1 ≤ ` ≤ n− 2 for the second case. >From this observation we find that these
auxiliary sequences of polynomials satisfy the same recurrence relations in the following ranges

[ R`
n

R`−1
n−1

]
=





L`
n

[R`−1
n−1

R`−2
n−2

]
1 ≤ ` ≤ n− 1

C`
n

[R`
n−1

R`−1
n−2

]
0 ≤ ` ≤ n− 2

T `
n

[R`−1
n−1

R`−2
n−2

]
0 ≤ ` ≤ n− 1

(2-26)

3 Christoffel-Darboux formulæ

Consider (n, l) ∈ N× N and choose an arbitrary path starting at the origin of the following type

{(nk, `k), k = 0, 1, . . . , (n0, `0) = (0, 0), (n1, `1) = (1, 0)} (3-1)

and such that the possible subsequent moves are right, up or up-right. For the move (nk−1, `k−1) 7→ (nk`k) we
introduce the transfer matrices following an idea of [12] used for orthogonal polynomials on the circle

Tk(x) :=





C`k
nk

if the move is right (circle move)
T `k

nk
if the move is up (circle-to-line move)

L`k
nk

if the move is up-right (line move)
(3-2)

Using these transfer matrices we define the two dual auxiliary sequences of matrices as follows

Ξk(x) = Tk(x)Ξk−1(x) (3-3)

Ξ?
k(x) =

1
detTk(x)

Ξ?
k−1(x)T

t
k(x) (3-4)

Ξ?
0 = Ξt

0. (3-5)

This definition in particular implies that

Ξ?
k =

1∏k
j=1 detTj

Ξt
k . (3-6)

The choice of the initial conditions for the auxiliary sequences is arbitrary but it is convenient to choose Ξ0 in such
a way that the first column of Ξn will contain ℘`

n and ℘`−1
n−1 and the second column the corresponding second kind

polynomials. Since the matrices constructed with the polynomials ℘`k
nk

and the second kind polynomials already
satisfy the same recursion relation for k ≥ 1, it is sufficient to impose the same initial conditions with the following
choice (recall that the first move is always a circle-move)

Ξ0 = (C`1
n1

)−1

[
℘`1

n1
R`1

n1

℘`1−1
n1−1 R`1−1

n1−1

]
=

1
µ2

0x

[
µ0 µ1µ0

1 µ1 − µ0x

] [
µ0x− µ1 µ0

2

1 0

]
=




1 µ0
x

0 1
x


 (3-7)
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Recall that for any 2× 2 matrix we have At = det(A)jA−1j−1. We now compute

Ξ?
k(x) j Ξk(y) =

1
detTk(x)

Ξ?
k−1(x)T

t
k(x) jTk(y) Ξk−1(y) =

= Ξ?
k−1(x) jT−1

k (x)Tk(y) Ξk−1(y) =

= Ξ?
k−1(x) j Ξk−1(y) + Ξ?

k−1(x)
(
jT−1

k (x)Tk(y)− j
)

Ξk−1(y) (3-8)

Let us define ˙̀
k := `k− `k−1 and ṅk := nk−nk−1. Then the three formulæ (2-10,2-15,2-19) can be uniformly written

jT−1
k (x)Tk(y)− j = (−1)1−ṅk

(
1
y
− 1
x

)
x

˙̀
kyṅk




∆`k−1
nk−1

∆`k
nk

1− ṅk

˙̀
k − 1 0


 (3-9)

detTk(x) = (−1)ṅkxṅk− ˙̀
k


 ∆`k

nk

∆
`

k−1
n

k−1




2

(3-10)

k∏

j=1

detTj(x) = (−1)nkxnk−`k
(
∆`k

nk

)2
(3-11)

Summing up both sides of eq. (3-8) we obtain the following master Christoffel–Darboux identity

Ξ?
N (x) j ΞN (y)−

[
0 −1/y

1/x 0

]
=

=
(

1
y
− 1
x

)N−1∑

k=0

(−1)1−ṅk+1x
˙̀
k+1yṅk+1Ξ?

k(x)




∆`k+1−1
nk+1−1

∆`k+1
nk+1

1− ṅk+1

˙̀
k+1 − 1 0


 Ξk(y) =

=
(

1
x
− 1
y

)N−1∑

k=0

(−1)−ṅk+1x
˙̀
k+1yṅk+1Ξ?

k(x)




∆`k+1−1
nk+1−1

∆`k+1
nk+1

1− ṅk+1

˙̀
k+1 − 1 0


 Ξk(y) (3-12)

3.1 Principal CDI

We look at the (1, 1) entry of the above identity

(−1)nN

(∆`N
nN )2

(
℘`N−1

nN−1(x)
xnN−`N

℘`N
nN

(y)− ℘`N
nN

(x)
xnN−`N

℘`N−1
nN−1(y)

)
=
(

1
x
− 1
y

)N−1∑

k=0

(−1)nk+1x`k+1−nkyṅk+1

(∆`k
nk)2

×

×
[

∆`k+1−1
nk+1−1

∆`k+1
nk+1

℘`k
nk

(y) + (1− ṅk+1)℘`k−1
nk−1(y)

][
℘`k

nk
(x)− (1− ˙̀

k+1)
∆`k+1

nk+1

∆`k+1−1
nk+1−1

℘`k−1
nk−1(x)

]
(3-13)

The two terms in the product inside the sum here above can be simplified using (2-7) for the case ˙̀
k+1 = 0 and (2-9)

for the case ṅk+1 = 0 indeed

[
∆`k+1−1

nk+1−1

∆`k+1
nk+1

℘`k
nk

(y) + (1− ṅk+1)℘`k−1
nk−1(y)

]
=





y
∆`k

nk

∆`k+1
nk

℘`k
nk+1−1(y) if ṅk+1 = 0

∆`k+1−1
nk+1−1

∆`k+1
nk+1

℘`k
nk

(y) if ṅk+1 = 1

= y1−ṅk+1
∆`k+1−1

nk

∆`k+1
nk+1

℘`k
nk+1−1(y) (3-14)
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[
℘`k

nk
(x)− (1− ˙̀

k+1)
∆`k+1

nk+1

∆`k+1−1
nk+1−1

℘`k−1
nk−1(x)

]
=





∆`k+1
nk

∆`k+1−1
nk+1−1

℘`k+1−1
nk

(x) if ˙̀
k+1 = 0

℘`k
nk

(x) = ℘`k+1−1
nk

(x) if ˙̀
k+1 = 1

=
∆`k

nk

∆`k+1−1
nk

℘`k+1−1
nk

(x) (3-15)

Using these expression in the RHS of (3-13) the identity becomes

(−1)nN

(∆`N
nN )2

(
℘`N−1

nN−1(x)
xnN−`N

℘`N
nN

(y)− ℘`N
nN

(x)
xnN−`N

℘`N−1
nN−1(y)

)
=

=
(y
x
− 1
)N−1∑

k=0

(−1)nk+1
℘`k

nk+1−1(y)℘
`k+1−1
nk (x)x`k+1−nk

∆`k+1
nk+1∆

`k
nk

(3-16)

We can repeat the same arguments for the second-kind polynomials appearing in the other matrix entries; care must
be paid to the fact that (Ξ0)12 is not R0

0 ≡ 0.
We obtain the following supplementary CDI’s (provided that 0 ≤ `k ≤ nk+1 − 2, k = 1, . . .)

(−1)nN

(∆`N
nN )2

(
R`N−1

nN−1(x)
xnN−`N

℘`N
nN

(y)− R`N
nN

(x)
xnN−`N

℘`N−1
nN−1(y)

)
− 1
x

=

=
(y
x
− 1
)N−1∑

k=0

(−1)nk+1
℘`k

nk+1−1(y)R`k+1−1
nk (x)x`k+1−nk

∆`k+1
nk+1∆

`k
nk

(−1)nN

(∆`N
nN )2

(
℘`N−1

nN−1(x)
xnN−`N

R`N
nN

(y)− ℘`N
nN

(x)
xnN−`N

R`N−1
nN−1(y)

)
+

1
y

=

=
(y
x
− 1
)[N−1∑

k=0

(−1)nk+1
R`k

nk+1−1(y)℘
`k+1−1
nk (x)x`k+1−nk

∆`k+1
nk+1∆

`k
nk

− 1
y

]

(−1)nN

(∆`N
nN )2

(
R`N−1

nN−1(x)
xnN−`N

R`N
nN

(y)− R`N
nN

(x)
xnN−`N

R`N−1
nN−1(y)

)
=

=
(y
x
− 1
)N−1∑

k=0

(−1)nk+1
R`k

nk+1−1(y)R`k+1−1
nk (x)x`k+1−nk

∆`k+1
nk+1∆

`k
nk

(3-17)

The additional term in the second identity stems from the mentioned discrepancy in the definition of Ξ0 with the
definition of the auxiliary polynomials: indeed the term with k = 0 in the sum (3-12) is not zero in the off-diagonal

terms but
[

1 − 1
y

0 0

]
. Thus the second identity above is rewritten as

(−1)nN

(∆`N
nN )2

(
℘`N−1

nN−1(x)
xnN−`N

R`N
nN

(y)− ℘`N
nN

(x)
xnN−`N

R`N−1
nN−1(y)

)
+

1
x

=

=
(y
x
− 1
)N−1∑

k=0

(−1)nk+1
R`k

nk+1−1(y)℘
`k+1−1
nk (x)x`k+1−nk

∆`k+1
nk+1∆

`k
nk

(3-18)

4 CDIs for biorthogonal Laurent polynomials

The formulæ derived in the previous sections for the Christoffel-Darboux identities are very general however the
(Laurent) polynomials that appear in the sum are not biorthogonal with respect to the moment functional L unless
the sequence nk is strictly increasing and the sequence `k is weakly increasing. This is the situation which interests
us the most and hence from now on we will assume that nk = k5. Moreover all the elementary orbits of the integrable
lattices we are considering are in correspondence with this situation.

5If nk were not strictly increasing then the polynomials would be biorthogonal only provided the moments satisfy some non generic
condition of vanishing of certain determinants.
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>From the formulæ defining the polynomials ℘`
n it follows that

Lz

(
℘`n

n (z)℘`m+1−1
m (z)z`m+1−m

)
= δmn(−1)n∆`n

n ∆`n+1
n+1 . (4-1)

This suggests that we introduce the following monic polynomials

πn(x) =
1

∆`n
n

℘`n
n (x) (4-2)

ρn(x) =
(−1)n

∆`n
n

x`n+1−n℘`n+1−1
n (x) . (4-3)

It is understood that the determinants ∆`n
n must not vanish: this is our implicit assumption of genericity on the

moment functional. While the πn’s are monic in the usual sense, the ρn’s are normalized on either the highest or the
lowest power depending on ˙̀

n+1. Moreover the πn’s are polynomials in x whereas the ρn’s are polynomials in x and
x−1. They satisfy the orthogonality relations

Lz(ρm(z)πn(z)) = δmnhn , hn :=
∆`n+1

n+1

∆`n
n

. (4-4)

We finally introduce the (bi)-orthonormal polynomials and the second kind polynomials

pn(x) :=
1√
hn

πn(x) =
℘`n

n√
∆`n

n ∆`n+1
n+1

,

p̃n(x) := Lz

(
pn(x)− pn(z)

x− z

)

rn(x) :=
1√
hn

ρn(x) = x`n+1−n (−1)n℘
`n+1−1
n√

∆`n
n ∆`n+1

n+1

r̃n(x) := Lz

(
rn(x)− rn(z)

x− z

)
(4-5)

and their “starred”

p?
n(x) := x`n−n+1pn(x) p̃?

n(x) := x`n−n+1p̃n(x) (4-6)
r?
n(x) := xn−`n+1rn(x) r̃?

n(x) := xn−`n+1 r̃n(x) (4-7)

In terms of these (Laurent)polynomials the CDIs read

(y − x)
N−1∑
n=0

rn(x)pn(y) = γN

(
pN (y)rN−1(x)− p?

N (x)r?
N−1(y)

)

(y − x)
N−1∑
n=0

r̃n(x)pn(y) = γN

(
pN (y)r̃N−1(x)− p̃?

N (x)r?
N−1(y)

)
+ 1

(y − x)
N−1∑
n=0

rn(x)p̃n(y) = γN

(
p̃N (y)rN−1(x)− p?

N (x)r̃?
N−1(y)

)− 1

(y − x)
N−1∑
n=0

r̃n(x)p̃n(y) = γN

(
p̃N (y)r̃N−1(x)− p̃?

N (x)r̃?
N−1(y)

)

γN :=

√
hN

hN−1
(4-8)

It is convenient to rewrite in matrix form the previous identities as follows

p(x) := [p0, . . .]t , p̃(x) := [p̃0, . . .]t , r(x) := [r0, · · ·]t , r̃(x) := [r̃0, · · ·]t (4-9)
P(x) := [p(x), p̃(x)] , R(x) := [r(x), r̃(x)] (4-10)

(ΠN−1)ij :=
N−1∑

k=0

δikδkj (4-11)

Rt(x)ΠN−1P(y) =
1

y − x

{
γN

[
p?

N (x) rN−1(x)
p̃?

N (x) r̃N−1(x)

]
j
[
pN (y) p̃N (y)
r?
N−1(y) r̃?

N−1(y)

]
+ j
}

(4-12)
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Remark 4.1 A word about the relations with previously known (bi)-orthogonal polynomials is now in order. If all
the moves (except the first one) are line-moves namely if `n = n− 1 then it is not hard to show that πn = ρn are just
orthogonal polynomials with respect to the (restriction of the) moment functional L to positive moments. Moreover
the shifted Töplitz determinants ∆n−1

n are (up to a sign) the same as the Hänkel determinants of the same size (by
permuting appropriately the columns).

Vice-versa, if all moves are circle-moves (i.e. `n ≡ 0) (and we also impose certain reality conditions on the
moments of the functional) then the πn are orthogonal polynomials for a certain measure on the unit circle and the
ρn’s are their so-called “dual” Laurent polynomials. The determinants appearing then in our sequence are precisely
the “standar” ones ∆0

n.
A second remark is that all these polynomial do satisfy three-terms recurrence relations, although of a different

sort than the standard ones. Indeed, it is well known that orthogonal polynomials pn satisfy relations of the form

xpn = γnpn+1 + βnpn + γn−1pn−1 , (4-13)

where the coefficients γn, βn enter in the tridiagonal Jacobi matrix representing the multiplication by x in the basis of
the pn’s. At the opposite ”end of the spectrum”, orthogonal polynomials on the circle satisfy a different sort of three
term recurrence relation, of the form

x(pn + δnpn−1) = γnpn+1 + βnpn . (4-14)

It is not hard to show [9, 10] that the polynomials that we are considering precisely ”interpolate” these two sorts of
recurrence relations as follows

x(pn + (1− ˙̀
n)δnpn−1) = γnpn+1 + ˙̀

nβnpn , (4-15)

for certain coefficients γn, βn, δn whose explicit expression in terms of Töplitz determinants can be obtained from the
formulæ above but is irrelevant for this discussion. We see that “circle moves” ( ˙̀

n = 0) correspond to a three-term
recurrence relation of the type appearing for O.P. on the circle, while “line moves” ( ˙̀

n = 1) correspond to the “usual”
recurrence relation.

5 Infinitesimal deformations of the moment functional

We study the infinitesimal deformations for the wave vectors p(x), p̃(x), r(x) and r̃(x) under an infinitesimal defor-
mation of the moment functional. Let us introduce the matrix of recurrence for these sequences of polynomials

xp = Qp ; xrt = rtQ , Qnm := L(z pn rm) . (5-1)

The matrix Q is of Hessenberg form, namely has nonzero entries on the superdiagonal and possibly on the diagonal
and all other nonzero entries in the lower triangular part. The biorthogonality relation can be rewritten as

L [prt
]

= 1 (5-2)

Suppose we infinitesimally deform the moment functional

L̇(•) = −L(F (z)•) (5-3)

Here F (z) can be any function (even a generalized distribution as we will see) provided that the moments of the
deformation are still well defined: if L is given by an analytical expression in terms of some integral representation
(as we will assume later on) then this means some condition of analyticity on F : if the functional is only defined by
its moments, then F should be interpreted as formal series. In any situation the typical case of F being a polynomial
(corresponding to the usual formal Toda-type flows) will be well defined.

A little more generally we could even assume that F is a distribution, particularly delta functions or derivatives
of it. For instance we can consider deformation of the type

δL(p(x)) ≡ L̇(p(x)) = −
(

d
dx

)k

p(x)

∣∣∣∣∣
x=a

(5-4)

for some constant a: this means that we (formally) have set F to be the k-th derivative of the Dirac delta distribution
for the given moment functional supported at x = a.
Corresponding to any of these deformations the BOPs deform as

δp = U(F )p , δr = Ũ(F )r (5-5)
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where a priori U and Ũ are lower triangular matrices since the range of powers of x entering in the expressions pn,
rn will not change. In order to find expressions for these matrices we note first that their diagonals are the same

(U(F ))nn = (Ũ(F ))nn = −1
2
δln(hn) (5-6)

Indeed we have

δpn = δ
xn

√
hn

+ . . . = −1
2
δ ln(hn)pn + previous (5-7)

δrn = −1
2
δ ln(hn)rn + previous . (5-8)

Differentiating the orthogonality relation we obtain

U(F ) + Ũ(F )t =





F (Q) for the case of an ordinary function F

(
d
dx

)k

p(x)rt(x)

∣∣∣∣∣
x=a

for a deformation supported at one point

(5-9)

and hence according to the two types the matrices describing the infinitesimal deformations are given by

U(F ) = F (Q)−0 , Ũ(F ) = F (Q)t
−0 (5-10)

U(δk
a) = ∂k

a (p(a)rt(a))−0 , Ũ(δk
a) = ∂k

a

(
r(a)pt(a)

)
−0

(5-11)

where A−0 means the lower triangular part plus half of the diagonal. Note that from (5-6) and the definition of hn

it follows

∆`n
n =

n−1∏

k=0

hk

δf ln∆`n
n = −TrnF (Q)

δδk
a

ln∆`n
n = −∂k

a

n−1∑

j=0

pj(a)rj(a) , (5-12)

where we have used the notation for the truncated trace TrnA :=
∑n−1

j=0 Ajj .

5.1 Deformations for the second-kind (Laurent) polynomials

Using Leibnitz’s rule we obtain the following deformation equations for the second-kind wave vectors p̃, r̃. For a
deformation by a function F (x) we have

δF p̃ =
(
U(F ) − F (x)

)
p̃ + Lz

(
F (x)− F (z)

x− z

)
p−

(
F (x)− F (Q)

x−Q

)
e1

δF r̃ =
(
Ũ(F ) − F (x)

)
r̃ + Lz

(
F (x)− F (z)

x− z

)
r−

(
F (x)− F (Qt)

x−Qt

)
e1 (5-13)

while for F = δ
(k)
L (z − a) we have

δF p̃ = U(δk
a)p̃− ∂k

∂ak

p(x)− p(a)
x− a

δF r̃ = Ũ(δk
a)r̃ − ∂k

∂ak

r(x)− r(a)
x− a

(5-14)

6 Folded version of the deformation equations

Let us define

χn :=
[
pn p̃n

r?
n−1 r̃?

n−1

]
(6-1)

We want to express the previous infinite-dimensional deformation equations in terms of χn alone; this process is
conceptually identical to the one followed in [4] and which is named ”folding”. To this end we formulate the following

10



Theorem 6.1 The infinite deformations (5-10) for the wave vectors p, r and for the second-kind wave vectors p̃, r̃
(5-13, 5-14) are equivalent to the following deformation equations for χn, n ≥ 1.

δ(F )χn = U (F )
n (x)χn + χnU (F ),R(x)

δ(δk
a)χn(a) = U (δk

a)
n (x)χn(x) + χn(x)U (δk

a),R(x) (6-2)

where we have used the following definitions:

U (F )
n =

[
1
2F (Q)nn 0

0 F (x)− 1
2F (Q)n−1,n−1

]
+ γn

[ −(∇QF )n,n−1 (∇QF )n,n?

−(∇QF )(n−1)?,n−1 (∇QF )n,n−1

]

U (F ),R =
[

0 WF

0 −F (x)

]
, WF := Lz

(
F (x)− F (z)

x− z

)
, ∇QF :=

F (x)− F (Q)
x−Q

(6-3)

U (δk
a)

n (x) =
∂k

∂ak

1
2

[
pnrn 0

0 −pn−1rn−1

]

z=a

+
∂k

∂ak

γn

x− a

[ −pnrn−1 pnp
?
n

−rn−1r
?
n−1 rn−1pn

]

z=a

U (δk
a),R(x) = ∂k

a

[
0 1

a−x
0 0

]
. (6-4)

Here, for a function f(z) we have set

f(Q)i,j? := L(rif(z)r?
i ) , f(Q)i?,j := L(p?

i f(z)pj) . (6-5)

Proof. We compute the deformations of both rows of χn. We start with deformation involving a function F (x): the
first row deforms according to the equation

δF [pn(x), p̃n(x)] = δF et
n · [p, p̃] = et

n · U(F ) · [p, p̃] + et
n · [p.p̃]

[
0 WF

0 −F (x)

]
− et

n ·
F (x)− F (Q)

x−Q
· [0, e1] , (6-6)

where we have set

WF (x) := Lz

(
F (x)− F (z)

x− z

)
(6-7)

We now note that

et
n · U(F ) · [p, p̃] =

1
2
F (Q)nn[pn, p̃n] + et

nLz

(
F (z)p(z)rt(z)Πn−1[p(x), p̃(x)]

)
=

=
1
2
F (Q)nn[pn, p̃n] + et

nLz

(
(F (z)− F (x))p(z)rt(z)Πn−1[p(x), p̃(x)]

)
=

=
1
2
F (Q)nn[pn, p̃n] + et

nLz

(
F (z)− F (x)

x− z
p(z)

(
γn[pn(z)?, rn−1(z)]jχn(x)− [0, 1]

))
=

=
1
2
F (Q)nn[pn, p̃n]− γnLz

(
F (z)− F (x)

z − x
pn[p?

n, rn−1]
)

jχn(x) + et
n ·

F (x)− F (Q)
x−Q

· [0, e1] (6-8)

This implies that

δF [pn(x), p̃n(x)] =
1
2
F (Q)nn[pn, p̃n]− γnLz

(
F (z)− F (x)

z − x
pn[p?

n, rn−1]
)

jχn(x) +

+ et
n · [p.p̃]

[
0 WF

0 −F (x)

]
(6-9)

In a similar way we can compute the following deformations

δF [rn−1(x), r̃n−1(x)] = δF et
n−1 · [r, r̃] =

= et
n−1 · U(F )t · [r, r̃] + et

n−1 · [r, r̃]
[

0 WF

0 −F (x)

]
− et

n−1 ·
F (x)− F (Qt)

x−Qt
· [0, e1] . (6-10)
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The computation now involves

et
n−1 · U(F )t · [r, r̃] = −1

2
F (Q)n−1,n−1[rn−1, r̃n−1] + et

n−1 · F (Qt)Πn−1[r, r̃] =

= −1
2
F (Q)n−1,n−1[rn−1, r̃n−1] + et

n−1Lz

(
F (z)r(z)pt(z)Πn−1[r(x), r̃(x)]

)
=

=
(
F (x)− 1

2
F (Q)n−1,n−1

)
[rn−1, r̃n−1] +

+ et
n−1Lz

(
(F (z)− F (x))r(z)pt(z)Πn−1[r(x), r̃(x)]

)
=

=
(
F (x)− 1

2
F (Q)n−1,n−1

)
[rn−1, r̃n−1] +

+en−1Lz

(
F (z)− F (x)

z − x
r(z)

(
− γn[pn(z), r?

n−1(z)]jχ
?
n(x)t + [0, 1]

))
=

=
(
F (x)− 1

2
F (Q)n−1,n−1

)
[rn−1, r̃n−1] +

−γnLz

(
F (z)− F (x)

z − x
rn−1[pn, r

?
n−1]
)

jχ?
n

t(x) + en−1
F (x)− F (Qt)

x−Qt
e1 (6-11)

where we have used the following definition
χ?

n = x`n−n+1χt
n . (6-12)

Thus we have obtained the following deformation equation

δF [rn−1(x), r̃n−1(x)] =
(
F (x)− 1

2
F (Q)n−1,n−1

)
[rn−1, r̃n−1] + et

n−1 · [r, r̃]
[

0 WF

0 −F (x)

]
+

−γnLz

(
F (z)− F (x)

z − x
rn−1[pn, r

?
n−1]
)

jχ?
n

t(x) (6-13)

By “starifying” both sides we obtain

δF
[
r?
n−1(x), r̃

?
n−1(x)

]
=

(
F (x)− 1

2
F (Q)n−1,n−1

)
[r?

n−1, r̃
?
n−1] + [r?

n−1, r̃
?
n−1]

[
0 WF

0 −F (x)

]
+

−γnLz

(
F (z)− F (x)

z − x
rn−1[pn, r

?
n−1]
)

jχn(x) (6-14)

Putting together (6-9) and (6-14) we obtain finally

δFχn = U (F )
n (x)χn + χnU (F ),R(x) (6-15)

U (F )
n =

[
1
2F (Q)nn 0

0 F (x)− 1
2F (Q)n−1,n−1

]
− γnLz

(
F (x)− F (z)

x− z

[
pnp

?
n pnrn−1

pnrn−1 r?
n−1rn−1

])
j =

=
[

1
2F (Q)nn 0

0 F (x)− 1
2F (Q)n−1,n−1

]
+ γn

[ −(∇QF )n,n−1 (∇QF )n,n?

−(∇QF )(n−1)?,n−1 (∇QF )n,n−1

]
(6-16)

U (F ),R =
[

0 WF

0 −F (x)

]
(6-17)

We now consider a deformation supported at one point z = a.

δF [pn(x), p̃n(x)] = et
n · U(δk

a) · [p, p̃] − et
n

(
d
dz

)k ∣∣∣∣
z=a

p(x)− p(z)
x− z

[0, 1] . (6-18)

This time we have

et
n · U(δk

a) · [p, p̃] =
1
2
∂k

a(pn(a)rn(a))[pn, p̃n] + ∂k
aet

n · p(a)rt(a)Πn−1[p, p̃] = (6-19)

=
1
2
∂k

a(pn(a)rn(a))[pn, p̃n] + ∂k
aet

n · p(a)
(
γn[p?

n(a), rn−1(a)]
x− a

jχn(x)− [0, 1]
x− a

)
(6-20)
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We thus have

δF [pn(x), p̃n(x)] =

=
1
2
∂k

a(pn(a)rn(a))[pn, p̃n] + ∂k
a

γn[pn(a)p?
n(a), pn(a)rn−1(a)]
x− a

jχn(x)− ∂k
a

[0, pn(x)]
x− a

(6-21)

Similarly for the Laurent polynomials

δF [rn−1(x), r̃n−1(x)] = et
n−1 · U(δk

a)t · [r, r̃] − et
n−1

(
d
dz

)k ∣∣∣∣
z=a

r(x)− r(z)
x− z

[0, 1] , (6-22)

where now

et
n−1 · U(δk

a)t · [r, r̃] =

= −1
2
∂k

a(pn−1(a)rn−1(a))[rn−1, r̃n−1] + ∂k
aet

n−1 · r(a)
(
γn[pn(a), r?

n−1(a)]
x− a

jχ?
n

t(x)− [0, 1]
x− a

)
(6-23)

so that finally

δF [rn−1(x), r̃n−1(x)] = −1
2
∂k

a(pn−1(a)rn−1(a))[rn−1, r̃n−1] +

+∂k
a

γn[rn−1(a)pn(a), rn−1(a)r?
n−1(a)]

x− a
jχ?

n
t(x)− ∂k

a

[0, rn−1(x)]
x− a

(6-24)

Starifying this last identity and collecting it together with (6-21) we finally have

δχn(a) = U (δk
a)

n (x)χn(x) + χn(x)U (δk
a),R(x) (6-25)

U (δk
a)

n (x) =
∂k

∂ak

{
1
2

[
pn(a)rn(a) 0

0 −pn−1(a)rn−1(a)

]
+

γn

x− a

[
pn(a)p?

n(a) pn(a)rn−1(a)
rn−1(a)pn(a) rn−1(a)r?

n−1(a)

]
j
}

=
∂k

∂ak

1
2

[
pnrn 0

0 −pn−1rn−1

]

z=a

+
∂k

∂ak

γn

x− a

[ −pnrn−1 pnp
?
n

−rn−1r
?
n−1 rn−1pn

]

z=a

(6-26)

U (δk
a),R(x) = ∂k

a

[
0 1

a−x
0 0

]
(6-27)

This concludes the proof. Q.E.D.

7 Moment functionals of integral type and ODE

We now assume that the moment functional that we are considering admits an actual integral representation

L(zk) :=
∑

κj

∫

Γj

e−V (z)zkdz . (7-1)

As far as the previous discussion on deformations is concerned, the integral representation of the moment functional
is largely irrelevant, the only issue being the convergence of the deformation function: therefore the “potential” V (z)
as well as the sets of integration Γj could be completely arbitrary. However, in view of our intentions, we will assume
that Γj are contours in the complex plane and that V (z) is a locally defined smooth function on these contours with
the only restriction coming from the fact that negative moments should be defined as well as the positive ones.

In fact -although many considerations would remain identical in more general situations- we will assume that V is
a locally analytic function in the complex z-plane excepted at some punctures, identically to the case of semiclassical
moment functionals studied in [5, 4] with the only extra restriction that all negative moments should be defined
and finite.

Semiclassical Moment Functionals. For the reader’s convenience we briefly recall how these semiclassical mo-
ment functionals are constructed [5, 4, 17, 18]. In this case the potential is such that the derivative is an arbitrary
rational function

V ′(z) = Rational function (7-2)
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and thus V (z) is a rational function plus logarithmic singularities at those poles of V ′ where the residue does not
vanish. For simplicity we assume that V ′ has either a pole or a nonzero limit at z = ∞. Once we have chosen the
potential V we also choose an arbitrary collection of contours (avoiding z = 0) {Γj} with the property that <(V (x))
is uniformly bounded from below on all the chosen contours and tends to ∞ polynomially (in the length parameter)
on the contours that extend to z = ∞. In more detailed terms:

(a) Consider a pole z = c of V ′ of order k ≥ 2: we attach to it k − 1 “petals” approaching z = c along asymptotic
directions in the sectors where <(V (x)) → +∞. We also attach a “stem” extending to ∞ and asymptotic to a
direction such that <(V (x)) →∞.

(b) For a simple pole z = c of V ′, if the residue is a positive integer (i.e. e−V has a pole at z = c) we choose a small
loop around the point, if the residue is a negative integer we take a contour from z = c to ∞, if the residue
is non integer we take a loop coming from ∞ and returning to ∞ (with the same restriction as above for the
asymptotic direction).

(c) We choose also arbitrary segments joining a certain number of points z = a to ∞ (along admissible directions).
These latter contours are called “hard-edge” contours because the pseudo measure dµ = e−V (z)dz has a limit
at z = a and integration by parts yields a boundary term.

3

*
2

a

a

a

1

2

3

c
c

c

1

Figure: The contours for a typical semiclassical moment functional. Here V ′(x)
has a pole of order 4 at∞, of order 4 at c3 and simple poles at c2, c3 with nonin-
teger and negative-integer residue respectively. The contours originating from
the ai’s are “hard-edge” contours. The shaded sectors represent the asymptotic
“forbidden” directions for approaching a singularity. One of these sectors at ∞
in Figure does not have a contour surrounding it because such a contour would
be “homologically” equivalent to minus the sum of all others.

7.1 Differential equations

We first analyze in this situation the infinite-dimensional differential equation that the BOPs satisfy. The natural
differential operation in this setting is not ∂x but rather x∂x. Using the recurrence relations involving multiplication
by x and the orthogonality relations

xp(x) = Qp(x) ; xrt(x) = rt(x)Q (7-3)
xp′(x) = Dp(x) ; xr′(x) = D̃r(x) (7-4)∫

κ
prte−V dz = 1 , (7-5)

we can obtain the following identity by integrating ∂z(zprte−V (z)):

D + D̃t −
(
zp(z)rt(z)e−V (z)

) ∣∣∣
∂κ

= QV ′(Q)− 1 (7-6)
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The notation that we now adopt is that
∫
κ stands for the linear combination with coefficients κj of integrals on

the oriented contours Γj and the evaluations
∣∣
∂κ stand for the evaluations at all endpoints of the given contours,

multiplied by the corresponding coefficient κ and the appropriate sign according to the orientation. The matrices D
and D̃ are lower triangular and on the main diagonal they can be explicitly computed

xp′n = npn + previous ; (7-7)

xr′n =
(
(−n)(1− ˙̀

n+1) + `n+1

)
rn + previous (7-8)

x
d
dx
r?
n = n ˙̀

n+1r
?
n + previous . (7-9)

This implies the following Virasoro scaling constraint

(QV ′(Q))nn + (zpn rne−V )
∣∣∣∣
∂κ

= 1 + `n+1 + n ˙̀
n+1 . (7-10)

Note that we also have
n−1∑

k=0

(
(QV ′(Q))kk + (zpk rke−V )

∣∣∣∣
∂κ

)
=

n−1∑

k=0

(
1 + `l+1 + l ˙̀k+1

)
= n(`n + 1) . (7-11)

The parts of D, D̃ below the main diagonal are now expressed in terms of Q and the boundary terms only

D< = (QV ′(Q))< +
(
z(p(z)rt(z))<e−V (z)

) ∣∣∣
∂κ

; (7-12)

D̃< = (QtV ′(Qt))< +
(
z(r(z)pt(z))<e−V (z)

) ∣∣∣
∂κ

(7-13)

Note that -below the main diagonal- the matrices D and D̃ are of the same form as the deformations we were
considering previously; more precisely they correspond to a variation by F (z) = zV ′(z) and a linear combination of
variations supported at the endpoints of the contours Γj . The folded version of this ODE can be obtained from the
formulæ (6-9, 6-14, 6-21, 6-23) with the only modification that comes from the diagonal part of D. Using (7-10) for
the diagonal part the reader can check that the result is

Dn =
[
n 0
0 xV ′(x)− 1− `n

]
+ γn

[ −Wn,n−1 Wn,n?

−W(n−1)?,n−1 Wn,n−1

]
+
(
ze−V (z)γn

x− z

[ −pnrn−1 pnp
?
n

−rn−1r
?
n−1 rn−1pn

]) ∣∣∣∣∣
∂κ

W := ∇QxV
′(x) =

QV ′(Q)− xV ′(x)
Q− x

(7-14)

We remark that the last “boundary” term consists of simple poles with nilpotent residues.
For the full matrix χn the differential equation is

x∂xχn(x) = Dn(x)χn(x) + χn(x)DR(x) (7-15)

DR(x) =


 0

∫

κ

xV ′(x)− zV ′(z)
x− z

e−V (z)dz +
ze−V (z)

z − x

∣∣∣∣
∂κ

0 −xV ′(x)


 (7-16)

Together with the differential equation and the deformation equations we recall that we also have difference equations

χn = Rn(x)χn−1 , n ≥ 1 (7-17)

Rn(x) =





[ x−βn

γn
κn

(−1)n+1 0

]
if ˙̀

n = 1

[ x−βn

γn
κn

(−1)n+1 ωn

]
if ˙̀

n = 0

(7-18)

The ladder matrices Rn are simply obtained from the transfer matrices (3-2) by using the normalization of the
polynomials as in (4-5). We have thus proved
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Theorem 7.1 The matrix χn satisfies the following system of difference-deformation-differential (DDD for short)
equations

χn = Rn(x)χn−1 (7-19)

x
d
dx
χn = Dnχn + χnDR (7-20)

δfχn = U (f)
n χn + χnU (f),R (7-21)

where f denotes either any function or formal power series provided that L(f(z)zk) is well defined for k ∈ Z or any
derivative of the Dirac delta function supported at any point a 6= 0.

We observe that the right action of the differential-deformation equation is independent of n. This suggests that we
can perform a “right gauge” change to dispose of this part. Indeed we define the new object Γn which will be the
focus in the rest of the paper

Γn := χn




1 −eV (x)

∫

κ

e−V (z)

x− z
dz

0 eV (x)


 (7-22)

It is easy to verify that this change of gauge eliminates the right-actions for the differential equation and for any
deformation of V (x) and/or the endpoints of integration. The first column of Γn is the same as the first column of
χn and hence contains the LOPs. The second column contains now the following auxiliary functions

ψn = eV (x)

∫

κ

pn(z)e−V (z)

x− z
dz (7-23)

φ?
n−1 = xn−1−`nφn−1 = xn−1−`neV (x)

∫

κ

rn−1(z)e−V (z)

x− z
dz . (7-24)

We note that the auxiliary functions are piecewise analytic functions off the contours Γj : it is a matter of routine
inspection to read-off the relevant Riemann-Hilbert data. We defer this inspection to a later section.

In terms of the matrices Γn we have a DDD system of more standard form, without right multipliers.

Theorem 7.2 The following system of Difference-Differential-Deformation equations is Frobenius compatible

Γn = Rn(x)Γn−1 (7-25)

x
d
dx

Γn = DnΓn (7-26)

δfΓn = U (f)
n Γn (7-27)

where f is as in Thm. (7.1).

A few remark are in order here: by choosing f in Thm. (7.2) to be an ordinary function one can vary the potential
V by V → V + εf and hence all flows of the generalized Toda hierarchy are here included. However we can also
choose f as a distribution δ

(k)
a or linear combinations thereof. Clearly if we choose the point a arbitrarily outside

of the singularities of V (x) we still have a compatibility of the resulting system but we will change the structure
of the singularities of Dn, which falls outside of the standard theory of isomonodromic deformations. For example,
adding a δa corresponds to adding a term ln(x− a) in the potential and adjoining a small circle around a to the set
of contours Γj ’s.
Vice-versa the cases in which f is a distribution which does not alter the singularity structure of Dn are:

1. Movement of the endpoints which contribute to the boundary term6: then we have

f = ±κe−V (a)δa (7-28)

where the coefficient κ is the coefficient of the contour Γj which has a as endpoint and the sign depends on the
orientation of Γj .

2. Movements of poles of order k (if any) of the pseudo-measure e−V dz: then we have

f(a) = ±κ k δ(k+1)
a (z)e−Vr(z) (7-29)

where the coefficient κ is the coefficient of the loop encircling a, the sign is chosen according to the orientation
of the contour and Vr(z) is the part of V which is regular at z = a.

6They corresponds to those endpoints of the contours Γj for which lim
Γj3z→∂Γj

e−V (z) 6= 0.
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8 Spectral curve and Isomonodromic tau function

The objective of this section is that of expressing the spectral curve of the connection ∂x − 1
xDn(x) in terms of the

logarithmic derivatives of the Töplitz determinants; this will be the essential bridge to connect with the isomonodromic
tau function in the coming sections. We prove the following theorem

Theorem 8.1 The following formula holds

det
(
y1− 1

x
Dn(x)

)
= y2 −

(
V ′(x) +

Ln

x

)
y +

+
1
x

Trn

(
QV ′(Q)− xV ′(x)

Q− x

)
+

1
x

(
ze−V (z)ptΠn−1r

x− z

) ∣∣∣∣∣
∂κ

(8-1)

Ln := n− 1− `n , (8-2)

where Πn−1 = diag(1, 1, . . . , 1, 0, . . .) (n nonzero entries).

Before proceeding to the proof we remark that this formula would be valid for an arbitrary smooth potential; quite
clearly, however, in this case the spectral curve would not be an algebraic curve.
Proof.
We need to compute the two spectral invariants of the connection; the main tool is to use the compatibility between
the ladder relations and the connections Dn(x). Indeed from the compatibility between the difference and differential
equation and from the explicit expression forDn(x) (7-14) we can express recurrence relation for the spectral invariants
of Dn(x). The trace is computed by sight

Tr(Dn(x)) = xV ′(x) + n− 1− `n (8-3)

>From the compatibility of difference-differential equations we have the gauge property

Dn−1 = Rn
−1DnRn − xRn

−1R′n (8-4)

The gauge term is explicitly computed to be

Rn
−1DnRn = Dn−1 + xRn

−1R′n (8-5)

xRn
−1R′n =





(−1)n x

γn−1

[
0 0
1 0

]
if ˙̀

n = 1

[
1 0

(−1)n∆`n−1
n−1

∆`n
n

q
∆

`n−2
n−2

0

]
if ˙̀

n = 0

(8-6)

These formulæ imply a recurrence relation for the quadratic invariant.

Tr(D2
n)) = Tr(D2

n−1) + 2Tr
(Dn−1xRn

−1R′n
)

+ Tr((xRn
−1R′n)2). (8-7)

For the line case i.e. ˙̀
n = 1 and using the form of the recursion matrices Rn together with the fact that in this

case r?
n−1 = (−1)n−1pn−1 we find

Tr(D2
n) = Tr(D2

n−1)− 2x
(
QV ′(Q)− xV ′(x)

Q− x

)

n−1,n−1

− 2x
(
ze−V (z)pn−1rn−1

x− z

) ∣∣∣∣
∂κ

(8-8)

For the circle case ˙̀
n = 0 instead we have

Tr(D2
n) = Tr(D2

n−1) + 2(n− 1) + 2γn−1


−Wn−1,n−2 +

(−1)n∆`n−1
n−1

∆`n
n

√
∆`n−2

n−2

Wn−1,(n−1)?


+

+2γn−1


ze−V (z)pn−1

x− z


−rn−2 +

(−1)n∆`n−1
n−1

∆`n
n

√
∆`n−2

n−2

p?
n−1





∣∣∣∣
∂κ

+ 1 (8-9)
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Using the identity (2-7) together with the definitions of the biorthogonal polynomials and the various normalization
factors (4-5) one can see that

−rn−2 +
(−1)n∆`n−1

n−1

∆`n
n

√
∆`n−2

n−2

p?
n−1 = − z

γn−1
rn−1 , (8-10)

and hence

−Wn−1,n−2 +
(−1)n∆`n−1

n−1

∆`n
n

√
∆`n−2

n−2

Wn−1,(n−1)? =
1

γn−1
Lz

(
zWpn−1rn−1

)
(8-11)

Therefore the recursion for the circle case is

Tr(D2
n)− Tr(D2

n−1) = 2(n− 1) + 1− 2
(
Q (QV ′(Q)− xV ′(x))

Q− x

)

n−1,n−1

− 2
(
z2e−V (z)pn−1rn−1

x− z

) ∣∣∣∣∣
∂κ

=

= 2(n− 1) + 1− 2
(
QV ′(Q)n−1,n−1 + (ze−V (z)pn−1rn−1)|∂κ

)
+ 2xV ′(x) +

−2x
(
QV ′(Q)− xV ′(x)

Q− x

)

n−1,n−1

− 2x
(
ze−V (z)pn−1rn−1

x− z

) ∣∣∣∣∣
∂κ

=

= 2(n− 1)− 1− 2`n + 2xV ′(x)− 2x
(
QV ′(Q)− xV ′(x)

Q− x

)

n−1,n−1

+

−2x
(
ze−V (z)pn−1rn−1

x− z

) ∣∣∣∣∣
∂κ

(8-12)

Summarizing, in the two cases we have found

Tr(D2
n)− Tr(D2

n−1) = 2
(
xV ′(x)− `n + (n− 1)− 1

2

)
(1− ˙̀

n) +

−2x
(
QV ′(Q)− xV ′(x)

Q− x

)

n−1,n−1

− 2x
(
ze−V (z)pn−1rn−1

x− z

) ∣∣∣∣∣
∂κ

(8-13)

To complete the computation we need to find Tr(D1
2) or –equivalently– det(D1). We have

det
(

1
x
D1

)
= det

[
p′1 ψ′1
r?
0
′ φ?

0
′

] [
p1 ψ1

r?
0 φ?

0

]−1

= det
[
p′1 ψ′1
r?
0
′ φ?

0
′

]
e−V (x) =

=
√
h1e−V (x) det

[ 1√
h1

ψ′1
0 φ?

0
′

]
=

= V ′(x)Lz

(
1

x− z

)
− Lz

(
V ′(z)
x− z

)
+
(

e−V (z)

x− z

) ∣∣∣∣∣
∂κ

=

=
(
V ′(Q)− V ′(x)

Q− x

)

00

+
(

e−V (z)p0r0
x− z

) ∣∣∣∣∣
∂κ

(8-14)

This implies

detD1(x) = x2

(
V ′(Q)− V ′(x)

Q− x

)

00

+ x2

(
e−V (z)p0r0
x− z

) ∣∣∣∣∣
∂κ

=

= x

=0︷ ︸︸ ︷(
V ′(Q)00 + (p0r0e−V (z))|∂κ

)
+x
(
QV ′(Q)− xV ′(x)

Q− x

)

00

+ x

(
ze−V (z)p0r0

x− z

) ∣∣∣∣∣
∂κ

=

= x

(
QV ′(Q)− xV ′(x)

Q− x

)

00

+ x

(
ze−V (z)p0r0

x− z

) ∣∣∣∣∣
∂κ

(8-15)
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Hence (`1 = 0)

Tr(D1
2) = (xV ′(x))2 − 2x

(
QV ′(Q)− xV ′(x)

Q− x

)

00

− 2x
(
ze−V (z)p0r0

x− z

) ∣∣∣∣∣
∂κ

(8-16)

Tr(Dn
2) = (xV ′(x))2 + 2xV ′(x) (n− 1− `n)− (n− 1− `n) + 2

n∑

k=1

(k − 1− `k)(1− ˙̀
k) +

−2xTrn

(
QV ′(Q)− xV ′(x)

Q− x

)
− 2x

(
ze−V (z)ptΠN−1r

x− z

) ∣∣∣∣∣
∂κ

. (8-17)

Using this expression for the quadratic invariant we can obtain the following formula for the characteristic polynomial

det(ỹ1−Dn(x)) = ỹ2 − (xV ′(x) + n− 1− `n
)
ỹ +Kn +

+xTrn

(
QV ′(Q)− xV ′(x)

Q− x

)
+ x

(
ze−V (z)ptΠN−1r

x− z

) ∣∣∣∣∣
∂κ

Kn :=
(n− 1− `n)(n− `n)

2
+

n∑

k=2

(`k + 1− k)(1− ˙̀
k) (8-18)

The last crucial observation is that Kn ≡ 0 for all n: this is non-obvious at first sight and it is true only because `n
is a weakly increasing sequence of integers. Indeed one can check that

Kn+1 −Kn =
1
2

˙̀
n+1(1− ˙̀

n+1) , (8-19)

so that Kn+1 = Kn = K1 = 0. To conclude the proof we note that the spectral curve of (8-18) is simply related to
that of the connection by ỹ = xy. This ends our proof.

9 Isomonodromic deformations

By Thm. 7.2 we have compatible systems of Difference, Differential, Deformation equations

Γn = RnΓn−1 (9-1)

∂xΓn =
1
x
DnΓn (9-2)

δfΓn = U (f)
n (x)Γn (9-3)

The compatibility of this system entails isomonodromic deformations for the connection ∂x − 1
xDn. Note that this

connection has the same singularity structure of V ′(x). In order to have isomonodromic deformations in the sense
of Miwa-Jimbo-Ueno we need to impose that V ′(x) be a rational function. Then the deformations of V (x) which
give rise to the setting in MJU are those which do not alter the singularity structure of V (x); this is why the most
general setting compatible with this requirement is that of semiclassical moment functionals.

9.1 Spectral residue-formulæ

Mimicking the approach of [4] we can express the logarithmic derivatives of the shifted Töplitz determinants ∆`n
n in

terms of residue formulæ involving the differential ydx on the spectral curve defined in Thm. 7.2

Y±(x) :=
1
2

(
V ′(x) +

Ln

x

)
± 1

2

√(
V ′(x) +

Ln

x

)2

− 4P(x) (9-4)

P(x) =
1
x

Trn

(
QV ′(Q)− xV ′(x)

Q− x

)
+

1
x

(
ze−V (z)ptΠN−1r

x− z

) ∣∣∣∣∣
∂κ

(9-5)

Indeed we have
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Theorem 9.1 Let V ′(x) be rational.
(i) Suppose that x = c is a pole of order d+ 1

V (x) =
d∑

J=1

t
(c)
J

J (x− c)J
− t

(c)
0 ln(x− c) +O(1) (9-6)

V ′(x) = −
d∑

J=0

t
(c)
J

(x− c)J+1
+O(1) (9-7)

Then we have

t
(c)
J = − res

x=c
Y+(x)(x− c)Jdx , J = 0, . . . d (9-8)

∂ ln∆`n
n

∂t
(c)
J

=
1
J

res
x=c

Y−(x)(x− c)−Jdx , J = 1, . . . , d (9-9)

∂ ln∆`n
n

∂c
= res

x=c
Y−(x)

(
d∑

J=0

t
(c)
J

(x− c)J+1

)
dx (9-10)

(ii) Suppose that x = ∞ is a pole of V ′ with degree d, namely

V (x) =
d+1∑

J=1

t
(∞)
J

J
xJ +O(lnx) (9-11)

V ′(x) =
d+1∑

J=1

t
(∞)
J xJ−1 +O(1/x) (9-12)

Then we have

t
(∞)
J = − res

x=∞
Y+(x)x−Jdx , J = 1, . . . d+ 1 (9-13)

∂ ln∆`n
n

∂t
(∞)
J

=
1
J

res
x=∞

xJY−(x)dx , J = 1, . . . , d+ 1 (9-14)

(iii) Let x = a be a hard-edge7, namely a point of the boundary of one of the contours {Γj} such that |V (a)| <∞.
Then

∂ ln∆`n
n

∂a
=

1
2

res
x=a

1
x2

Tr(Dn)2dx (9-15)

(iv) Finally we have

res
x=0

Y+(x)dx = Ln = n− 1− `n −
∑

c= finite pole of V ′

t
(c)
0

res
x=∞

Y+(x)dx = `n + 1 + t
(∞)
0 (9-16)

Proof. We start by noticing that

Y± =
{

1
0

}(
V ′(x) +

Ln

x

)
∓ P(x)
V ′(x) + Ln

x

+





O((x− c)d+1) for case (i)

∓ n2

t
(∞)
d+1x

d+1
+O(x−d−2) for case (ii)

(9-17)

At this point formulæ (9-8,9-13 ,9-16) follow immediately by noticing that P/(V ′(x)+Ln/x) = O(1) in all cases and
by straightforward computation of residues8. As for the remaining formulæ we have, for case (i)

res
x=c

(x− c)−JY−(x)dx = res
x=c

(x− c)−J P(x)
V ′(x) + Ln

x

= res
x=c

(x− c)−J

xV ′(x) + Ln
Trn

(
xV ′(x)−QV ′(Q)

x−Q

)
=

7This means that this is one of the points contributing to the boundary terms.
8Note that at infinity

P(x)

V ′(x) + Ln
x

=
n

x
+O(x−2) . (9-18)
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=
n−1∑

k=0

Lz

[
res
x=c

(x− c)−J

xV ′(x) + Ln

xV ′(x)− zV ′(z)
x− z

pn(z)rn(z)
]

=

= −Trn(Q− c)−J = J∂
t
(c)
J

ln∆`n
n , J = 1, . . . , d , (9-19)

and similar computation for the c-derivative. Here we have used the formulæ (5-12) expressing the variation of ln ∆`n
n

under an infinitesimal deformation of the type ensuing from an infinitesimal change of the parameters t(c)J .
For case (ii) the computation is completely parallel except for the last J = d+ 1 residue. Indeed

res
x=∞

xJY−(x)dx = res
x=∞

xJ P(x)
V ′(x) + Ln

x

= res
x=∞

xJ

xV ′(x) + Ln
Trn

(
xV ′(x)−QV ′(Q)

x−Q

)
=

=
n−1∑

k=0

Lz

[
res

x=∞
xJ

xV ′(x) + Ln

xV ′(x)− zV ′(z)
x− z

pn(z)rn(z)
]

=

= −TrnQ
J = J∂

t
(∞)
J

ln ∆`n
n , J = 1, . . . , d . (9-20)

For J = d+ 1 one has to use a similar manipulation but has to use the refined asymptotics (9-17): indeed we have

res
x=∞

xV ′(x)Y−(x)dx = −TrnQV
′(Q) +

(
n2 − nLn − TrnQV

′(Q)− ze−V (z)ptΠn−1r
∣∣∣∣
∂κ

)
=

= −TrnQV
′(Q) (9-21)

where we have used (7-11) together with the definition of Ln = n− 1− `n. This proves, together with the residues
(9-20)

res
x=∞

xd+1Y−(x)dx = −TrnQ
d+1 = (d+ 1)∂

t
(∞)
d+1

ln∆`n
n . (9-22)

Finally, for the case (iii) the computation is immediate using the formula for TrD2
n (8-17). Q. E. D.

10 Riemann–Hilbert problem, Tau function

Direct inspection of the asymptotic behavior of the biorthogonal polynomials and second kind functions allows us to
ascertain the Riemann–Hilbert data for this problem. We start by noticing the following formal asymptotic behavior
of the auxiliary functions entering in Γn

ψn = eV (x)

∫

κ

e−V (z)pn(z)
x− z

=





(−)nx−`n−2eV (x)

√
∆`n+1

n+1

∆`n
n

(1 +O(x−1)) for x→∞

−xn−1−`neV (x) ∆`n
n+1√

∆`n
n ∆`n+1

n+1

(1 +O(x)) for x→ 0

eV (x)
√
h0(Q− c)−1

n0 near poles of V ′(x)

(10-1)

φ?
n−1 = xn−1−`neV (x)

∫

κ

e−V (z)rn−1(z)
x− z

=





x−`n−1eV (x)

√√√√ ∆`n
n

∆`n−1
n−1

(1 +O(x−1)) for x→∞

xn−1−`neV (x) (−)n∆`n−1
n√

∆`n
n ∆`n−1

n−1

(1 +O(x)) for x→ 0

eV (x)
√
h0c

n−`n+1(Q− c)−1
0,n−1 near poles of V ′(x)

(10-2)

where we have used the definition of the LOPs (4-5) and the facts that

pn ∝ ℘`n
n ⊥ z`n−n+1, . . . , z`n (10-3)

rn−1 ∝ z`n−n+1℘`n−1
n−1 ⊥ z0, . . . , zn−2 (10-4)
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This implies the following formal asymptotic data for Γn near all the singularities.

At x = 0 we have

Γn(x) ∼ G(0)
n

[
1 0
0 xn−1−`neVsing,0(x)

]
(1 +O(x)) (10-5)

G(0)
n :=




(−)n∆`n+1
nq

∆`n
n ∆

`n+1
n+1

− ∆`n
n+1q

∆`n
n ∆

`n+1
n+1

∆`n
n−1q

∆
`n−1
n−1 ∆`n

n

(−)n∆`n−1
nq

∆
`n−1
n−1 ∆`n

n


 , detG(0)

n =
1

∆`n+1
n+1 ∆`n−1

n−1

(10-6)

At x = ∞ we have

Γn(x) = G(∞)
n

[
xn 0
0 x−`n−1eVsing,∞(x)

](
1 +O

(
1
x

))
(10-7)

G(∞)
n =

[ 1√
hn

0

0
√
hn−1

]
(10-8)

Near any other pole x = c of V ′(x) we have

Γn(x) = G(c)
n

[
1 0
0 eVsing,c(x)

]
(1 +O (x− c)) (10-9)

G(c)
n :=




pn(c)
√
h0(Q− c)−1

n0 eVreg,c(c)

r?
n−1(c)

√
h0c

n−`n+1(Q− c)−1
0n−1e

Vreg,c(c)


 (10-10)

where in all these formulæ the notation Vsing,p (Vreg,p) denote the singular (regular) part of V at the point p.
Near a hard-edge point x = a we have [4]

Γn ∼ G(a)
n

[
1 ±κ ln(x− a)
0 1

]
(1 +O(x− a)) (10-11)

G(a)
n :=


 pn(a) eV (a)L

(
pn(z)−pn(a)

a−z

)

r?
n−1(a) an−1−`neV (a)L

(
rn(z)−rn(a)

a−z

)

 (10-12)

Together with these data we also have the jumps across the contours Γj defining our moment functional: the situation
in this respect is identical to [4]. In essence the matrix Γn(x) has the following jumps across the contour Γj

Γn(x)+ = Γn(x)−

[
1 2iπκi

0 1

]
. (10-13)

Note that these jumps can be interpreted -depending on the point of view- as the Stokes’ multipliers of the problem
near the singularities.

10.1 Isomonodromic Tau Function

Using the results of [4] we find that the Jimbo-Miwa-Ueno isomonodromic tau function [13] is given by the same
differential formulæ in Thm. 7.2 provided that we substitute the spectral curve of the connection with the spectral
curve of the connection in the traceless gauge. In our situation the trace of 1

xDn(x) is V ′(x) + n−1−`n

x so that we
perform a scalar gauge transformation

A(JMU)
n =

1
x
Dn(x)− 1

2

(
V ′(x) +

n− 1− `n
x

)
12×2 (10-14)

This implies that the spectral parameter yJMU has the following relation to the previously employed y;

yJMU = y +
1
2

(
V ′(x) +

n− 1− `n
x

)
(10-15)
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This in turn implies that –up to multiplicative factors independent of the isomonodromic times–

∆`n
n = F [V ]τJMU (10-16)

lnF [V ] = −1
2

∑

c=finite pole of bV ′
res
x=c

V̂ ′sing,c(x)V̂reg,c(x) (10-17)

V̂ ′(x) := V ′(x) +
n− 1− `n

x
, (10-18)

where V̂ ′sing,c ( V̂reg,c ) denotes the singular (regular) part of V̂ ′ at the pole c.

Example 10.1 For example let us consider the case relevant to the problem of the probability of the longest increasing
sequence of random letter in a word of fixed length [16]

V (x) = −tx−
M∑

α=1

kα ln
(
x− rα
x

)
(10-19)

In this case a direct computation (`n ≡ 0) gives for F the following expression

lnF = − t
2

M∑
α=1

kαrα +
n− 1

2

M∑
α=1

kα ln(−rα2) +
1
2

M∑
α=1

kα
2 ln(−rα2)− 1

2

M∑
α=1

∑

β 6=α

ln
(
rβ − rα
rαrβ

)kαkβ

(10-20)

which is the result obtained also in formula (3.76) [16] : note that in that formula r0 = 0 and k0 = n−∑M
α=1 rα and

a little of algebraic manipulation shows the equivalence. Moreover the signs inside the logarithms in (10-20) are in
fact irrelevant since omitting them would amount to multiplying F by a constant independent of the isomonodromic
times, and hence could be reabsorbed in the definition of τJMU .

11 Schlesinger Transformations

>From the asymptotics that the shift n 7→ n + 1 implemented by the matrices Rn are –in the language of isomon-
odromic deformations– what is known as elementary Schlesinger transformations. Specifically the shift n 7→ n + 1
corresponds to the following two types of elementary Schlesinger transformations according of the type of move (circle
or line) (refer to formulæ 10-6 and 10-8):

Circle move. The Schlesinger transformation adds one to the first entry of the formal monodromy at ∞ and
subtracts one from the second entry of the formal monodromy at zero

Line move. The Schlesinger transformation adds one and subtracts one to the first and second entry (respec-
tively) of the formal monodromy at infinity, leaving the formal monodromy at zero unchanged.

However we can obtain a third type of elementary Schlesinger transformation by considering two distinct sequences
of LOPs corresponding to two (weakly increasing) sequences of {`n}’s. Suppose indeed that we consider another
sequence of LOPs and the ensuing connection x∂x−D̃n(x) for some fixed n where the only difference between the two
pairs of LOPs is that one (or more) circle-moves have been replaced by a line-move (or vice-versa) along the chain
for n′ ≤ n: the only difference in the formulas will be that ˜̀n = `n ± 1. This is implemented by the “circle-to-line”
transformation Tn 2-15 (suitably normalized).

[
pn

r?
n−1

]
=



a+

b

x

c

x

d

x

e

x



[
p̂n

r̂?
n−1

]
(11-1)

where the coefficients a, b, c, d, e above can be obtained explicitly in terms of shifted Töplitz determinants using the
form of Tn (2-15) and the normalizations (4-5), and the polynomials p̂n, r̂

?
n−1 refer to the elements of the sequence

of biorthogonal polynomials associated to the sequence {ˆ̀k}: such sequence differs from {`k} because ˆ̀
n = `n − 1,

namely there is a k0 ≤ n such that ˆ̀
k = `k − 1, ∀k : k0 ≤ k ≤ n.

We therefore add the following third type of transformations;
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Circle-to-line move. The Schlesinger transformation subtracts one to the second entry of the formal mon-
odromy at ∞ and adds one to the second entry of the formal monodromy at zero.

This last type of transformation shows that the orthogonal polynomials on the line and the orthogonal polynomials
on the circle are related by a sequence (n−1) Schlesinger transformations and at each step the Laurent biorthogonal
polynomials that are obtained are those appearing in the solution of integrable lattice hierarchies associated to
elementary orbits [9].

12 Conclusion

As a general“philosophy”, it is acknowledged in the literature that KP tau functions and isomonodromic tau functions
are often, if not always, related one to the other, in the sense that a KP (or Toda) tau function is an isomonodromic
tau function for a suitably chosen isomonodromic deformation. In the case of orthogonal polynomials this relation
was explored in [15] for some class and extended in [6, 4]. In this paper, this relation has been confirmed once more
for the particular generalized Toda systems associated to “nonstandard” minimal orbits of the Borel subgroup: the
natural bridge between the Hamiltonian and isomonodromic treatment is provided by the solution of the inverse
spectral problem in terms of bi-orthogonal Laurent polynomials. It is to be expected that, whenever a description
or formulation of an integrable dynamical problem in terms of (bi/multiple-orthogonal) polyomials is available, then
a suitable definition of the tau function for the associated isomonodromic problem should tie the Hamiltonian tau
function with the isomonodromic one. For instance, in the case of the biorthogonal polynomials arising in the study of
two-matrix models [5, 7] a natural isomonodromic deformation of a polynomial connection can be derived; however
the connection is a highly resonant one and at present a definition of isomonodromic tau function for resonant
deformations of connections is not available. However it is possible to formulate such a notion [8] and the connection
can thus be positively be established.

As it is recalled in the appendix to follow, the Laurent orthogonal polynomials which we have investigated in
the present paper are related to the solution of the inverse spectral problem for Toda-like systems associated to
certain minimal (or elementary) irreducible orbits. There exist in fact other minimal orbits for which a treatment in
terms of orthogonal polynomials of some sort is not readily and generally available, although inspection of specific
examples leads to expect that it is possible to overcome the difficulty. It is our intention to pursue the topic in future
publications.

13 Appendix: minimal irreducible co-adjoint orbits

As it was mentioned earlier, every n × n principal submatrix of the Hessenberg matrix Q that defines recurrence
relations (5-1) belongs to a 2n−2-dimensional co-adjoint orbit of the Borel subgroup Bn of invertible upper triangular
matrices in sl(n). However, not every low-dimensional co-adjoint orbit can be obtained this way. In this appendix,
we give a description of all irreducible co-adjoint orbits of Bn in sl(n) that have a minimal dimension 2n− 2.

First, we introduce some notations. Let b− be a subalgebra of lower triangular matrices in sl(n). Denote by J
an n × n shift matrix (1s on the first superdiagonal and 0s everywhere else) and let Hessn = J + b− denote a set
of lower Hessenberg matrices. An element Q ∈ Hessn is called reducible if it has a block upper triangular form

Q =
[
Q11 Q12

0 Q22

]
, where Q11 is a k × k matrix ( 0 < k < n ). Q is called irreducible otherwise.

Orbits of the co-adjoint action of Bn on Hessn are given by

OQ0 = {J + (AdbQ0)≤0 : b ∈ Bn} . (13-1)

It is easy to see that if OQ0 contains a reducible (resp. irreducible) element then every element of OQ0 is reducible
(resp. irreducible). Therefore it makes sense to talk about irreducible orbits of the co-adjoint action. Our main goal
in this appendix is to prove the following

Theorem 13.1 An irreducible co-adjoint orbit of Bn in Hessn has a minimal dimension (2n − 2) if and only if it
contains an element Q0 of the form

Q0 = J +H +
k∑

α=1

Eiα,iα−1−εα−1 (13-2)

where

1. εi ∈ {0, 1} and ε0 = 0
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2. 1 = i0 < i1 − ε1 ≤ i1 < i2 − ε2 ≤ i2 < · · · < ik−1 − εk−1 ≤ ik−1 < ik = n

3. H =
∑

α∈{1,...,n}\{i0,...,ik−1}
hαEαα .

Q0 =




0 1
... ? 1
... 0 1
1 · · · 0 ? 1

... 0 ? 1

...
... ? 1

...
... ? 1

1 0 · · · · · · · · · 0 1
... ? 1
... ? 1
1 0 · · · ?




(13-3)

[An example with n = 11, k = 3, i1 = 4, i2 = 8, i3 = 11, ε1 = ε3 = 0, ε2 = 1.]

Remark 13.1 The case of H = hEnn and εα = 0(α = 1, . . . , k − 1) was studied in [9, 10]. It is orbits of this type
that can be studied via associated LOPs of the type appearing in this paper. Note that, in this case, parameters `j
that were used in the main body of the paper are related to iα via

`j = max{iα : iα < j} .
An investigation of propeties of moment functionals connected with a more general minimal orbits described in
Theorem 13.1 will appear elsewhere.

Define a staircase pattern (I, ε) as a collection of pairs of indices

(I, ε) = {(i1, 1), (i2, i1 − ε1), . . . , (ik = n, ik−1 − εk−1)} , (13-4)

where
1 = i0 < i1 − ε1 ≤ i1 < i2 − ε2 ≤ i2 < · · · < ik−1 − εk−1 ≤ ik−1 < ik = n .

In what follows we will often use a notation
jα = iα−1 − εα−1 .

We say that Q ∈ Hessn has a staircase pattern (I, ε) if

Qiα,jα 6= 0 and Qij = 0 for i > iα, j < jα+1 (α = 1, . . . , k) .

The set of all matrices in Hessn that have a staircase pattern (I, ε) will be denoted by Hess(I, ε). For example, if
I = {2, 3, . . . , n} and ε = {0, 0, . . . , 0}, then Hess(I, ε) coincides with the set of n×n Jacobi matrices. An immediate
property of the set Hess(I, ε) is that it is stable under the co-adjoint action of Bn, since corner entries Qiα,jα and
the entries ”under the staircase”Qij = 0 i > iα, j < jα+1 have only zeroes to the left and below and, thus the former
are being acted upon only by the diagonal part of Bn and the latter cannot be made non-zero by the co-adjoint
action.

Let us fix a staircase pattern (I, ε). To begin the proof of Theorem 13.1, we first employ the strategy used in [11]
to study generic staircase orbits.

Lemma 13.1 If Q ∈ Hess(I, ε) then there exist Q̃ ∈ OQ such that

Q̃iαjα = 1

Q̃ijα = 0 (jα < i < iα)

Q̃iαj = 0 (jα < j < iα and j 6= jβ : β < α , jβ < iα)
(α = 1, . . . , k) . (13-5)
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Proof. First, we use a diagonal conjugation to reduce Q to an element with all corner entries equal to 1 :
Q→ Ad∗DQ = D−1(Q− J)D + J , where D = diag(d1, . . . , dn) = Dk · · ·D1 with diagonal matrices Dα defined by

(Dα)ii =
{

1 i 6= iα
diα

=
(
D−1

α−1 · · ·D−1
1 QD1 · · ·Dα−1

)
iαjα

i = iα

Next, we use the co-adjoint action induced by a sequence of elementary upper-triangular matrices (each depending
only on one parameter only) to set as many as possible of the entries in rows and columns occupied by corner entries
equal to zero. More precisely, to eliminate an (i, jα)-entry (jα ≤ i < iα) using the corner entry (iα, jα), one employs
Ad∗(1+QijαEiiα ). Similarly, to eliminate an (iα, j)-entry (jα < j < iα), one uses Ad∗(1−QiαjEjαj)

. Note that when we
write Qijα (resp. Qiαj), we refer to entries of the ”current” value of Q, i.e. to the element that belongs to the orbit
through the initial Q and that has been obtain through the sequence of transformations already applied.

The order in which we apply these elementary transformations is defined as follows: we first set to zero the entries
in the 1st column (going down the column), then in the i1st row (moving right), then in the j2nd column (moving
down), then in the i2nd row (moving right) etc. Through the entire process, we want, for every l < m, to use an
elementary matrix of the from 1 + xElm at most once. This means, in particular, that any (iα, jβ)-entry, where
β < α and jβ < iα cannot be touched, since a matrix of the form 1 + xEjβiα has already been used to eliminate the
(jβ , jα)-entry. This explains why entries {(iα, jβ) : β < α, jβ < iα} are excluded from the list of entries in (13-5). On
the other hand, all non-corner entries that are in the list can be set to 0, regardless of their initial values. Q.E.D.

Corollary 13.1 For each Q ∈ Hess(I, ε) the matrix entries specified in (13-5) are independent functions on OQ.

Proof. It suffices to notice that applying to Q̃ constructed in Lemma 13.1 elementary transformations of the same
type that was used in its construction, but in the reverse order and with arbitrary parameters, one can obtain an
element in OQ with arbitrary nonzero values of the corner entries and arbitrary values of non-corner values specified
in (13-5). Q.E.D.

Lemma 13.2 If, for some 1 ≤ α < k, εα > 1, then, for any Q ∈ Hess(I, ε), dimOQ > 2n− 2.

Proof. Denote by M(I, ε) the set of pairs of indices that appear in the list given in (13-5). In view of the
corollary above, we only need to show that, under conditions of the Lemma, the number of elements in M(I, ε) is
greater than 2n− 2. We will also show that, if 0 ≤ εα ≤ 1 for α = 1, . . . , k − 1, then #M(I, ε) = 2n− 2.

We will use an induction on k and n. Clearly, if k = 1 then ε0 = 0 and #M(I, ε) = 2n − 2. Moreover,
#M(I, ε) = 2n− 2 for any k, provided εα = 0 for all α. Let now k = 2 and ε1 > 0. We are looking for a number of
elements in the set {(1, 1), . . . , (i1, 1), (i1, 2), . . . , (i1, i1 − 1); (i1 − ε1, i1 − ε1), . . . , (i1 − 1, i1 − ε1, i1 − ε1), (i1 + 1, i1 −
ε1, i1− ε1), . . . , (n, i1− ε1), . . . (n, i1−1), (n, i1 +1), . . . , (n, n−1)}, which is equal to 2(i1−1)+2(n− (i1− ε1))−2 =

2(n+ ε1 − 2)
{

= 2n− 2 if ε1 = 1
> 2n− 2 if ε1 > 1 .

For k > 2, let s be such that js < i1 ≤ js+1. We first consider the case when there is no r such that jr = i1.
Then the set M(I, ε) \ {(1, 1), . . . , (i1, 1), (i1, 2), . . . , (i1, i1 − 1)} has the same cardinality as a set M(I ′, ε′), where
(I ′, ε′) = {(i2 − j2, 1), (i3 − j2, j3 − j2 + 1), . . . , (is − j2, js − j2 + 1), (is+1 − j2, js+1 − j2), . . . , (ik − j2, jk − j2)} =
{(i2 − i1 + ε1, 1), (i3 − i1 + ε1, i2 − i1 + ε1 − (ε2 − 1)), . . . , (is − i1 + ε1, is−1 − i1 + ε1 − (εs−1 − 1)),
(is+1 − i1 + ε1, is − i1 + ε1 − εs), . . . , (ik − i1 + ε1, ik−1 − i1 + ε1 − εk−1)}, that is

n′ = i′k−1 = ik − i1 + ε1 ,

i′α = iα+1 − i1 + ε1 α = 1, . . . , k − 1

and
ε′α = εα+1 − 1 (1 ≤ α ≤ s− 2) , ε′α = εα+1 (s− 1 ≤ α ≤ k − 2) .

If s ≥ 2 then ε1 ≥ 1 and εs = is − js > is − i1 ≥ s− 1 ≥ 1, so that ε′s−1 = εs ≥ 2 and, by the induction hypothesis,
#M(I ′, ε′) > 2(n− i1 + ε1 − 1) ≥ 2(n− i1) and #M(I, ε) > 2(i1 − 1) + 2(n− i1) = 2(n− 1).

If s = 1 then ε′α = εα+1 for 1 < α ≤ k − 2 and

#M(I ′, ε′)
{

= 2(n− i1 + ε1 − 1) if all ε′α ≤ 1
> 2(n− i1 + ε1 − 1) if some ε′α > 1

and thus, #M(I, ε) = 2(i1 − 1) + #M(I ′, ε′) is greater than 2n− 2 if εα > 1 for some α > 1 and is equal to 2n− 2
otherwise.
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Finally, consider the case when jr = i1 for some r > 1. If r > 2 then εr = ir − jr = ir − i1 ≥ r − 1 ≥ 2. Define
(Ĩ , ε̃) = (I, ε) \ {(i2, j2), . . . , (ir−1, jr−1)}. Then (Ĩ , ε̃) still defines an irreducible staircase pattern, k̃ = #(Ĩ , ε̃), k and
#M(I, ε) > #M(Ĩ , ε̃) > 2n− 2 by the induction hypothesis.

If r = 2 then ε1 = 0, j2 = i1 and #M(I, ε) = 2(i1 − 1) + #M(I ′, ε′), where (I ′, ε′) = {(i2 − i1 + 1, 1), (i3 − i1 +
1, i2 − i1 + 1− ε2), . . . , (n− i1 + 1, (ik−1 − i1 + 1− εk−1)} and, again by induction, the statement follows. Q.E.D.

We are now ready to complete the proof of Thm. 13.1.

Proof of Theorem 13.1. Assume that dimOQ = 2n − 2. We have shown that if Q ∈ Hess(I, ε) then εα ≤ 1
for α = 1, . . . , k− 1. Assume that the latter condition is satisfied and consider the element Q̃ constructed in Lemma
13.1. Suppose that some non-corner entry Q̃ij (i > j) is nonzero. Then, by construction of Q̃, j 6= jα (α = 1, . . . , k).
Define a diagonal matrix D by

Dll =
{

1 if l 6= j or l 6= jβ or i 6= iβ
d if l = j or ( l = jβ and i = iβ ) .

Then Ad∗DQ̃ = D−1Q̃D has the same values as Q̃ in the entries specified by (13-5) but (Ad∗DQ̃)ij = d−1Q̃ij . This
means that the matrix entry Qij viewed as a function on OQ is independent of the matrix entries specified by (13-5),
which is in contradiction with dimOQ = 2n− 2. Therefore, Q̃ij = 0 for all (i, j) 6= (iα, jα). Since, by Lemma 13.1,
Q̃jαjα = 0 for α = 1, . . . , k, we proved that dimOQ = 2n− 2 implies that OQ contains an element of the form (13-2).

To prove the converse consider an element Q0 defined by (13-2). Clearly, for any b ∈ Bn, Ad∗bQ0 = Ad∗b(Q0 −
H)+H, therefore it is sufficient to consider the case where h = 0. In other words, we are interested in parametrizing
the set {

(b (Q0 −H − J) b−1)≤0 : b ∈ Bn

}
.

Note that, for i > j we have
(b Eij b

−1)≤0 = ((b ei)(eT
j b−1))≤0 = (uvT )≤0 ,

where
u = (Πi −Πj−1)(b ei), vT = (eT

j b−1)(Πi −Πj−1) .

Thus,

(b (Q0 −H − J) b−1)≤0 =
k∑

α=1

(uαv
T
α )≤0 (13-6)

with
uα = (Πiα −Πiα−1−εα−1−1)(b eiα), vT

α = (eT
iα−1−εα−1

b−1)(Πiα −Πiα−1−εα−1−1) .

Entries of vectors uα, vα cannot be arbitrary. First,

vT
αuα = eT

jα
b−1(Πiα −Πjα−1))beiα = eT

jα
eiα = 0 . (13-7)

Next, if εα = 0, i.e. jα = iα−1, then
(vα)jα = (b−1)jαjα = (uα−1)−1

jα
. (13-8)

Finally, if εα = 1, i.e. jα = iα−1 − 1, then

vT
αuα−1 = (vα)jα(uα−1)iα−1−1 + (vα)jα+1(uα−1)iα−1 = (b−1)jαjαbjαjα+1 + (b−1)jαjα+1bjα+1jα+1 = 0 . (13-9)

We claim that (13-7),(13-8),(13-9) are the only restrictions on uα, vα. We will verify this claim for k = 2. The general
case follows by an easy induction.

If ε1 = 0, we set u1 = col[u11, u12, u13, 0, . . . , 0] and vT
1 = [v11, vT

12, v13, 0, . . . , 0], where u11, u13 6= 0, v11 6= 0, v13 ∈
C and u12, v12 ∈ Ci1−2. Similarly, u2 = col[0, . . . , 0, u21, u22, u23] and vT

2 = [0, . . . , 0, v21 = u−1
13 , v

T
22, v23], where

u21, u23 6= 0, v23 ∈ C and u22, v22 ∈ Cn−i1−1. We assume that conditions (13-7) are satisfied: vT
1 u1 = vT

2 u2 = 0 and
define

b =




v−1
11 −v−1

11 v
T
12 u11 0 0

0 1 u12 0 0
0 0 u13 −u13v

T
22 u21

0 0 0 1 u22

0 0 0 0 u23




, b−1 =




v11 vT
12 v13 ∗ ∗

0 1 −u12u
−1
13 ∗ ∗

0 0 v21 vT
22 v23

0 0 0 1 −u22u
−1
23

0 0 0 0 u−1
23




.

The specified entries are consistent with the relation bb−1 = 1 and entries marked by ∗s are uniquely determined by
this relation.
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Similarly, if ε1 = 1, we set u1 = col[u11, u12, u13, u14, 0, . . . , 0] and vT
1 = [v11, vT

12, v13, v14, 0, . . . , 0], where
u11, u13, u14 6= 0, v11 6= 0, v13, v14 ∈ C and u12, v12 ∈ Ci1−3; and u2 = col[0, . . . , 0, u21, u22, u23, u24] and vT

2 =
[0, . . . , 0, v21, v22 = −v21 u13

u14
, vT

23, v24], where u21, u22, u24 6= 0, v21 6= 0, v24 ∈ C and u23, v23 ∈ Cn−i1−2. Assuming
again that vT

1 u1 = vT
2 u2 = 0, define

b =




v−1
11 −v−1

11 v
T
12 −v−1

11 v13 u11 0 0
0 1 0 u12 0 0
0 0 v−1

21 u13 −v−1
21 v

T
23 u21

0 0 0 u14 0 u22

0 0 0 0 1 u23

0 0 0 0 0 u24




, b−1 =




v11 vT
12 v13 v14 ∗ ∗

0 1 0 −u12u
−1
14 ∗ ∗

0 0 v21 v22 vT
23 v24

0 0 0 u−1
14 0 −u22u

−1
24

0 0 0 0 1 −u23u
−1
24

0 0 0 0 0 u−1
24




and observe that (13-7), (13-9) are consistent with bb−1 = 1 and entries marked by ∗s can be uniquely determined .
To conclude the proof, observe that the right hand side of (13-6) is invariant under a transformation uα →

tαuα, vα → t−1
α vα, where tα are arbitrary non-zero parameters. Therefore, we can assume that

(vα)jα
= 1 if α = 1 or εα−1 = 1 (13-10)

Recall, that, if εα−1 = 0, then (vα)jα
is given by (13-8), while (uα)jα

is determined by the condition (13-7) for all α.
Furthermore, if εα−1 = 1, then jα = iα−1 + 1 and (jα, jα), (jα + 1, jα) and (jα + 1, jα + 1)-entries of the right hand
side of (13-6) are given by

(jα, jα) : (uα−1)jα(vα−1)jα + (uα)jα+1
(uα−1)jα

(uα−1)jα+1
−∑iα

s=jα+2(uα)s(vα)s

(jα + 1, jα) : (uα−1)jα+1(vα−1)jα + (uα)jα+1

(jα + 1, jα + 1) : (uα−1)jα+1(vα−1)jα+1 − (uα)jα+1
(uα−1)jα

(uα−1)jα+1
,

(13-11)

where we have used (13-7), (13-9) and (13-9). Note that the entries in (13-10) are the only entries in (13-6) that
depend on (vα−1)jα , (vα−1)jα and (uα)jα+1. Moreover, (13-10) does not change under a transformation

(uα)jα+1 → (uα)jα+1 − t(uα−1)jα+1 , (vα−1)jα → (vα−1)jα + t , (vα−1)jα+1 → (vα−1)jα − t
(uα−1)jα

(uα−1)jα+1
.

This means that we can set
(uα)jα+1 = (uα)iα−1 = 0 or εα−1 = 1 (13-12)

Under the normalizations (13-10), (13-12) and restrictions (13-7),(13-8),(13-9), the rest of the parameters in (13-6),

(uα)s, (vα)s , s = iα−1 + 1, . . . , iα , α = 1, . . . , k ,

can be chosen arbitrarily and, on the other hand, these parameters are uniquely determined by the right hand side
of (13-6). Thus, for Q0 satisfying conditions of Theorem 13.1 we have found an explicit parametrization of OQ0 by
2n− 2 independent parameters, which completes the proof. Q.E.D.
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