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Abstract

We de�ne and construct a new family of compactly

supported, nonseparable two-dimensional wavelets,

\biorthogonal quincunx Coifman wavelets" (BQCWs),

from their one-dimensional counterparts using the Mc-

Clellan transformation. The resulting �lter banks pos-

sess many interesting properties such as perfect recon-

struction, vanishing moments, symmetry, diamond-

shaped passbands, and dyadic fractional �lter coe�-

cients. We derive explicit formulas for the frequency

responses of these �lter banks. Both the analysis and

synthesis lowpass �lters converge to an ideal diamond-

shaped halfband lowpass �lter as the order of the cor-

responding BQCW system tends to in�nity. Hence,

they are promising in image and multidimensional sig-

nal processing applications. In addition, the synthesis

scaling function in a BQCW system of any order is

interpolating (or cardinal), which has been known as

a desired merit in numerical analysis.

1 Introduction

During the past decade, the theory of wavelets has
established itself �rmly as one of the most successful
methods for many signal processing applications, such
as image coding, noise reduction, and singularity de-
tection, to name a few, primarily because wavelet ex-
pansions are more appropriate than Fourier series to
represent the local behavior of non-stationary signals.

However, most of these developments have concen-
trated on one-dimensional (1D) signals and the mul-
tidimensional (MD) case was handled via the tensor
product to yield separable systems [1]. Using separa-
ble wavelets preserves some properties of 1D wavelets,
such as �nite support, perfect reconstruction (PR),
orthonormality, symmetry, and regularity, and often
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leads to simple implementations and low computa-
tional complexity. However, it imposes a severe limi-
tation on the resulting MD wavelet bases in the sense
that it gives a particular importance to the vertical
and horizontal directions. Therefore, when dealing
with MD signals, true MD processing (allowing both
nonseparable sampling and �ltering) is more appro-
priate. Though nonseparable wavelet bases su�er from
higher computational complexity, they o�er more 
ex-
ibility (e.g. near-isotropic processing) in multiresolu-
tion analysis, more degrees of freedom in design, bet-
ter adaption to the human visual system, and conse-
quently better performance. In particular, nonsepa-
rable two-dimensional (2D) wavelet bases are of great
importance in image processing applications. On the
other hand, since orthogonality and symmetry are a
pair of con
icting properties for compactly supported
wavelets, biorthogonal symmetric wavelet bases whose
associated �lter banks (FBs) possess linear phase are
the most widely used in practice. Linear phase is often
a very desirable property in image processing.

The construction of nonseparable 2D wavelets has
been a challenging problem because the fundamental
method used in the design of 1D wavelets, spectral fac-
torization, cannot be extended to construct 2D non-
separable wavelets, because 2D polynomials cannot al-
ways be factored. The McClellan transformation [2]
has been recognized as a useful tool to construct quin-
cunx wavelets from 1D prototype FBs [3], [4]. The
goal of the paper is to construct a novel class of com-
pactly supported biorthogonal quincunx wavelets us-
ing the McClellan transformation.

The following notation will be used in the paper.
Boldfaced lowercase and uppercase letters denotes 2D
vectors and matrices, respectively. The impulse re-
sponse and the frequency response of a �lter are de-
noted, respectively, by lowercase and uppercase let-
ters. Due to space limitations, the proofs of the theo-
rems presented in this paper are not included, but will



be given elsewhere.

2 One-dimensional biorthogonal Coif-

man wavelets
Recently, the biorthogonal Coifman wavelet (BCW)

has been constructed independently in [5] and [6]. The
dual lowpass �lters in an even-ordered BCW system
are symmetric. Hence, their frequency responses pos-
sess a zero phase. The frequency response of the mth-
order synthesis �lter is given by

Hm(!) =

�
1 + cos!

2

�m

2

�

m=2�1X
l=0

�m
2
� 1 + l

l

��
1� cos!

2

�l

(1)

if m is even. It possesses the same number of zeroes
at DC and the aliasing frequency �. The frequency
response of the analysis �lter of order (m;m0) can be
expressed as

eHm;m0(!) = 2Hm0(!)+Hm(!)�2Hm0(!)Hm(!) (2)

if m and m0 are even and m � m0. For the case
m < m0, eHm;m0(!) uniquely exists but possesses a
complicated analytic form.

It has been shown in [5] and [6] that the BCW sys-
tems have many useful properties including (i) dyadic
fractional �lter coe�cients, which yield fast implemen-
tations (only additions and binary shifts are needed);
(ii) excellent potential for image compression, which
turns out to be superior to the biorthogonal spline
wavelet (BSW) systems and competitive to the widely
used FBI (9,7)-tap FB proposed in [7]; and (iii) one of
the two associated scaling function is interpolating (or
cardinal) so that the wavelet expansion coe�cients can
be approximated by function samples with very high
accuracy, which has been known as a desired merit in
numerical analysis.

3 Biorthogonal quincunx Coifman

wavelets
3.1 De�nition and construction

When dealing with MD wavelet bases, the change
in resolution and sampling rate is given by an inte-
ger dilation matrix D. For quincunx wavelets, it is
required that Dn, n 2 Z2, is a quincunx sublattice of
Z
2, j detDj = 2, and the two eigenvalues of D have

magnitude strictly greater than unity so that there is
indeed a dilation in each dimension [3], [4]. The fol-
lowing matrices are two typical choices:

D1
4

=

�
1 1
1 �1

�
or D2

4

=

�
1 �1
1 1

�
: (3)

Figure 1 and Figure 2 illustrate the block diagrams
of two-channel iterative analysis and synthesis FBs,
respectively, where eh and eg are respectively analysis
lowpass and highpass �lters, and h and g are respec-
tively synthesis lowpass and highpass �lters. IfD = 2,
then it reduces to a 1D FB; if D = D1 or D = D2,
then it represents a quincunx FB, in which the high-
pass �lters g(n) and eg(n) are given by (see [3], [4])

G(!) = e�j(!1+!2) eH�(! + �); (4)

eG(!) = e�j(!1+!2)H�(! + �): (5)

The 2D PR condition can be expressed as, 8! 2 R2 ,

H(!) eH�(!) +H(! + �) eH�(! + �) = 1 (6)

with h and eh satisfying the admissibility conditions:
H(0) = eH(0) = 1, H(�) = eH(�) = 0, where 0 =
[0; 0]T and � = [�; �]T .
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Figure 1: A two-channel iterative analysis FB
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Figure 2: A two-channel iterative synthesis FB

We propose the following theorem to de�ne a novel
class of biorthogonal quincunx wavelets.
Theorem 1. The following three sets of conditions

are equivalent, and each one can serve as a de�nition

of a biorthogonal quincunx Coifman wavelet (BQCW)

of order L.

1. All moments up to order (L � 1) of the scaling

function and the wavelet vanish, that isZ
t
l�(t) dt = �(l);

Z
t
l (t) dt = 0 (7)

for l 2 Z2, 0 � l1 � L � 1, 0 � l2 � L � 1, and
l1+l2 � L�1, where �(l) denotes Kronecker delta
symbol and tl denotes tl11 t

l2
2 .



2. All moments up to order (L � 1) of the lowpass

and highpass �lters vanish, that is

X
n

n
lh(n) = �(l);

X
n

n
lg(n) = 0 (8)

for l, l1, and l2 as above, where n
l denotes nl11 n

l2
2 .

3. The frequency response of the lowpass �lter has

a zero of order L at the origin and the aliasing

frequency �, that is

@l1+l2H(!1; !2)

@!l1
1 @!

l2
2

�����
!=0;�

= 0 (9)

for l1 and l2 as above.

Note that the corresponding dual scaling function
and wavelet may have di�erent numbers of vanishing
moments. The last two sets of conditions provide a
useful characterization of BQCW systems, which may
be used to construct the associated dual �lters.

Since the BCW systems have many advantages over
the BSW systems, it is natural to expect the 2D quin-
cunx extension of the BCWs to be superior to that
of the BSWs. BQCWs are constructed from their 1D
counterparts using the McClellan transformation. The
frequency response of the synthesis lowpass �lter in
the mth-order BCW system may be rewritten as [6]

Hm(!) =
1

2
+

m=2X
k=1

2h(2k � 1)T2k�1[cos!]: (10)

where Tn[�] denotes the nth-order Chebyshev polyno-
mial [2]. Then, the 2D frequency response is

Hm(!) =
1

2
+

m=2X
k=1

2h(2k � 1)T2k�1[F (!)] (11)

where we have chosen the transformation function to
be F (!) = (cos!1 + cos!2)=2. The same transfor-

mation is applied to the dual �lter eHm;m0(!). It can
be easily shown that such a simple transformation not
only allows horizontal, vertical, and diagonal direc-
tions to be symmetry axes so that the 2D frequency re-
sponse has a diamond-shaped passband, but also pre-
serves some of the properties possessed by 1D BCW
systems such as PR, the number of multiple zeros at
the origin and the aliasing frequency, and dyadic frac-
tional �lter coe�cients. Therefore, this new class of
wavelets is promising in image and multidimensional
signal processing applications.

3.2 A design example

We now demonstrate an example of designing
BQCW FBs. The synthesis �lter of the 4th-order
BCW, h4(n), is given by

1

32
[ �1 0 9 16 9 0 � 1 ]:

One of its associated analysis �lters, eh4;4(n), is given
by

1

512
[ �1 0 18 � 16 � 63 144 348 144 � � � ];

where the omitted coe�cients may be obtained by
symmetry. After transformation, we obtain the dual

�lters of the 4th-order BQCW, h4(n) and eh4;4(n),
which have diamond-shaped spatial supports and are
respectively given by

1

256

2
6664

�1
�3 0 �3

�3 0 39 0 �3
�1 0 39 128 39 0 �1

�3 0 39 0 �3
�3 0 �3

�1

3
7775

and

1

215

2
66664

�1
�6 0

�15 0 60 �

�20 0 294 �128 �

�15 0 456 �384 �993 �

�6 0 294 �384 �2604 4992
�1 0 60 �128 �993 4992 26608

� � �

3
77775 :

Note that all the �lter coe�cients are dyadic frac-
tions. Figure 3(a) and Figure 3(b) plot the frequency

responses of h4(n) and eh4;4(n), respectively. We no-
tice the 
atness at both the origin and the aliasing
frequencies.

3.3 Asymptotic convergence

Recently, the asymptotic convergence of the BCW
�lters was addressed in [8]. By asymptote we mean
that the order of a wavelet system approaches in�n-
ity. Now, we extend the 1D results in [8] to the 2D
case; i.e., we study the asymptotic convergence of the
BQCW �lters.
Theorem 2. The frequency responses of the

BQCW dual �lters converge pointwise to the ideal

diamond-shaped halfband lowpass �lters as their or-

ders tend to in�nity; i.e.,

lim
m!1

Hm(!) =

8<
:

1 if j!1j+ j!2j < �

1=2 if j!1j+ j!2j = �

0 otherwise;

(12)

lim
m;m0

!1

eHm;m0(!) =

�
1 if j!1j+ j!2j � �

0 otherwise;
(13)



furthermore, the convergence of Hm(!) is monotonic

in the sense that,

Hm(!) � Hm+1(!) if j!1j+ j!2j � � (14)

Hm(!) � Hm+1(!) if j!1j+ j!2j > �. (15)

The above theorem states that the BQCW �lters
may be viewed as low-order approximations of the
ideal diamond-shaped halfband lowpass �lters.

3.4 Interpolating scaling functions

The synthesis scaling function in a BCW system
is interpolating. It can be shown that after transfor-
mation, the resulting 2D synthesis scaling function is
also interpolating; i.e., the interpolating property is
invariant to the aforementioned transformation.

Theorem 3. The synthesis scaling function in a

BQCW system of any order is interpolating; i.e., for

any n 2 Z2,

�(n) = �(n): (16)

4 Summary

We have presented a new class of compactly sup-
ported biorthogonal quincunx wavelets, which possess
many interesting and useful properties and are promis-
ing in image and multidimensional signal processing.
In fact, the proposed results can be easily extended to
higher dimensions, e.g., in the case of a face centered

orthorhombic (FCO) lattice.
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Figure 3: A design example of BQCW �lters




