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Biorthogonal Multiwavelets on the Interval:
Cubic Hermite Splines

W. Dahmen, B. Han, R.-Q. Jia, and A. Kunoth

Abstract. Starting with Hermite cubic splines as the primal multigenerator, first a
dual multigenerator onR is constructed that consists of continuous functions, has small
support, and is exact of order 2. We then derive multiresolution sequences on the interval
while retaining the polynomial exactness on the primal and dual sides. This guarantees
moment conditions of the corresponding wavelets. The concept of stable completions
[CDP] is then used to construct the corresponding primal and dual multiwavelets on the
interval as follows. An appropriate variation of what is known as a hierarchical basis in
finite element methods is shown to be an initial completion. This is then, in a second step,
projected into the desired complements spanned by compactly supported biorthogonal
multiwavelets. The masks of all multigenerators and multiwavelets are finite so that
decomposition and reconstruction algorithms are simple and efficient. Furthermore, in
addition to the Jackson estimates which follow from the exactness, one can also show
Bernstein inequalities for the primal and dual multiresolutions. Consequently, sequence
norms for the coefficients based on such multiwavelet expansions characterize Sobolev
norms‖ · ‖Hs([0,1]) for s ∈ (−0.824926,2.5). In particular, the multiwavelets form
Riesz bases forL2([0,1]).

1. Introduction

An important ingredient for extending wavelet concepts to problems defined on bounded
domains is the construction of wavelets on the interval, see, e.g., [D4]. So far, such
constructions have been confined (except for very special cases [SS1]) to wavelets
which result from multiresolution analyses built from a singlegenerator. Recently,
multiresolution spaces have been intensely investigated which are spanned by a so-
calledmultigenerator, that is, integer translates of dilates of a finite number of func-
tions satisfying vector refinement relations, see, e.g., [GHM], [GL], [PS2]. The use of
a multigenerator appears to be attractive since their component functions have rela-
tively small support and in many cases have more favorable symmetry properties. A
particularly interesting case concerns multigenerators consisting of piecewiseC1 cu-
bics. In fact, one can then resort to the powerful tools developed in the spline con-
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text, and local schemes for interpolating function and derivative data are available.
Moreover, the interpolatory nature of the generators suggests convenient ways of ad-
joining different local tensor product bases by isoparametric mappings, thereby ob-
taining multiresolution analyses on more complex geometries. Therefore, we concen-
trate in this paper on the construction of biorthogonal multiwavelets on the interval
[0,1], generated by specialC1 piecewise Hermite cubics, with the following
properties:

(I) The primal multiresolution consists of spline spaces of degree 3.
(II) The primal multigenerator and its derivative satisfy interpolation conditions.

(III) By (I), the biorthogonal spline multiwavelets have two vanishing moments.
(IV) The dual multigenerator is continuous and reproduces linear polynomials.
(V) The primal and dual multigenerators and multiwavelets have compact support

so that decomposition and reconstruction algorithms are simple and fast.
(VI) The multiwavelets form Riesz bases forL2([0,1]). Discrete norms based on their

expansions characterize Sobolev spacesHs([0,1]) for s ∈ (−0.824926,2.5).

The first important step consists of identifying corresponding biorthogonal multires-
olution spaces defined on all ofR. Once an appropriate dual multigenerator has been
constructed, we proceed to adapt these multigenerators to the interval, resorting to the
strategy of preserving polynomial exactness on the primalas well ason the dual side
[DKU1]. Knowing only the biorthogonal generator bases, we will then construct mul-
tiwavelet bases on the interval, all having small support, by projecting certain initial
complement functions into the desired ones. The resulting wavelet bases consist again
of shift-invariant functions supported in the interior of the interval and a finite number
of boundary adapted multiwavelets. We emphasize that the construction automatically
generates shift-invariant multiwavelets onR with small support given by the interior
basis functions.

This paper is structured as follows. In Section 2, we collect some facts about theC1

piecewise Hermite cubics that we use as a multigenerator. We then construct in Section 3
a multigenerator dual to this with small support that consists of continuous functions
and reproduces polynomials up to order 2. The first part of the construction of the
primal and dual multiresolutions on the interval in Section 4 follows essentially known
ideas [AHJP], [CDV], [DKU1]. Near the boundary, one constructs adapted functions
as fixed linear combinations of all translates overlapping the boundary in such a way
that the polynomial exactness is maintained. This has to be done in order to match the
cardinality of the functions on the primal and dual sides. We then perform local changes
of bases on the primal and dual sides to recover the interpolation conditions and the
biorthogonality near the boundary. The transformation matrices are computed explicitly.
In order to derive the multiwavelets and their duals, the concept of stable completions
[CDP] is used in Section 5. A variation of hierarchical bases provides an initial stable
completion. It can be seen that all mask matrices are banded with band width independent
of the refinement level, so that reconstruction and decomposition algorithms are efficient
and fast.

To our knowledge, this is the first construction of multiwavelets on the interval for the
case where simple restriction is not sufficient.
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2. The Primal Multigenerator on R

Consider the functions denoted aspiecewise Hermite cubicswhich are defined by

ϕ1(t) :=
{
(t + 1)2(−2t + 1), t ∈ [−1,0],
(1− t)2(2t + 1), t ∈ [0,1],

(2.1)

ϕ2(t) :=
{
(t + 1)2t, t ∈ [−1,0],
(1− t)2t, t ∈ [0,1],

and satisfy

ϕ1(k) = δ0,k, ϕ′2(k) = δ0,k, ϕ′1(k) = 0, ϕ2(k) = 0 for all k ∈ Z,(2.2)

see Figure 1, whereδi,k = 1 for i = k andδi,k = 0 otherwise,i, k,∈ Z.
Integer translates ofϕ1, ϕ2 generate the space ofC1-continuous piecewise cubic func-

tions onR which interpolate function values and first derivatives atk ∈ Z.
In general, we say that the vector fieldϕ: R → R2, ϕ = (ϕ1, ϕ2)

T , constitutes a
multigeneratorif:

(a) the integer translates{ϕ(· − k), k ∈ Z} form anL2-stable basis for the space

S0 := closL2(span{ϕi (· − k), k ∈ Z, i = 1,2}),
i.e., forc= {ci,k}i=1,2, k∈Z ∈ `2({1,2} × Z), ck := (c1,k, c2,k)

T ,∥∥∥∥∥∑
k∈Z

cT
kϕ(· − k)

∥∥∥∥∥
L2(R)

:=
∥∥∥∥∥∑

k∈Z

2∑
i=1

ci,kϕi (· − k)

∥∥∥∥∥
L2(R)

∼ ‖c‖`2(Z).(2.3)

(b) ϕ satisfies therefinement equation

ϕ(x) =
∑
k∈Z

Akϕ(2x − k), x ∈ R a.e.,(2.4)

with maskA := {Ak}k∈Z, Ak ∈ R2×2.

Fig. 1. Multigeneratorϕ = (ϕ1, ϕ2)
T onR.
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We always mean bya ∼ b thata <∼ b andb<∼ a hold, wherea <∼ b says thata can be
bounded by a constant multiple ofb uniformly in any parameters on whicha,b may
depend, anda >∼ b meansb<∼ a.

In view of the interpolation conditions, the integer translates of theϕi , i = 1,2, are
linearly independent and hence stable [JM]. The nestedness of the corresponding spline
spaces therefore ensures that the piecewise Hermite cubics defined in (2.1) constitute
a multigenerator, see also [HSS], [DM]. Multiresolution generated by multigenerators
has already been discussed in [JS]. In particular, ifϕ = (ϕ1, . . . , ϕr )

T is a refinable
vector of compactly supported functions inL2(R), and if S0 is the shift-invariant space
generated byϕ1, . . . , ϕr , then it was proved in [JS] that the spacesSj , j ∈ Z, spanned
by the integer translates ofϕi (2 j · −k), i = 1, . . . , r , form a multiresolution ofL2(R).

In the following, we will always denote byϕ the special multigenerator consisting of
the functions (2.1). We now proceed by collecting a few properties of the multigenerator
that will be needed later.
ϕ satisfies the refinement equation (2.4) with mask matrices

A−1 =
[

1
2

3
4

− 1
8 − 1

8

]
, A0 =

[
1 0

0 1
2

]
, A1 =

[
1
2 − 3

4
1
8 − 1

8

]
,(2.5)

see, e.g., [HSS], such that suppA := {k ∈ Z: Ak 6= 0} = {−1,0,1}. Here boldface
numbers will always denote vectors or matrices with all entries equal to this number. Thus,
ϕ has compact support suppϕ :=⋃2

i=1 suppϕi = [−1,1]. ThesymbolA(z) relative to
the maskA is defined asA(z) =∑1

k=−1 Ak zk, z ∈ C\{0}. Note that the normalization
of the maskA differs from the one used in [PS1], [SS2]. Defining thesubsymbolsof
A(z) by Ae(z) =

∑1
k=−1 A2k+e zk, e = 0,1, we know from [DM] thaty = (1,0)T is

the common left eigenvector ofAe(1), e= 0,1, for the simple eigenvalue 1.
When saying thatϕ is symmetric, we mean that itsmember functionsϕi are either

symmetric or antisymmetric. Here we have thatϕ1(x) = ϕ1(−x)andϕ2(x) = −ϕ2(−x),
which we will abbreviate as

ϕ(x) = Jϕ(−x),(2.6)

using

J :=
[
1 0
0 −1

]
.(2.7)

The symmetry of the generators carries over to the mask matrices in the sense

Ak = JA−kJ, k = −1, . . . ,1.(2.8)

The multigeneratorϕ is normalized such that

∫
R
ϕ(x) dx :=

[∫
R ϕ1(x) dx∫
R ϕ2(x) dx

]
=
[

1

0

]
.(2.9)
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3. A Dual Multigenerator on R

Now we will determine a second compactly supported vector fieldϕ̃: R → R2 of
continuous functions that is refinable with maskÃ and that isdual toϕ, i.e.,

(ϕ, ϕ̃(· − k))R = δ0,kI , k ∈ Z.(3.1)

Here for any domainÄ ⊂ R ( f, g)Ä := ∫
Ä

f (x)g(x) dx, and for any two vectors
x, y ∈ R2 the term(x, y)R denotes the 2× 2 matrix with entries(xi , yk)R.

It was observed in [DM] that linear independence of the integer translates of the
ϕi , i = 1,2, is a necessary condition for the existence of a dual vector of compactly
supported functions̃ϕ. In the recent paper [J], it was shown that linear independence
is also sufficient for the existence of a compactly supported refinable dual vector of
functions inL2(R).

The strategy for the construction ofϕ̃ is to first solve the discrete analog of (3.1). If
ϕ̃ is the unique solution of

ϕ̃(x) =
∑
k∈Z

Ãkϕ̃(2x − k), x ∈ R a.e.,(3.2)

such that
∫
R ϕ̃(x)dx = [1,0]T , then (3.1) implies∑

k∈Z
AkÃT

k+2m = 2δ0,m I for all m ∈ Z,(3.3)

see [DM]. The construction in [SS2] starts from this equation in symbol form. However,
the multigenerator constructed there is not biorthogonal to the Hermite cubic splinesϕ
defined in (2.1). Actually, the Hermite cubic splines are biorthogonal to the third (distri-
butional) derivative of the multigenerator constructed in [SS2]. However, the components
of this third derivative are not functions inL2(R).

Here we choosẽA to be the sequence supported on{−2, . . . ,2} given by

Ã−2 =
[
− 7

64 − 5
64

87
128

31
64

]
, Ã−1 =

[
1
2

3
16

− 99
32 − 37

32

]
, Ã0 =

[
39
32 0

0 15
8

]
,

Ã1 =
[

1
2 − 3

16
99
32 − 37

32

]
, Ã2 =

[
− 7

64
5
64

− 87
128

31
64

]
.

(3.4)

It is easily verified that this set of matrices satisfies (3.3) withA from (2.5). Further-
more, the mask coefficients̃Ak fulfill

M := 1

2

∑
k∈Z

Ãk =
[
1 0
0 σ

]
(3.5)

for some|σ | < 1. The matrices̃A−2 + Ã0 + Ã2 andÃ−1 + Ã1 have the common left
eigenvectory = (1,0)T for the simple eigenvalue 1.

In order to obtain from the discrete biorthogonality relation (3.3) a dual multigenerator
ϕ̃, we will employ the concept of subdivision.



226 W. Dahmen, B. Han, R.-Q. Jia, and A. Kunoth

3.1. Existence, Uniqueness, and Regularity of̃ϕ

Denote byQÃ the bounded linear operator onL2(R)2 (:= L2(R)× L2(R)) given by

QÃ f :=
∑
m∈Z

Ãmf(2 · −m), f = ( f1, f2)
T ∈ L2(R)2.(3.1.1)

Let yT = (y1, y2) 6= 0 be a left eigenvector ofM defined in (3.5) corresponding to the
eigenvalue 1, i.e.,yTM = yT . We say that the (vector) subdivision scheme associated
with Ã, denoted bySÃ , converges in L2 if there exists a vectorf ∈ L2(R)2 such that for
anyf0 ∈ L2(R)2 satisfying

yT
∑
m∈Z

f0(· −m) = 1,

the sequenceQk
Ã
f0 (:= QÃ(Q

k−1
Ã

f0)) converges tof in the L2-norm ask → ∞. Then
QÃ f = f andf is a solution of the refinement equation (3.2).

Proposition 3.1. The subdivision scheme SÃ converges in L2.

Proof. Let `0(Z) denote the linear space of all finitely supported sequences onZ and
`0(Z)2×2 the linear space of all finitely supported sequences of 2× 2 matrices. LetFÃ
be thetransition operatoron`0(Z)2×2 defined by

(FÃC)k := 1

2

∑
m,s∈Z

Ã2k−m Cm+s ÃT
s , k ∈ Z, C ∈ `0(Z)2×2.(3.1.2)

Let δ denote the sequence satisfyingδ0 = 1 and letδm = 0 for m 6= 0. Employing the
second-order difference operator1, define the sequence(1δ)k := −δk−1+ 2δk − δk+1.
Furthermore, fori = 1,2, letei be thei th unit vector. Recall from [JRZ2, Theorem 7.1],
that the subdivision schemeSÃ converges inL2 if and only if ρ(FÃ |W) < 1, where
W is the minimal invariant subspace ofFÃ generated by the matrix-valued sequences
e1(e1)T1δ ande2(e2)Tδ, andρ(FÃ |W) is the spectral radius ofFÃ restricted toW. By
numerical computation, we obtainρ(FÃ |W) < 1 and, thus, the assertion.

Proposition 3.2. The refinement equation(3.2) for the maskÃ defined in(3.4) has a
unique solutionϕ̃ satisfying(3.1).Furthermore, ϕ̃ is in the Sobolev space Hs(R)2 for
any

s< γ̃ := 0.824926.(3.1.3)

In particular, ϕ̃ consists of continuous functions.

Proof. It was pointed out in [DM, Theorem 4.1], (see also [JRZ2, Theorem 8.1]), that
if the refinement masksA andÃ satisfy (3.3) and if the subdivision schemes associated
with A andÃ are convergent inL2, then there exists a refinable vectorϕ̃ which is the
unique solution of the refinement equation (3.2) with maskÃ, and the duality relation
(3.1) holds.
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Let, for a function vectorf ∈ L p(R)2 := L p(R) × L p(R), νp(f) := sup{ν: f ∈
Wν

p (R)2} denote the optimal (Sobolev) regularity off. By the embedding theorem, one
hasν∞(f) ≥ ν2(f) − 1

2. In order to determineν2(ϕ̃), we review some results from
[JRZ2] and [JRZ3]. With the notation from the previous proof we obtain, by [JRZ3,
Theorem 3.4],

ν2(ϕ̃) = − 1
2 log2(ρ(FÃ |V )),(3.1.4)

whereV is the minimal invariant subspace ofFÃ generated bye1(e1)T1δ ande2(e2)T1δ.
Let v0 := e1(e1)T1δ andvi := Fi

Ã
v0 for i ∈ N. We find thatV is the linear span of

v0, . . . , v8 and has dimension 9. By using MAPLE we obtainv9 =∑8
i=0 hi vi , where

h0 = 121393

302231454903657293676544
, h1 = 12707291903433

2361183241434822606848
,

h2 = − 12781989485512689

18889465931478580854784
, h3 = 1509351271768101

147573952589676412928
,

h4 = − 129495711992289

288230376151711744
, h5 = 403668071727

281474976710656
,

h6 = 2701056849

137438953472
, h7 = −13306731

67108864
,

h8 = 381

512
.

Therefore, the characteristic polynomialP(z) of the linear operatorFÃ under the basis
v0, . . . , v8 is given by P(z) = z9 −∑8

i=0 hi zi . By numerical computation, we find
that the largest absolute value of the roots ofP(z) is approximately 0.31867282. Hence
ρ(FÃ |V ) ≈ 0.31867282, and thus by (3.1.4)

ν2(ϕ̃) = − 1
2 log2(ρ(FÃ |V )) ≈ 0.824926= γ̃ .(3.1.5)

It follows thatν∞(ϕ̃) ≥ ν2(ϕ̃) − 1
2 > 0.32492. Therefore, in particular, the continuity

of ϕ̃ is established.

Fig. 2. Multigeneratorϕ̃ = (ϕ̃1, ϕ̃2)
T onR.
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Clearly we have here that suppϕ̃ = [−2,2] is larger than suppϕ. Note thatÃ is also
symmetric in the sense of (2.8). From this, it follows that the entryϕ̃1 of the multigenerator
ϕ̃ is symmetric whileϕ̃2 is antisymmetric around 0 [JRZ2], see Figure 2.

3.2. Polynomial Exactness

We call the multigeneratorϕ exact of order d(or say thatϕ hasaccuracy d) if all
polynomials of degree at mostd−1 can be written as a linear combination of theϕi (·−k).
As in [DKU1], the exactness will be used in Section 4 to derive multigenerators on the
interval with properties (I)–(IV).

Polynomial exactness of refinable vectors of functions was discussed in [HSS], [JRZ1],
and [P]. In [J, Theorem 4.1], a characterization for the accuracy ofϕ̃was given in a form
slightly different from that of [HSS]. Although the result is not new, it is convenient for
applications. We briefly recall the main facts, specialized to the case at hand. The relations
(3.2.6) and (3.2.9) below could also be derived by hand using polynomial exactness and
biorthogonality. However, just applying the following proposition yields all the desired
relations without tedious calculations:

Proposition 3.3. Let f = ( f1, f2)
T be a vector of compactly supported distributions.

Supposef satisfies the vector refinement equationf = ∑
k∈Z Fkf(2 · − k), where each

Fk is a2× 2 complex matrix. For m= 0,1,2, . . . , set

Em := 1

m!

∑
k∈Z
(2k)mF2k and Om := 1

m!

∑
k∈Z
(2k− 1)mF2k−1.(3.2.1)

Let d be a positive integer. If there exist vectorsym ∈ R2 for m = 0,1, . . . ,d − 1 such
that

r∑
m=0

(−1)m2r−myT
r−mEm = yT

r and
r∑

m=0

(−1)m2r−myT
r−mOm = yT

r(3.2.2)

are true for r= 0,1, . . . ,d − 1, and ify0 6= 0, thenf has accuracy d. Moreover, under
the conditionyT

0 f̂(0) = 1, we have

xr

r !
=
∑
k∈Z

r∑
m=0

km

m!
yT

r−mf(x − k), x ∈ R, r = 0,1, . . . ,d − 1.(3.2.3)

Conversely, if f is exact of order d and if the shifts of f1, f2 are linearly independent, then
there exist vectorsym ∈ R2, m = 0,1, . . . ,d − 1, satisfyingy0 6= 0 and the conditions
in (3.2.2).

In fact, the above result remains valid if the sequences( f̂i (ξ + 2kπ))k∈Z, i = 1,2,
are linearly independent forξ = 0 andξ = π . Here f̂ denotes as usual the Fourier
transform of f .

Applying the criterion in Proposition 3.3 to the vectorϕ of Hermite cubic splines, we
obtain

y0 =
[
1
0

]
, y1 =

[
0
1

]
, y2 =

[
0
0

]
, y3 =

[
0
0

]
.



Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines 229

Defining the (column) vector

α̃k,r :=
∫
R

xr ϕ̃(x − k)dx :=
[∫
R xr ϕ̃1(x − k)dx∫
R xr ϕ̃2(x − k)dx

]
∈ R2,(3.2.4)

one has then, also in view of (3.1), forr = 0, . . . ,3,

xr =
∑
k∈Z
α̃T

k,rϕ(x − k) :=
∑
k∈Z

2∑
i=1

(α̃k,r )iϕi (x − k),(3.2.5)

i.e., the Hermite cubics have exactness of orderd = 4. These results can also be de-
rived from the interpolation properties of the Hermite cubics. Applying the criterion in
Proposition 3.3 to the vectorϕ of Hermite cubic splines, from (3.2.3), we have

xr =
∑
k∈Z

[
r∑

m=0

r ! km

m!
yT

r−m

]
ϕ(x − k), r = 0, . . . ,3.

For allk ∈ Z, comparing the above equality with (3.2.5), we obtain

α̃k,0 =
[
1
0

]
, α̃k,1 =

[
k
1

]
, α̃k,2 =

[
k2

2k

]
, α̃k,3 =

[
k3

3k2

]
.(3.2.6)

Specifically, forr = 0 andx = 0, it follows from (2.2) and (3.1) that∫
R
ϕ̃(x)dx =

[
1

0

]
=
∫
R
ϕ(x)dx.(3.2.7)

Furthermore, we get:

Proposition 3.4. The dual multigenerator̃ϕ is exact of orderd̃ = 2, i.e., for r = 0,1
one has

xr =
∑
k∈Z
αT

k,r ϕ̃(x − k),(3.2.8)

where for all k∈ Z

αk,r :=
∫
R

xrϕ(x − k)dx =


[
1
0

]
, r = 0,[

k
1
15

]
, r = 1.

(3.2.9)

Proof. We apply the criterion in Proposition 3.3 to the dual vectorϕ̃ with the mask
given by (3.4). In this case, we have

E0 =
[
1 0
0 91

32

]
, O0 =

[
1 0
0 − 37

16

]
, E1 =

[
0 5

16
− 87

32 0

]
, O1 =

[
0 − 3

8
99
16 0

]
.

For r = 0,1, the equations in (3.2.2) become

yT
0 E0 = yT

0 , yT
0 O0 = yT

0 ,

and

2yT
1 E0− yT

0 E1 = yT
1 , 2yT

1 O0− yT
0 O1 = yT

1 .

We find thaty0 = [1,0]T and y1 = [0, 1
15]T satisfy the above equations. More-
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over, yT
0
ˆ̃ϕ(0) = 1. Thus, from Proposition 3.3, by a similar argument as in (3.2.6),

we get (3.2.9).

Note that by [JRZ1, Theorem 2.1],ϕ̃ does not reproduce polynomials of order 3.
The coefficients (3.2.6), (3.2.9) will be used below to define the multigenerators on

[0,1]. They can also be computed directly by means of recursion formulas as, e.g., in
[DKU1]. This derivation only uses (3.2.7) and the refinement equations (3.2) or (2.4).

The compact support ofϕ, ϕ̃ and the duality condition (3.1) guarantee that the integer
translates{ϕ̃i (· − k), k ∈ Z, i = 1,2} form anL2-stable basis for their spañS0 in the
sense of (2.3) [DKU1] so that we can denoteϕ̃ as multigeneratordual to ϕ or simply
dual multigenerator.

To distinguish shift-invariant quantities from analogs defined on an interval, it is
convenient to write for the vector fieldg: R→ R2

g[ j,k] = 2 j/2g(2 j · −k) :=
[

2 j/2g1(2 j · −k)

2 j/2g2(2 j · −k)

]
, j, k ∈ Z.

In this notation, one can rewrite the refinement equation (2.4) in the form

ϕ[ j,k] = 2−1/2
2k+1∑

m=2k−1

Am−2kϕ[ j+1,m] .(3.2.10)

The spaces

Sj := closL2(span{(ϕ[ j,k])i , k ∈ Z, i = 1,2})
and

S̃j = closL2(span{(ϕ̃[ j,k])i , k ∈ Z, i = 1,2})
are, by the previous results, refinable and, thus, both form a hierarchy of nested spaces
whose closure is dense inL2(R) and whose intersection consists only of 0. Hence,
ϕ, ϕ̃ aremultigeneratorsof theprimal anddual multiresolution sequencesS = {Sj },
S̃ = {S̃j }, see [JS].

Our next objective is to construct a pair of primal and dual multiresolution sequences
on the interval [0,1].

4. Multigenerators on [0,1]

4.1. Boundary Near Functions

The strategy in [DKU1] is to use possibly many translates of the generators supported
inside the interval and, in addition, to build fixed linear combinations of all generators
overlapping the boundaries on the primaland on the dual sides such that polynomials
up to the order of exactness are reproduced. On one hand, this allows us, in spite of
the different sizes of support, to match the cardinality of the primal and dual multi-
generator bases on the interval. On the other hand, as pointed out below, the resulting
multiresolution spaces inherit the approximation properties of those defined onR.

The construction will be carried out on onefixedlevel j = j0. For the minimal level
j0 := 3, the modified functions at the left and at the right boundary do not overlap so
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that each end of the interval can be treated separately. It will be seen that for all levels
j ≥ j0 the boundary modifications will be the same.

Suppose thatϕ, ϕ̃ form a dual pair of multigenerators as in Section 3 withϕ from
Section 2 having support [−1,1] and which is exact of order 4. We first define sets of
indices on the primal and dual sides which have equal cardinality so that their interior
functions are supported in [0,1]. Since supp̃ϕ = [−2,2] ⊃ suppϕ, let

1̃I
j := {2, . . . ,2 j − 2}(4.1.1)

so that

suppϕ̃[ j,k] ⊂ [0,1], k ∈ 1̃I
j .(4.1.2)

Note that #̃1I
j = 2 j − 3 but sinceϕ̃ ∈ R2, every index stands in fact for two functions

(ϕ̃1)[ j,k], (ϕ̃2)[ j,k] . It will be useful to define the corresponding boundary index sets
1̃L

j , 1̃
R
j

1̃L
j := {1}, 1̃R

j := {2 j − 1},(4.1.3)

whose indices will again represent two (= order of exactness of̃ϕ) boundary functions
each. We then have to define the appropriate index sets on the primal side,1L

j ,1
I
j ,1

R
j ,

such that the cardinality of the two sets

1̃j := 1̃L
j ∪ 1̃I

j ∪ 1̃R
j , 1j := 1L

j ∪1I
j ∪1R

j ,(4.1.4)

is equal, and such that #1X
j = 2 (= 1

2 order of exactness ofϕ), X ∈ {L , R}, and
suppϕ[ j,k] ⊂ [0,1] for k ∈ 1I

j . These requirements are satisfied when taking

1L
j := {1,2}, 1I

j := {3, . . . ,2 j − 3}, 1R
j := {2 j − 2,2 j − 1},(4.1.5)

see Figure 3.
We now define the boundary near functions at the left boundary by

ηL
j,r (x) :=

2∑
m=0

α̃T
m,rϕ[ j,m](x)|[0,1], r = 0, . . . ,3,(4.1.6)

which we assemble for convenience in the boundary vectors

ϕL ,∨
j,1 :=

[
ηL

j,0

ηL
j,1

]
, ϕL ,∨

j,2 :=
[
ηL

j,2

ηL
j,3

]
.(4.1.7)

Fig. 3. Index sets for the interval: each index corresponds to a two-dimensional vector of functions.
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On the dual side, let

η̃L
j,r (x) :=

1∑
m=−1

αT
m,r ϕ̃[ j,m](x)|[0,1], r = 0,1,(4.1.8)

and, correspondingly,

ϕ̃L ,∨
j,1 :=

[
η̃L

j,0

η̃L
j,1

]
.(4.1.9)

In order to make the most out of symmetry when defining the boundary near functions
at the right interval end, note that, by (2.6),

ϕ[ j,k](1− x) = Jϕ[ j,2 j−k](x),(4.1.10)

ϕ̃[ j,k](1− x) = Jϕ̃[ j,2 j−k](x), x ∈ R, k ∈ Z,
with J defined in (2.7) and

α̃R
j,m,r := −

∫
R
(2 j − x)r ϕ̃(x −m)dx = Jα̃2 j−m,r ,(4.1.11)

αR
j,m,r := −

∫
R
(2 j − x)r ϕ(x −m)dx = Jα2 j−m,r .

Defining, at the right boundary,ηj,2 j−r , η̃j,2 j−r in an analogous fashion by replacingxr

by (1− x)r andα̃m,r by α̃R
j,m,r and finallyαm,r byαR

j,m,r ,

ηR
j,2 j−r (x) :=

2 j∑
m=2 j−2

(α̃R
j,m,r )

Tϕ[ j,m](x)|[0,1], r = 0, . . . ,3,(4.1.12)

and

η̃R
j,2 j−r (x) :=

2 j+1∑
m=2 j−1

(αR
j,m,r )

T ϕ̃[ j,m](x)|[0,1], r = 0,1,(4.1.13)

one can then immediately, on account of (4.1.11), (4.1.10), andJ2 = I , establish the
symmetry relations

ηR
j,2 j−r (1− x) =

2 j∑
m=2 j−2

α̃T
2 j−m,r Jϕ[ j,m](1− x)|[0,1](4.1.14)

= ηL
j,r (x), r = 0, . . . ,3, x ∈ [0,1],

and

η̃R
j,2 j−r (1− x) = η̃L

j,r (x), r = 0,1, x ∈ [0,1].(4.1.15)

We also assemble the functions at the right boundary in the two-dimensional vectors

ϕR,∨
j,2 j−2 :=

[
ηR

j,2 j−3

ηR
j,2 j−2

]
, ϕR,∨

j,2 j−1 :=
[
ηR

j,2 j−1

ηR
j,2 j

]
, ϕ̃R,∨

j,2 j−1 :=
[
η̃R

j,2 j−1

η̃R
j,2 j

]
.(4.1.16)
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Remark 4.1. By definition, the set

8∨j := 8L ,∨
j ∪ 8I

j ∪ 8R,∨
j ,(4.1.17)

where

8
L ,∨
j := {ϕL ,∨

j,k , k = 1,2},(4.1.18)

8I
j := {ϕ[ j,k], k ∈ 1I

j } = {ϕj,k, k ∈ 1I
j },

8
R,∨
j := {ϕR,∨

j,2 j−k, k = 2,1},
still reproduces all polynomials of degree 3 on [0,1]. Correspondingly, the set

8̃
∨
j := ϕ̃L ,∨

j ∪ ϕ̃I ,∨
j ∪ ϕ̃R,∨

j ,(4.1.19)

defined as

8̃
L ,∨
j := {ϕ̃L ,∨

j,1 }, 8̃
I ,∨
j := {ϕ̃[ j,k], k ∈ 1̃I

j }, 8̃
R,∨
j := {ϕ̃R,∨

j,2 j−1},(4.1.20)

reproduces by construction all linear polynomials on [0,1].

In the sequel, we will use both the interpretation of8∨j , etc., as a collection of functions
(4.1.17), or as a (column) vector of functions containing all the functions in its set in the
obvious order.

We have employed here the additional notation “∨” to indicate that these functions
are still preliminary and will have to be modified.

4.2. Refinability of Boundary Near Functions

We next derive refinement equations for the boundary near functions (4.1.6), (4.1.8). For
their right-end counterparts, one can use symmetry.

Suppose thatθ, θ̃ form a pair of dual refinable multigenerators, as in Section 3, with
suppθ = [−λ, λ], and thatθ is exact of orderd. Let A = {Ak}λk=−λ denote the mask of
θ satisfyingAk := 0 for k < −λ or k > λ.

Lemma 4.2. Let` ≥ λ and define

ϑ L
j,r :=

`−1∑
m=−λ+1

α
θ̃,r
(m)Tθ[ j,m] |R+ , r = 0, . . . ,d − 1,(4.2.1)

where

α
θ̃,r
(m) :=

∫
R

xr θ̃(x −m)dx.(4.2.2)

Then one has

ϑ L
j,r = 2−(r+1/2)

(
ϑ L

j+1,r +
2`−λ−1∑

m=`
α
θ̃,r
(m)Tθ[ j+1,m]

)
(4.2.3)

+
2`+λ−2∑
m=2`−λ

β
θ̃,r
(m)Tθ[ j+1,m], r = 0, . . . ,d − 1,
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where

β
θ̃,r
(m)T := 2−1/2

`−1∑
q=d(m−λ)/2e

α
θ̃,r
(q)TAm−2q(4.2.4)

andbxc (dxe) is the largest(smallest) integer less(greater) than or equal to x.

To verify the above relations, one can apply arguments following the lines in the proof
of Lemma 3.1 in [DKU1].

4.3. Basis Transformations and Biorthogonalization

Although the construction of the boundary near functions in (4.1.17) and (4.1.19) pre-
serves the exactness of the primal and dual multiresolutions:

(A) the functions in8L ,∨
j and8R,∨

j no longer interpolate function values and first
derivatives;

(B) 8∨j and8̃
∨
j are not biorthogonal with respect to(·, ·)[0,1].

Both shortcomings can be remedied by applying linear transformations to the boundary
near functions.

To tackle (A), first recall thatϕ[ j,k] is interpolating at 2− j k with values

ϕ[ j,k](2
− j m) = δk,m 2 j/2

[
1

0

]
, ϕ′[ j,k](2

− j m) = δk,m 23 j/2

[
0

1

]
, k,m ∈ Z.(4.3.1)

Thus, defineCL ∈ R4×4 (4 = order of exactness ofϕ) such that the new boundary
functions

8L
j := CL8

L ,∨
j(4.3.2)

satisfy

(4.3.3)
ϕL

j,1(0) =: ϕj,1(0) = 2 j/2

[
1

0

]
, (ϕL

j,1)
′(0) =: (ϕj,1)

′(0) = 23 j/2

[
0

1

]
,

ϕL
j,2(2

− j ) =: ϕj,2(2
− j ) = 2 j/2

[
1

0

]
, (ϕL

j,2)
′(2− j ) =: (ϕj,2)

′(2− j ) = 23 j/2

[
0

1

]
,

and

ϕj,1(2
− j k) = (ϕj,1)

′(2− j k) =
[

0

0

]
, k ∈ 1I

j ∪ {1,2 j − 1},

ϕj,2(2
− j k) = (ϕj,2)

′(2− j k) =
[

0

0

]
, k ∈ 1I

j ∪ {0,2 j }.

Although this choice suggests itself, one could, of course, also define8L
j such that

ϕj,1,ϕj,2 interpolate at 2− j and 2· 2− j instead of at 0 and 2− j .
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Inserting the conditions (4.3.3), we have on the left-hand side of (4.3.2) the 4× 4
matrix

[8L
j (0), (8

L
j )
′(0),8L

j (2
− j ), (8L

j )
′(2− j )] = 2 j/2


1 0 0 0
0 2j 0 0
0 0 1 0
0 0 0 2j

 .(4.3.4)

Using the values for̃αm,r from (3.2.6), and (4.3.1), we can explicitly determine

[8L ,∨
j (0), (8L ,∨

j )′(0),8L ,∨
j (2− j ), (8

L ,∨
j )′(2− j )] = 2 j/2


1 0 1 0
0 2j 1 2j

0 0 1 2(2 j )

0 0 1 3(2 j )

 .(4.3.5)

Thus, we obtain

CL =


1 0 −3 2
0 1 −2 1
0 0 3 −2
0 0 −1 1

 , C−1
L =


1 0 1 0
0 1 1 1
0 0 1 2
0 0 1 3

 .(4.3.6)

Note that the transformationCL is independent ofj . Furthermore, we obtain

8
L ,∨
j

(
2

2 j

)
= 8

R,∨
j

(
1− 2

2 j

)
= 2 j/2


1
2
4
8

 ,(4.3.7)

(8
L ,∨
j )′

(
2

2 j

)
= (8

R,∨
j )′

(
1− 2

2 j

)
= 23 j/2


0
1
4

12

 .
Denoting for any matrixE by El the matrix which is obtained by reversing the order of
rows and columns ofE, we define correspondingly at the right end of the interval

8R
j := CR8

R,∨
j , CR := ClL ,(4.3.8)

so thatϕj,2 j−1 := ϕR
j,2 j−1 interpolates function values and first derivatives at 1 and

ϕj,2 j−2 := ϕR
j,2 j−2 at 1− 2− j . The inverse ofCR is determined asC−1

R = (C−1
L )
l.

Proposition 4.3. The primal functions on the interval defined in(4.3.2), (4.3.8),

8j := 8L
j ∪8I

j ∪8R
j(4.3.9)

have the interpolation properties(4.3.3).Moreover, except for the values(4.3.7),we
have

ϕj,k(2
− j m) =

[
0

0

]
, k ∈ 1j , m ∈ 1I

j ∪ {0,1,2 j − 1,2 j }, k 6= m.(4.3.10)
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To achieve (B) biorthogonality, we will apply another linear transformation, now on
the dual boundary functions.

Let I (m) denote the identity matrix of sizem. Since changes have only been made to
boundary near functions so that still

(ϕj,k, ϕ̃j,m)[0,1] = δk,mI (2), k,m ∈ 1I
j ,(4.3.11)

we only have to transform locally near the boundary. That is, we seekC̃L ∈ R4×4 such
that the new dual boundary functions

8̃
L
j := C̃L8̃

L ,∨
j(4.3.12)

satisfy

(8L
j , 8̃

L
j )[0,1] = I (4).(4.3.13)

Here we have for simplicity also used the notation8̃
L ,∨
j for the functions{ϕ̃L ,∨

j,1 , ϕ̃[ j,2]}
in order to match the cardinality of1L

j in (4.3.13).
Inserting (4.3.12) into (4.3.13), it follows that

C̃L = (8L
j , 8̃

L ,∨
j )−T

[0,1].(4.3.14)

Of course, one has to make sure that(8L
j , 8̃

L ,∨
j )[0,1] is indeed invertible. In the following,

we explicitly determine this matrix. Observe first that

(ϕj,1, ϕ̃
L ,∨
j,1 )[0,1] =

(
ϕj,1,

[∑1
m=−1α

T
m,0ϕ̃[ j,m]∑1

m=−1α
T
m,1ϕ̃[ j,m]

])
[0,1]

(4.3.15)

=
(
ϕj,1,

[∑∞
m=−1α

T
m,0ϕ̃[ j,m]∑∞

m=−1α
T
m,1ϕ̃[ j,m]

]
−
[
αT

2,0ϕ̃[ j,2]

αT
2,1ϕ̃[ j,2]

])
[0,1]

,

since supp̃ϕ[ j,m] ⊂ [0,∞) for m≥ 2 and because of biorthogonality

(ϕ[ j,k], ϕ̃[ j,m])R = δk,mI (2), k,m ∈ Z.(4.3.16)

Using for the first term on the right-hand side the fact thatϕ̃ is exact of order 2 (3.2.8),
we get

(ϕj,1, ϕ̃
L ,∨
j,1 )[0,1] =

(
ϕj,1,

[
2 j/2

2 j/2(·)

]
−
[
αT

2,0ϕ̃[ j,2]

αT
2,1ϕ̃[ j,2]

])
[0,1]

.(4.3.17)

Substituting the definition ofϕj,1 (4.3.2) withCL given by (4.3.6), one obtains for the
first term (

ϕj,1,

[
2 j/2

2 j/2(·)

])
[0,1]

(4.3.18)

=
[∑2

m=0(α̃
T
m,0− 3α̃T

m,2+ 2α̃T
m,3)∑2

m=0(α̃
T
m,1− 2α̃T

m,2+ α̃T
m,3)

](
ϕ[ j,m],

[
2 j/2

2 j/2(·)

])
[0,1]

=
[∑2

m=0(α̃
T
m,0− 3α̃T

m,2+ 2α̃T
m,3)∑2

m=0(α̃
T
m,1− 2α̃T

m,2+ α̃T
m,3)

](
ϕ(· −m),

[
1

(·)

])
[0,∞)

.
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Table 4.1. Values for
∫ ∞

0
ϕ(x −m)xr dx, r = 0,1, m= 0,1,2.

r \m 0 1 2

0

[
1
2
1
12

] [
1

0

] [
1

0

]
1

[
3
20
1
30

] [
1
1
15

] [
2
1
15

]

Using the explicit definition ofϕ (2.1), we can in turn compute the latter quantities on
the right-hand side, see Table 4.1.

Together with the values for̃αm,r from (3.2.6), the quantities (4.3.18) are therefore
determined as (

ϕj,1,

[
2 j/2

2 j/2(·)

])
[0,1]

=
[

11
2

219
20

25
12

131
30

]
.(4.3.19)

For the second term in (4.3.17) we get, accordingly,(
ϕj,1,

[
αT

2,0ϕ̃[ j,2]

αT
2,1ϕ̃[ j,2]

])
[0,1]

=
[

5 54
5

2 13
3

]
.(4.3.20)

Together, (4.3.19) and (4.3.20) yield

(
ϕj,1, ϕ̃

L ,∨
j,1

)
[0,1]
=
[

1
2

3
20

1
12

1
30

]
.(4.3.21)

In the same fashion, we can compute

(
ϕj,2, ϕ̃

L ,∨
j,1

)
[0,1]
=
[

1 1

0 1
15

]
.(4.3.22)

Moreover, sincẽϕj,2 is already an interior function, we get

(
ϕj,1, ϕ̃j,2

)
[0,1]
=
[∑2

m=0(α̃
T
m,0− 3α̃T

m,2+ 2α̃T
m,3)∑2

m=0(α̃
T
m,1− 2α̃T

m,2+ α̃T
m,3)

]
(ϕ(· −m), ϕ̃(· − 2))R(4.3.23)

=
[
α̃T

2,0− 3α̃T
2,2+ 2α̃T

2,3

α̃T
2,1− 2α̃T

2,2+ α̃T
2,3

]
=
[
5 12
2 5

]
and

(ϕj,2, ϕ̃j,2)[0,1] =
[−4 −12

4 8

]
.(4.3.24)
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Collecting the results (4.3.21), (4.3.22), (4.3.23), and (4.3.24), we obtain

(8L
j , 8̃

L ,∨
j )[0,1] =


1
2

3
20 5 12

1
12

1
30 2 5

1 1 −4 −12

0 1
15 4 8

 ,
which has determinant16

15 6= 0. By (4.3.14), this yields

C̃L =


4 −5 3

4 − 1
3

−9 15 − 15
4

7
4

− 1
4

5
4 − 1

16
1
48

− 3
4 0 9

8 − 7
16

 .(4.3.25)

Corresponding to (4.3.12), we define at the right end of the interval

8̃
R
j := C̃R 8̃

R,∨
j ,(4.3.26)

whereC̃R is determined such that

(8R
j , 8̃

R
j )[0,1] = I (4),(4.3.27)

i.e.,

C̃R = (8R
j , 8̃

R,∨
j )−T

[0,1].(4.3.28)

Here8̃
R,∨
j also denotes the set of functions{ϕ̃[ j,2 j−2], ϕ̃

R,∨
j,2 j−1}. Note thatC̃R cannot

be obtained by simply reversing the rows and columns ofC̃L since8̃
R,∨
j 6= (8̃

L ,∨
j )l

because of the order of the interior functions. Thus, we will determineC̃R explicitly by
exploiting symmetry of the boundary near functions.

For the left upper block of(8R
j , 8̃

R,∨
j )[0,1], one obtains by (4.1.12), (4.3.2), (4.1.14),

and (4.1.10)

(ϕj,2 j−2, ϕ̃[ j,2 j−2])[0,1] =
([

ηR
j,2 j−3− ηR

j,2 j−2

−2ηR
j,2 j−3+ 3ηR

j,2 j−2

]
, ϕ̃[ j,2 j−2]

)
[0,1]

=
([

ηL
j,3(1− ·)− ηL

j,2(1− ·)
−2ηL

j,3(1− ·)+ 3ηL
j,2(1− ·)

]
, Jϕ̃[ j,2](1− ·)

)
[0,1]

=
([

ηL
j,3− ηL

j,2

−2ηL
j,3+ 3ηL

j,2

]
, ϕ̃[ j,2]

)
[0,1]

J.

Inserting the definitions we conclude, as in (4.3.23) and (4.3.24),

(ϕj,2 j−2, ϕ̃[ j,2 j−2])[0,1] =
[

4 −8
−4 12

]
.(4.3.29)
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Similarly, we derive the remainder of the entries so that we obtain we obtain

(8R
j , 8̃

R,∨
j )[0,1] =


4 −8 1

15 0

−4 12 1 1

2 −5 1
30

1
12

5 −12 3
20

1
2

(4.3.30)

which also has determinant16
15 6= 0. By (4.3.28), this gives

C̃R =


9
8

7
16 0 − 3

4

− 1
16 − 1

48
5
4 − 1

4

− 15
4 − 7

4 15 −9
3
4

1
3 −5 4

 .(4.3.31)

Proposition 4.4. The dual functions on the interval defined in(4.3.12), (4.3.26),

8̃j := 8̃L
j ∪ 8̃

I
j ∪ 8̃

R
j ,(4.3.32)

where

8̃
I
j := {ϕ̃[ j,k], k ∈ 1I

j

} = {ϕ̃j,k, k ∈ 1I
j

}
,(4.3.33)

satisfy, together with the8j given in(4.3.9),the biorthogonality conditions

(8j , 8̃j )[0,1] = I .(4.3.34)

4.4. Refinement Equations

In this section, we derive from the previous sections the refinement relations for the
biorthogonal generators8j , 8̃j . Since8j , 8̃j can be interpreted as finite-dimensional
vectors, the representation of such two-scale relations inmatrix–vector formsuggests
itself.

According to Lemma 4.2, the first boundary adapted functions8∨j defined in (4.1.17)
satisfy the refinement equation

(8∨j )
T = (8∨j+1)

TM∨j,0(4.4.1)

with

M∨j,0 :=

M∨L

(M j,0)
I

M∨R

.(4.4.2)
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Table 4.2. Values ofβ̃5,r .

5\r 0 1 2 3

5


1

2
√

2

− 3

4
√

2




9

8
√

2

− 13

8
√

2




5

2
√

2

− 7

2
√

2




11

2
√

2

− 15

2
√

2



In order to describe the block matrices used in (4.4.2), define according to (4.2.4)

β̃
T
5,r := 2−1/2α̃T

2,r A1.(4.4.3)

These values are computed in Table 4.2, the ones for the right-hand side defined as

(βR
j,2 j+1−5,r )

T := 2−1/2(α̃R
j,2 j−2,r )

TA−1J,

follow by symmetryβ̃
R
j,2 j+1−5,r = β̃5,r . The blocksM∨L , M∨R in (4.4.2) are 10×4 matrices

given then by

M∨L :=



2−1/2

2−3/2

2−5/2

2−7/2

2−1/2α̃3,0 2−3/2α̃3,1 2−5/2α̃3,2 2−7/2α̃3,3

2−1/2α̃4,0 2−3/2α̃4,1 2−5/2α̃4,2 2−7/2α̃4,3

β̃5,0 β̃5,1 β̃5,2 β̃5,3


=:

[
DL

BL

]
∈
{
R4×4,

R6×4,
(4.4.4)

and

M∨R :=



Jβ̃
R
j,2 j+1−5,3 Jβ̃

R
j,2 j+1−5,2 Jβ̃

R
j,2 j+1−5,1 Jβ̃

R
j,2 j+1−5,0

2−7/2α̃R
2 j+1−4,3 2−5/2α̃R

2 j+1−4,2 2−3/2α̃R
2 j+1−4,1 2−1/2α̃R

2 j+1−4,0

2−7/2α̃R
2 j+1−3,3 2−5/2α̃R

2 j+1−3,2 2−3/2α̃R
2 j+1−3,1 2−1/2α̃R

2 j+1−3,0

2−7/2

2−5/2

2−3/2

2−1/2


(4.4.5)

=:

[
BR

DR

]
∈
{
R6×4,

R4×4.

Furthermore, the interior block(M∨j,0)
I in (4.4.2) is defined as

(M j,0)
I
m,k := 1√

2
AT

m−2k, m ∈ 1I
j+1, k ∈ 1I

j .(4.4.6)

Note that only thesizeof (M j,0)
I , not its band width nor its entries, depend onj .
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Taking the transformation (4.3.2), to recover the interpolation conditions, into account,
then yields that the8j given by (4.3.9) satisfy a refinement equation with

M j,0 :=

M L

(M j,0)
I

M R

= C−T
j+1M∨j,0CT

j ,(4.4.7)

where

Cj := diag(CL , I ,CR)(4.4.8)

with CL ,CR from (4.3.6), (4.3.8), see [DKU1]. In particular,M L ,M R have the form

M L =
[
C−T

L DLCT
L

BLCT
L

]
, M R =

[
BRCT

R

C−T
R DRCT

R

]
.(4.4.9)

From (4.2.3), we infer that the dual initial functions8̃
∨
j defined in (4.1.19) satisfy the

refinement equation

(8̃
∨
j )

T = (8̃∨j+1)
TM̃∨j,0.(4.4.10)

The structure ofM̃∨j,0 is completely analogous to that ofM∨j,0 illustrated in (4.4.2) with

blocks M̃∨L , (M̃ j,0)
I , andM̃∨R. To give a detailed description of these blocks, define,

according to (4.2.4),

βT
s,r := 2−1/2

1∑
q=d(s−2)/2e

αT
q,r Ãs−2q.

These values are computed in Table 4.3, the ones for the right end of the interval

(βR
j,s,r )

T := 2−1/2
2 j−d(s−2)/2e∑

m=2 j−1

(αR
j,m,r )

T Ã2 j+1−2m−sJ

follow again by symmetryβR
j,s,r = β2 j+1−s,r . The boundary blocks are now given by

M̃∨L :=


2−1/2

2−3/2

β2,0 β2,1
β3,0 β3,1
β4,0 β4,1

 =:

[
D̃L

B̃L

]
∈
{
R2×2,

R6×2,
(4.4.11)
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Table 4.3

r \m 2 3 4

0


71

64
√

2

5

64
√

2




1

2
√

2

− 3

16
√

2


−

7

64
√

2

5

64
√

2



1


2253

128· 15
√

2

151

64 · 15
√

2




339

32 · 15
√

2

− 127

32 · 15
√

2


−

297

128· 15
√

2

106

64 · 15
√

2



and

M̃∨R :=



JβR
j,2 j+1−4,1 JβR

j,2 j+1−4,0

JβR
j,2 j+1−3,1 JβR

j,2 j+1−3,0

JβR
j,2 j+1−2,1 JβR

j,2 j+1−2,0

2−3/2

2−1/2


=:

[
B̃R

D̃R

]
∈
{
R6×2,

R2×2.
(4.4.12)

Of course, the interior block(M̃∨j,0)
I is of the form

(M̃ j,0)
I
m,k := 1√

2
ÃT

m−2k, m ∈ 1̃I
j+1, k ∈ 1̃I

j ,(4.4.13)

where only its size depends onj . Considering the transformation which restores biorthog-
onality (4.3.12), we obtain that the final dual multigenerators8̃j defined in (4.3.32)
satisfy the refinement equation with

M̃ j,0 :=

M̃ L

(M̃ j,0)
I

M̃ R

= C̃−T
j+1M̃∨j,0C̃T

j ,(4.4.14)

where

C̃j := diag(C̃L , I , C̃R)(4.4.15)

with C̃L andC̃R from (4.3.25) and (4.3.31). Note that sinceC̃L andC̃R are 4×4 matrices,
M̃ L , M̃ R are now of size 12× 4.



Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines 243

To simplify notation, we abbreviate

S(8j ) := span{(ϕj,k)i , k ∈ 1j , i = 1,2},

and analogouslyS(8̃j ).
We can now summarize our findings as follows:

Proposition 4.5. The multiresolution spaces are nested,

S(8j ) ⊂ S(8j+1), S(8̃j ) ⊂ S(8̃j+1),

i.e., the biorthogonal multigenerators8j and 8̃j given by(4.3.9)and (4.3.32)satisfy
the refinement equations

8T
j = 8T

j+1M j,0, 8̃T
j = 8̃T

j+1M̃ j,0,(4.4.16)

with M j,0, M̃ j,0 defined in(4.4.7)and(4.4.14).The matrices satisfy

M T
j,0M̃ j,0 = M̃ T

j,0M j,0 = I .(4.4.17)

Furthermore, S(8j ) and S(8̃j ) are exact of order d= 4 andd̃ = 2, respectively.

Proof. Equation (4.4.17) follows from the biorthogonality (4.3.34). The remaining
assertions have been confirmed above.

Proposition 4.6. 8j and8̃j are uniformly stable,

‖ϕj,k‖L2([0,1]), ‖ϕ̃j,k‖L2([0,1]) <∼ 1, k ∈ 1j , j ≥ j0.(4.4.18)

Furthermore, they are locally finite, i.e., setting

σj,k := suppϕj,k, σ̃j,k := suppϕ̃j,k, k ∈ 1j ,

one has

(4.4.19)
#{k′ ∈ 1j : σj,k′ ∩σj,k 6= ∅}, #{k′ ∈ 1j : σ̃j,k′ ∩σ̃j,k 6= ∅} <∼ 1 for all k ∈ 1j , j ≥ j0.

Proof. This follows as in the proof of Corollary 3.5 in [DKU1].

5. Biorthogonal Multiwavelets on [0,1]

Given two collections8j , 8̃j of biorthogonal multigenerators, our goal is now to de-
termine the corresponding collections9j , 9̃j of biorthogonal multiwavelets. Following
[CDP], this will be accomplished in two steps. First, we identify in Section 5.1 someini-
tial complement ofS(8j ) in S(8j+1) similar to the construction ofhierarchical basesin
a finite element context (see, e.g., [Y]). Then in Section 5.2 we project this complement
into the desired complement while preserving stability and compact support of the basis
functions.
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5.1. An Initial Stable Completion

Denoting by [X,Y] the space of bounded linear operators from a normed linear space
X into the normed linear spaceY, we have forM j,0 from (4.4.7)

M j,0 ∈ [`2(1j ), `2(1j+1)], ‖M j,0‖ = O(1), j ≥ j0,(5.1.1)

see [CDP], where

‖M j,0‖ := sup
u∈`2(1j ),‖u‖`2(1j )=1

‖M j,0u‖`2(1j+1).

Define∇j := 1j+1\1j . Given M j,0 from (4.4.7), we seek soměM j,1 ∈ [`2(∇j ),

`2(1j+1)] such thatM̌ j = (M j,0, M̌ j,1) ∈ [`2(1j ∪ ∇j ), `2(1j+1)] is invertible and
satisfies

‖M̌ j ‖, ‖M̌−1
j ‖ = O(1), j ≥ j0.(5.1.2)

We callM̌ j,1 aninitial stable completionof M j,0 since it is usually not yet associated with
an appropriate wavelet basis. It is based on the observation that when the generators are
interpolatory, a basis for a complement ofS(8j ) in S(8j+1) consists of the functions
which interpolate at the grid points contained in1j+1 but not in1j , i.e., it roughly
consists of every second function from8j+1.

To constructM̌ j,1, note that

∇j = 1j+1\1j = {2 j , . . . ,2 j+1− 1}(5.1.3)

so that the cardinality of∇j equals #1j+1− #1j = 2 j . Let

ψ̌ j,k := ϕj+1,2k+1−2 j+1, k ∈ ∇j ,(5.1.4)

see Figure 4 for the indices.
The set9̌j := {ψ̌ j,k, k ∈ ∇j } satisfies

(9̌j )
T = 8T

j+1M̌ j,1(5.1.5)

Fig. 4. Index sets1j+1 and1j for j = j0 = 3; the indices with bullets correspond to the right-hand side of
(5.1.4) and represent∇j .
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with

M̌ j,1 :=



I 0
0
I 0

0
I

. . .

I 0
0
I


∈ R1j+1×∇j(5.1.6)

whereI ,0 ∈ R2×2.
In order to confirm thaťM j,1 defined in (5.1.6) is indeed an initial stable completion,

we need to check (5.1.2), i.e., determine whether

M̌ j = (M j,0, M̌ j,1)(5.1.7)

have uniformly bounded inverses. Note that the existence ofM̌−1
j = Ǧj =

(
Ǧj,0

Ǧj,1

)
is,

in view of (4.4.16) and (5.1.5), equivalent to thereconstruction formula

8T
j+1 = 8T

j Ǧj,0+ 9̌T
j Ǧj,1.(5.1.8)

We will use the properties of the specific basis (5.1.4) to see thatǦj indeed exists, consists
also of banded matricešGj,0, Ǧj,1, and satisfies‖Ǧj ‖ = O(1) independently ofj .

To establish the relation (5.1.8), let us for the moment disregard the boundary blocks
of M j,0 since they are of fixed size independent ofj . In the interior of the interval, the
ϕj,k satisfy the two-scale relation as on all ofR,

ϕj,k =
1√
2
(A−1ϕj+1,2k−1+ A0ϕj+1,2k + A1ϕj+1,2k+1),(5.1.9)

see (3.2.10). Using the identity for the complement functions (5.1.4) yields

ϕj,k =
1√
2
(A−1ψ̌ j,k−1+2 j + A0ϕj+1,2k + A1ψ̌ j,k+2 j )

and upon eliminatingϕj+1,2k

ϕj+1,2k = A−1
0 (
√

2ϕj,k − (A−1ψ̌ j,k−1+2 j + A1ψ̌ j,k+2 j )),(5.1.10)

which is as well as (5.1.5) of the form (5.1.8). Recall also from (5.1.4) thatϕj+1,2k+1 =
ψ̌ j,k+2 j . With this, we conclude that at least the interior parts ofǦj,0, Ǧj,1 must have the
form

(Ǧj,0)
I :=
√

2



0 A−1
0 0
0 0 A−1

0
0 0 A−1

0
. . .

A−1
0

0


(5.1.11)
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and

(Ǧj,1)
I :=



I −(A−1
0 A−1)

T

−(A−1
0 A1)

T I −(A−1
0 A−1)

T

−(A−1
0 A1)

T I
. . .

−(A−1
0 A−1)

T

−(A−1
0 A1)

T I


.(5.1.12)

These matrices clearly have band width independent ofj .

In order now to take the boundary effects into account, defineǦj =
(

Ǧj,0

Ǧj,1

)
of size

#1j+1 as in (5.1.11), (5.1.12) by continuing their block pattern. Then

M̌ j Ǧj =
NL

I
NR

 =: Nj ,(5.1.13)

and the size ofNL ,NR, 10× 10, is independent ofj . Now we can calculate

NL =



1 0.5 0.25
1 −0.75 1.25

0.5 0.25 0.5 −0.25
−0.75 −0.25 0.75 −0.25

0.5 0.5 1 −0.5 2.5
3 2 1 −3 4
5 4 −4 8
6 5 −6 8
4 3.25 −4 5.75 1

−5.25 −4.25 5.25 −7.75 1


and similarlyNR. We can check thatNL andNR are nonsingular. Forj = j0 = 3, we
display the nonzero pattern ofN3 and its inverse in Figure 5.

Setting

Ǧnew
j := Ǧj N−1

j(5.1.14)

yields

M̌ j Ǧnew
j = I

by (5.1.13). Thus, we have proved the following result:

Proposition 5.1. The matrixM̌ j,1 defined in(5.1.6)is a stable completion ofM j,0, i.e.,
M̌ j = (M j,0, M̌ j,1) is invertible and satisfies(5.1.2).
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Fig. 5. Nonzero pattern of transformation matrixN3 and its inverseN−1
3 .

5.2. Biorthogonal Multiwavelets on[0,1]

We can now apply Corollary 3.1 from [CDP] to obtain

Corollary 5.2. The matrix

M j,1 := (I −M j,0M̃ T
j,0)M̌ j,1(5.2.1)

is also a stable completion ofM j,0, i.e.,

M j := (M j,0,M j,1)

has a uniformly bounded inverse, andGj := M−1
j has the form

Gj =
(M̃ T

j,0

Ǧnew
j,1

)
.(5.2.2)

Moreover, the collections of primal and dual multiwavelets

9j := M T
j,18j+1, 9̃j := Ǧnew

j,1 8̃j+1,(5.2.3)

form biorthogonal systems,

(9j , 9̃j )[0,1] = I , (9j , 8̃j )[0,1] = (8j , 9̃j )[0,1] = 0.(5.2.4)

Relation (5.2.4) implies that the collections

9 = 8j0 ∪
⋃
j≥ j0

9j , 9̃ := 8̃j0 ∪
⋃
j≥ j0

9̃j ,
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are biorthogonal,

(9j , 9̃j ′)[0,1] = δj, j ′ I , j, j ′ ≥ j0− 1,(5.2.5)

where we have setψ j0−1,k := ϕj0,k andψ̃ j0−1,k := ϕ̃j0,k with ∇j0−1 := 1j0.
Defining

L j = −M̃ T
j,0M̌ j,1,(5.2.6)

it can be seen that the new complement functionsψ j,k are obtained by updating the

initial complement functionšψ j,k by a linear combination of the coarse generatorsϕj,k.
In fact, by (5.2.1) and (4.4.16),

9T
j = 8T

j+1M j,1 = 8T
j+1M̌ j,1+8T

j+1M j,0L j = 9̌T
j +8T

j L j ,

i.e.,

ψ j,k = ψ̌ j,k +
∑
l∈1j

(L j )l ,kϕj,l , k ∈ ∇j .(5.2.7)

Thus, by construction, the9j naturally have local support in the sense that

diam(suppψ j,k) ∼ diam(suppψ̃ j,k) ∼ 2− j , k ∈ ∇j ,

sinceL j is banded.
The nonzero pattern of the refinement matricesM3,0, M̃3,0 and its completionsM3,1,

ǦT
3,1 is depicted in Figures 6 and 7, respectively. The exact data can be found in the

Appendix.
Of course, for any other levelj > 3, M j andGj can immediately be assembled by

simply extending the stationary interior part accordingly while retaining the boundary
blocks.

Note that the correctness of the mask coefficients of the biorthogonal wavelets9j , 9̃j

can be confirmed by checkingM j Gj = I .

5.3. Jackson and Bernstein Estimates, Norm Equivalences

Since8j , 8̃j are biorthogonal (4.3.34) and exact of order 4 and 2, respectively, Propo-
sitions 4.5 and 4.6, combined with [DKU1, Lemma 2.1], yield

Corollary 5.3. One has

inf
vj∈Vj

‖v − vj ‖L2([0,1]) <∼ 2−s j ‖v‖Hs([0,1]), v ∈ Hs([0,1]),(5.3.1)

where

s ≤
{

d = 4, Vj = S(8j ),
d̃ = 2, Vj = S(8̃j ).

(5.3.2)
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Fig. 6. Nonzero pattern of refinement matricesM3,0, M̃3,0.

Fig. 7. Nonzero pattern of completion matricesM3,1, (Ǧnew
3,1 )

T .
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Using the fact thatϕ consists ofC1 piecewise cubic polynomials, one can show that

γ := sup{s : ϕ ∈ Hs(R)} = 5
2.(5.3.3)

Recalling thatγ̃ = 0.824926 (3.1.3), the following fact follows from [D3].

Corollary 5.4. The inverse estimate

‖vj ‖Hs([0,1]) <∼ 2s j‖vj ‖L2([0,1]), vj ∈ Vj ,(5.3.4)

holds where

s<

{
γ = 5

2, Vj = S(8j ),
γ̃ = 0.824926, Vj = S(8̃j ).

(5.3.5)

Combining Corollaries 5.3 and 5.4 with [D2, Theorem 4.2], provides the following
main result:

Theorem 5.5. One has for anyv ∈ Hs([0,1]) the norm equivalences

‖(v, 8̃j0)[0,1]‖2`2(1j0)
+

∞∑
j= j0

22s j‖(v, 9̃j )[0,1]‖2`2(∇j )
(5.3.6)

∼
{ ‖v‖2Hs([0,1]), s ∈ [0, 5

2),
‖v‖2(H−s([0,1]))∗ , s ∈ (−0.824926,0).

Here for s< 0, Hs([0,1]) means the dual(H−s([0,1]))∗ of H−s([0,1]), relative to
(·, ·)L2([0,1]).

In particular, the primal and dual multiwavelets form Riesz bases forL2([0,1]).

6. Visualization of the Functions

Finally, we visualize the functions8j , 8̃j , 9j , 9̃j for j = j0 = 3. Note that the
two functions inψ3,8, or the two components inψ3,15, respectively, look very similar.
Therefore, we have added Figure 12 to clarify the distinction of these functions. (The
functions have been normalized to satisfy(ψ1)3,8(0) = (ψ2)3,8(0) and(ψ1)3,15(1) =
(ψ1)3,15(1).)
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Fig. 8. Primal multigeneratorsϕ3,k before (left column) and after (right column) biorthogonalization (in the
order of8j ), at the left boundary; we here dispense with the boundary adapted ones at the right boundary
since they are symmetric to the ones at the left boundary.
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Fig. 9. Dual multigenerators̃ϕ3,k and after (right column) biorthogonalization (in the order of8̃j ), at the left
boundary; we dispense here with the boundary adapted ones at the right boundary since they are symmetric to
the ones at the left boundary.
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Fig. 10. Primal multiwaveletsψ3,8, . . . ,ψ3,10 (left column) andψl3,15, . . . ,ψ
l
3,13 (right column).
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Fig. 11. Primal multiwaveletsψ3,11 as an example for the interior ones; first component (left), second
component (right).

Fig. 12. Difference between the (scaled) primal multiwavelets(ψ1)3,8 and(ψ2)3,8 (left) and(ψ1)3,15 and
(ψ2)3,15 (right).

Fig. 13. Dual multiwaveletsϕ̃3,11 as an example for the interior ones; first component (left), second com-
ponent (right).
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Fig. 14. Dual multiwaveletsϕ̃3,8, . . . , ϕ̃3,10 (left column) andϕ̃l3,15, . . . , ϕ̃
l
3,13 (right column).
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7. Appendix

We display here the positions and the nonzero entries of the matricesM3 and G3.
M3 =

(1, 1) 7.071067811865475e−01 (3, 1) 3.535533905932734e−01 (4, 1) −5.303300858899110e−01
(5, 1) 7.071067811865488e−01 (6, 1) 1.590990257669735e+00 (7, 1) 3.535533905932743e+00
(8, 1) 4.242640687119291e+00 (9, 1) 2.828427124746195e+00 (10, 1) −3.712310601229381e+00
(2, 2) 3.535533905932737e−01 (3, 2) 8.838834764831818e−02 (4, 2) −8.838834764831871e−02
(5, 2) 2.651650429449557e−01 (6, 2) 6.187184335382316e−01 (7, 2) 1.414213562373100e+00
(8, 2) 1.767766952966375e+00 (9, 2) 1.149048519428143e+00 (10, 2) −1.502601910021419e+00
(3, 3) 3.535533905932741e−01 (4, 3) 5.303300858899110e−01 (6, 3) −1.590990257669735e+00
(7, 3) −2.828427124746195e+00 (8, 3) −4.242640687119291e+00 (9, 3) −2.474873734152921e+00

(10, 3) 3.181980515339470e+00 (3, 4) −8.838834764831850e−02 (4, 4) −8.838834764831854e−02
(5, 4) 7.954951288348655e−01 (6, 4) 1.325825214724777e+00 (7, 4) 2.828427124746191e+00
(8, 4) 2.828427124746191e+00 (9, 4) 2.121320343559643e+00 (10, 4) −2.828427124746191e+00
(9, 5) 3.535533905932737e−01 (10, 5) 5.303300858899106e−01 (11, 5) 7.071067811865475e−01

(13, 5) 3.535533905932737e−01 (14, 5) −5.303300858899106e−01 (9, 6) −8.838834764831843e−02
(10, 6) −8.838834764831843e−02 (12, 6) 3.535533905932737e−01 (13, 6) 8.838834764831843e−02
(14, 6) −8.838834764831843e−02 (13, 7) 3.535533905932737e−01 (14, 7) 5.303300858899106e−01
(15, 7) 7.071067811865475e−01 (17, 7) 3.535533905932737e−01 (18, 7) −5.303300858899106e−01
(13, 8) −8.838834764831843e−02 (14, 8) −8.838834764831843e−02 (16, 8) 3.535533905932737e−01
(17, 8) 8.838834764831843e−02 (18, 8) −8.838834764831843e−02 (17, 9) 3.535533905932737e−01
(18, 9) 5.303300858899106e−01 (19, 9) 7.071067811865475e−01 (21, 9) 3.535533905932737e−01
(22, 9) −5.303300858899106e−01 (17, 10) −8.838834764831843e−02 (18, 10) −8.838834764831843e−02

(20, 10) 3.535533905932737e−01 (21, 10) 8.838834764831843e−02 (22, 10) −8.838834764831843e−02
(21, 11) 2.121320343559643e+00 (22, 11) 2.828427124746191e+00 (23, 11) 2.828427124746191e+00
(24, 11) −2.828427124746191e+00 (25, 11) 7.954951288348655e−01 (26, 11) −1.325825214724777e+00
(27, 11) −8.838834764831877e−02 (28, 11) −8.838834764831850e−02 (21, 12) −2.474873734152921e+00
(22, 12) −3.181980515339470e+00 (23, 12) −2.828427124746195e+00 (24, 12) 4.242640687119291e+00
(26, 12) 1.590990257669735e+00 (27, 12) 5.303300858899116e−01 (28, 12) 3.535533905932741e−01
(21, 13) 1.149048519428143e+00 (22, 13) 1.502601910021419e+00 (23, 13) 1.414213562373100e+00
(24, 13) −1.767766952966375e+00 (25, 13) 2.651650429449559e−01 (26, 13) −6.187184335382316e−01
(27, 13) −8.838834764831932e−02 (28, 13) 8.838834764831816e−02 (29, 13) 3.535533905932737e−01
(21, 14) 2.828427124746195e+00 (22, 14) 3.712310601229381e+00 (23, 14) 3.535533905932743e+00
(24, 14) −4.242640687119291e+00 (25, 14) 7.071067811865483e−01 (26, 14) −1.590990257669735e+00
(27, 14) −5.303300858899119e−01 (28, 14) 3.535533905932732e−01 (30, 14) 7.071067811865475e−01
(1, 15) 8.697265624999993e+00 (2, 15) −1.906787109374998e+01 (3, 15) −3.683380126953116e+00
(4, 15) −4.811737060546865e+00 (5, 15) −4.510192871093750e−01 (6, 15) 3.570831298828038e+00
(7, 15) 7.421874999998295e−01 (8, 15) −2.302734375000217e+00 (9, 15) −2.045898437500888e−01

(10, 15) 1.904296875016342e−02 (1, 16) 3.348307291666665e+00 (2, 16) −6.979492187499997e+00
(3, 16) −1.438476562499997e+00 (4, 16) −2.056762695312496e+00 (5, 16) −1.841634114583353e−01
(6, 16) 1.460327148437460e+00 (7, 16) 3.046874999999218e−01 (8, 16) −9.453125000001013e−01
(9, 16) −8.398437500004530e−02 (10, 16) 7.812500000078160e−03 (1, 17) 6.250000000000035e−02
(2, 17) 2.988281249999999e−01 (3, 17) 3.674316406249976e−02 (4, 17) −2.735595703125007e−01
(5, 17) 4.197998046875016e−01 (6, 17) −3.625488281249556e−02 (7, 17) −2.499999999999916e−01
(8, 17) 7.734375000000107e−01 (9, 17) 6.835937500000711e−02 (10, 17) −5.859375000009326e−03
(1, 18) −5.494791666666665e−01 (2, 18) 1.251953125000000e+00 (3, 18) 1.717529296874995e−01
(4, 18) 2.725830078124994e−01 (5, 18) −9.281412760416624e−02 (6, 18) 7.911376953125066e−01
(7, 18) −9.374999999998757e−02 (8, 18) 2.890625000000164e−01 (9, 18) 2.539062500000777e−02

(10, 18) −1.953125000012879e−03 (1, 19) 3.281249999999999e−01 (2, 19) −8.847656249999999e−01
(3, 19) −1.148681640624996e−01 (4, 19) −8.679199218749953e−02 (5, 19) 1.094970703124994e−01
(6, 19) −3.112792968750511e−02 (7, 19) −2.500000000000104e−01 (8, 19) −7.734375000000122e−01
(9, 19) 3.632812499999938e−01 (11, 19) −2.499999999999999e−01 (12, 19) 7.734374999999999e−01

(13, 19) 6.835937500000000e−02 (14, 19) −5.859375000000000e−03 (1, 20) −1.223958333333333e−01
(2, 20) 3.300781249999999e−01 (3, 20) 4.284667968749986e−02 (4, 20) 3.234863281249982e−02
(5, 20) −4.073079427083309e−02 (6, 20) 1.184082031250189e−02 (7, 20) 9.375000000000389e−02
(8, 20) 2.890625000000048e−01 (10, 20) 7.148437499999960e−01 (11, 20) −9.374999999999999e−02

(12, 20) 2.890624999999999e−01 (13, 20) 2.539062499999999e−02 (14, 20) −1.953125000000000e−03
(9, 21) 6.835937500000000e−02 (10, 21) 5.859375000000000e−03 (11, 21) −2.499999999999999e−01

(12, 21) −7.734374999999999e−01 (13, 21) 3.632812500000001e−01 (15, 21) −2.499999999999999e−01
(16, 21) 7.734374999999999e−01 (9, 22) −2.539062499999999e−02 (10, 22) −1.953125000000000e−03
(11, 22) 9.374999999999999e−02 (12, 22) 2.890624999999999e−01 (14, 22) 7.148437500000000e−01
(15, 22) −9.374999999999999e−02 (16, 22) 2.890624999999999e−01 (21, 23) 6.835937500000000e−02
(22, 23) −5.859375000000000e−03 (13, 24) −2.539062499999999e−02 (14, 24) −1.953125000000000e−03
(15, 24) 9.374999999999999e−02 (16, 24) 2.890624999999999e−01 (18, 24) 7.148437500000000e−01
(19, 24) −9.374999999999999e−02 (20, 24) 2.890624999999999e−01 (21, 24) 2.539062499999999e−02
(22, 24) −1.953125000000000e−03 (17, 25) 6.835937500000000e−02 (18, 25) 5.859375000000000e−03
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(19, 25) −2.499999999999999e−01 (20, 25) −7.734374999999999e−01 (21, 25) 3.632812499999942e−01
(23, 25) −2.500000000000104e−01 (24, 25) 7.734375000000122e−01 (25, 25) 1.094970703124986e−01
(26, 25) 3.112792968750511e−02 (27, 25) −8.679199218749856e−02 (28, 25) −1.148681640624996e−01
(29, 25) −8.847656249999999e−01 (30, 25) 3.281249999999999e−01 (17, 26) −2.539062499999999e−02
(18, 26) −1.953125000000000e−03 (19, 26) 9.374999999999999e−02 (20, 26) 2.890624999999999e−01
(22, 26) 7.148437499999960e−01 (23, 26) −9.375000000000400e−02 (24, 26) 2.890625000000046e−01
(25, 26) 4.073079427083280e−02 (26, 26) 1.184082031250189e−02 (27, 26) −3.234863281249945e−02
(28, 26) −4.284667968749988e−02 (29, 26) −3.300781249999999e−01 (30, 26) 1.223958333333333e−01
(21, 27) 6.835937500000627e−02 (22, 27) 5.859375000008771e−03 (23, 27) −2.499999999999923e−01
(24, 27) −7.734375000000093e−01 (25, 27) 4.197998046875018e−01 (26, 27) 3.625488281249586e−02
(27, 27) −2.735595703125012e−01 (28, 27) 3.674316406249978e−02 (29, 27) 2.988281249999999e−01
(30, 27) 6.250000000000035e−02 (21, 28) −2.539062500000666e−02 (22, 28) −1.953125000013767e−03
(23, 28) 9.374999999998623e−02 (24, 28) 2.890625000000164e−01 (25, 28) 9.281412760416502e−02
(26, 28) 7.911376953125071e−01 (27, 28) −2.725830078124982e−01 (28, 28) −1.717529296874996e−01
(29, 28) −1.251953125000000e+00 (30, 28) 5.494791666666665e−01 (21, 29) −8.398437500003730e−02
(22, 29) −7.812500000081712e−03 (23, 29) 3.046874999999218e−01 (24, 29) 9.453125000000888e−01
(25, 29) −1.841634114583415e−01 (26, 29) −1.460327148437461e+00 (27, 29) −2.056762695312488e+00
(28, 29) −1.438476562499997e+00 (29, 29) −6.979492187499996e+00 (30, 29) 3.348307291666665e+00
(21, 30) −2.045898437500746e−01 (22, 30) −1.904296875016342e−02 (23, 30) 7.421874999998224e−01
(24, 30) 2.302734375000206e+00 (25, 30) −4.510192871093919e−01 (26, 30) −3.570831298828040e+00
(27, 30) −4.811737060546847e+00 (28, 30) −3.683380126953118e+00 (29, 30) −1.906787109374998e+01
(30, 30) 8.697265624999993e+00

G3 =
(1, 1) −1.088557744006321e+01 (2, 1) 5.393208381272626e+01 (3, 1) 5.887147327154208e+00
(4, 1) −7.734325686210864e+00 (15, 1) 1.000000000000000e+00 (1, 2) −4.735221582867725e+00
(2, 2) 2.256941214482531e+01 (3, 2) 2.390858768289280e+00 (4, 2) −3.082543624235105e+00

(16, 2) 1.000000000000000e+00 (1, 3) 1.186613567178674e+01 (2, 3) −5.086196979987922e+01
(3, 3) −4.788162520261248e+00 (4, 3) 6.053220745977807e+00 (15, 3) −5.925925925925930e−01

(16, 3) −8.888888888888875e−01 (17, 3) −2.592592592592584e−01 (18, 3) 4.444444444444446e−01
(1, 4) −8.960368742848280e+00 (2, 4) 4.224410590416819e+01 (3, 4) 4.539570292500354e+00
(4, 4) −5.569846969776066e+00 (15, 4) 1.777777777777773e+00 (16, 4) −2.666666666666668e+00

(17, 4) −2.222222222222180e−01 (18, 4) 3.333333333333372e−01 (1, 5) −8.838834764831893e−02
(2, 5) −8.452135743870448e−01 (3, 5) 4.681820289496869e−01 (4, 5) 1.089662598351926e+00

(17, 5) 1.000000000000000e+00 (1, 6) 7.770808897414662e−01 (2, 6) −3.541058177660757e+00
(3, 6) −2.260347848714810e−01 (4, 6) 6.062888221501843e−01 (18, 6) 1.000000000000000e+00
(1, 7) 8.838834764831844e−01 (2, 7) −4.176349426383046e+00 (3, 7) −1.712524235686170e−01
(4, 7) 1.027514541411702e+00 (5, 7) −7.733980419227862e−02 (6, 7) 4.806116403377315e−01

(15, 7) −4.074074074074056e−01 (16, 7) 8.888888888888886e−01 (17, 7) −7.407407407407409e−01
(18, 7) −4.444444444444450e−01 (19, 7) −5.000000000000009e−01 (20, 7) 7.499999999999993e−01
(1, 8) −6.113527379008691e−01 (2, 8) 2.994155276586786e+00 (3, 8) 1.114061465150680e−01
(4, 8) −6.214805694022389e−01 (5, 8) −5.524271728019902e−02 (6, 8) 3.425048471372339e−01

(15, 8) 4.444444444444423e−01 (16, 8) −9.999999999999998e−01 (17, 8) 4.444444444444454e−01
(19, 8) −2.499999999999986e−01 (20, 8) 2.500000000000003e−01 (1, 9) −4.640388251536717e−01
(2, 9) 2.502495092793016e+00 (3, 9) 2.347815484408458e−02 (4, 9) −5.593325124620151e−01
(5, 9) 3.535533905932737e−01 (6, 9) −2.187611604295881e+00 (19, 9) 1.000000000000000e+00

(1, 10) 1.730938474779569e−01 (2, 10) −9.336019220353635e−01 (3, 10) −8.746763569364843e−03
(4, 10) 2.085412577327513e−01 (5, 10) 1.325825214724776e−01 (6, 10) −8.175922157469455e−01

(20, 10) 1.000000000000000e+00 (1, 11) 1.021990269683682e−01 (2, 11) −5.510461048699853e−01
(3, 11) −5.179004745018657e−03 (4, 11) 1.232603129314441e−01 (5, 11) 8.617863895711048e−01
(7, 11) −7.733980419227862e−02 (8, 11) 4.806116403377315e−01 (19, 11) −5.000000000000000e−01

(20, 11) −7.500000000000000e−01 (21, 11) −5.000000000000000e−01 (22, 11) 7.500000000000000e−01
(1, 12) −7.273624441892870e−02 (2, 12) 3.922232926894130e−01 (3, 12) 3.682847818679935e−03
(4, 12) −8.769781368231594e−02 (6, 12) 1.325825214724776e+00 (7, 12) −5.524271728019902e−02
(8, 12) 3.425048471372339e−01 (19, 12) 2.500000000000000e−01 (20, 12) 2.500000000000000e−01

(21, 12) −2.500000000000000e−01 (22, 12) 2.500000000000000e−01 (5, 13) 3.535533905932737e−01
(6, 13) 2.187611604295881e+00 (7, 13) 3.535533905932737e−01 (8, 13) −2.187611604295881e+00

(21, 13) 1.000000000000000e+00 (5, 14) −1.325825214724776e−01 (6, 14) −8.175922157469455e−01
(7, 14) 1.325825214724776e−01 (8, 14) −8.175922157469455e−01 (22, 14) 1.000000000000000e+00
(5, 15) −7.733980419227862e−02 (6, 15) −4.806116403377315e−01 (7, 15) 8.617863895711048e−01
(9, 15) −7.733980419227862e−02 (10, 15) 4.806116403377315e−01 (21, 15) −5.000000000000000e−01

(22, 15) −7.500000000000000e−01 (23, 15) −5.000000000000000e−01 (24, 15) 7.500000000000000e−01
(5, 16) 5.524271728019902e−02 (6, 16) 3.425048471372339e−01 (8, 16) 1.325825214724776e+00
(9, 16) −5.524271728019902e−02 (10, 16) 3.425048471372339e−01 (21, 16) 2.500000000000000e−01

(22, 16) 2.500000000000000e−01 (23, 16) −2.500000000000000e−01 (24, 16) 2.500000000000000e−01
(7, 17) 3.535533905932737e−01 (8, 17) 2.187611604295881e+00 (9, 17) 3.535533905932737e−01

(10, 17) −2.187611604295881e+00 (23, 17) 1.000000000000000e+00 (7, 18) −1.325825214724776e−01
(8, 18) −8.175922157469455e−01 (9, 18) 1.325825214724776e−01 (10, 18) −8.175922157469455e−01

(24, 18) 1.000000000000000e+00 (7, 19) −7.733980419227862e−02 (8, 19) −4.806116403377315e−01
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(9, 19) 8.617863895711048e−01 (11, 19) 1.232603129314441e−01 (12, 19) −5.179004745018657e−03
(13, 19) −5.510461048699853e−01 (14, 19) 1.021990269683682e−01 (23, 19) −5.000000000000000e−01
(24, 19) −7.500000000000000e−01 (25, 19) −5.000000000000000e−01 (26, 19) 7.500000000000000e−01
(7, 20) 5.524271728019902e−02 (8, 20) 3.425048471372339e−01 (10, 20) 1.325825214724776e+00

(11, 20) 8.769781368231594e−02 (12, 20) −3.682847818679935e−03 (13, 20) −3.922232926894130e−01
(14, 20) 7.273624441892870e−02 (23, 20) 2.500000000000000e−01 (24, 20) 2.500000000000000e−01
(25, 20) −2.500000000000000e−01 (26, 20) 2.500000000000000e−01 (9, 21) 3.535533905932737e−01
(10, 21) 2.187611604295881e+00 (11, 21) −5.593325124620151e−01 (12, 21) 2.347815484408458e−02
(13, 21) 2.502495092793016e+00 (14, 21) −4.640388251536717e−01 (25, 21) 1.000000000000000e+00
(9, 22) −1.325825214724776e−01 (10, 22) −8.175922157469455e−01 (11, 22) −2.085412577327513e−01

(12, 22) 8.746763569364843e−03 (13, 22) 9.336019220353635e−01 (14, 22) −1.730938474779569e−01
(26, 22) 1.000000000000000e+00 (9, 23) −7.733980419227862e−02 (10, 23) −4.806116403377315e−01
(11, 23) 1.027514541411702e+00 (12, 23) −1.712524235686170e−01 (13, 23) −4.176349426383046e+00
(14, 23) 8.838834764831843e−01 (25, 23) −5.000000000000013e−01 (26, 23) −7.499999999999983e−01
(27, 23) −7.407407407407403e−01 (28, 23) 4.444444444444446e−01 (29, 23) 8.888888888888903e−01
(30, 23) −4.074074074074087e−01 (9, 24) 5.524271728019902e−02 (10, 24) 3.425048471372339e−01
(11, 24) 6.214805694022389e−01 (12, 24) −1.114061465150680e−01 (13, 24) −2.994155276586787e+00
(14, 24) 6.113527379008691e−01 (25, 24) 2.499999999999989e−01 (26, 24) 2.500000000000019e−01
(27, 24) −4.444444444444445e−01 (29, 24) 1.000000000000002e+00 (30, 24) −4.444444444444462e−01
(11, 25) 1.089662598351926e+00 (12, 25) 4.681820289496868e−01 (13, 25) −8.452135743870448e−01
(14, 25) −8.838834764831893e−02 (27, 25) 1.000000000000000e+00 (11, 26) −6.062888221501843e−01
(12, 26) 2.260347848714810e−01 (13, 26) 3.541058177660758e+00 (14, 26) −7.770808897414662e−01
(28, 26) 1.000000000000000e+00 (11, 27) −5.569846969776066e+00 (12, 27) 4.539570292500355e+00
(13, 27) 4.224410590416819e+01 (14, 27) −8.960368742848281e+00 (27, 27) −2.222222222222204e−01
(28, 27) −3.333333333333355e−01 (29, 27) −2.666666666666670e+00 (30, 27) 1.777777777777781e+00
(11, 28) 6.053220745977807e+00 (12, 28) −4.788162520261248e+00 (13, 28) −5.086196979987922e+01
(14, 28) 1.186613567178675e+01 (27, 28) −2.592592592592600e−01 (28, 28) −4.444444444444452e−01
(29, 28) −8.888888888888912e−01 (30, 28) −5.925925925925908e−01 (11, 29) −3.082543624235105e+00
(12, 29) 2.390858768289280e+00 (13, 29) 2.256941214482530e+01 (14, 29) −4.735221582867724e+00
(29, 29) 1.000000000000000e+00 (11, 30) −7.734325686210864e+00 (12, 30) 5.887147327154208e+00
(13, 30) 5.393208381272626e+01 (14, 30) −1.088557744006321e+01 (30, 30) 1.000000000000000e+00
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