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Abstract

Let X be an Asplund space. We show in this paper that X
admits a total biorthogonal system, (z;, u;}ics such that the closed
linear hull of {z; : i € I'} is a weakly compactly generated Banach
space. We also prove that if ¥ is a weakly compactly convex-
determined normed subspace of a Banach space X with dens ¥ >
dens X} then there is a total biorthogenal system (zy, u;)ics for
X such that the linear hull {z; : i € I} is a dense subspace of Y.

Throughout this paper all vector spaces are suppose to be real ones.
The set of positive integers is denote by IV and the set of real numbers
by R.

When no confusion occurs, || - || will represent the norm in a normed
space X; unless stated, B(X) is the closed unit ball of X. We write
X* for the conjugate space of X; X** for the conjugate of X*, and we
identify X, in the usual way, with a subspace of X**. If A is a subset
of X*, A, stands for such a subset equiped with the induced weak-star
topology of X*; A is the subspace of X orthogonal to A, and A° is the
polar set of A in X. By < -,- > we represent the usual duality between
X and X* ie,ifx € X and u € X* < z,u >= u(z). For a subset
M of X, M+ will be the subspace of X* orthogonal to M, and M° the
polar of M in X*; also, lin M will denote the linear span of M. The
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space X endowed with the weak topology will be represented by X,.

For a dense subspace Y of X, o(X*,Y) will be the topology on X*
defined by pointwise convergence respect to Y; u(X*,Y) will denote the
topology on X* given by uniform convergence respeci to each weakly
compact absolutely convex subset of Y. We shall shorten X ;i to mean
X* with the topology u(X*, X). Given two closed subspaces X; and X2
of X, we say X is an orthogonal complement of X2 in X1+ X2 provided
X1 N Xo = {0} and the projection of X; + X2 onto X2 along X7 has
norm one.

For a continuous projection 7' in the normed space X, T* denotes
its conjugate projection in X *.

|A| will be the cardinal number of the set A. Also, | o | will stand
for the cardinal number of the ordinal a; w is the first infinite ordinal,
while R is the first infinite cardinal number.

The density character of a topological space M is the smallest car-
dinal number X for which there is a dense subset A of M with | A |= .
We then write dens M = A,

A projective resolution of the identity operator in a Banach space X
is a family

{Ta : w <a < pu}

of continuous projections in X, where y is the first ordinal number such
that | ¢ = dens X, and T, is the identity operator on X,

| Ta I= 1, dens To(X) <| |,
TaoTg=TgoTa=Tg ifw<f<asy,
and for each limit ordinal o, w < a < g, the closure of
U{Tp(X) 1w £ 8 < a}

in X coincides with To(X). It is known that given * € X and ¢ > 0
there is only a finite number of ordinals o satisfying

| (Tavs — Ta) (=) |> &,

A Banach space X is said to be Asplund provided that the conjugate
Y * of each separable subspace Y of X is also separable. For each Asplund
space X, M. Fabian and G. Godefroy show in [2] that the identity
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operator of X* has a projective resolution. Some of the ideas in {2] are
used in this paper. '
If (x:)ie 1 is a collection of vectors in the normed space
X, [xi:1 € 1] is the closure of lin{z;:¢ € I}. A biorthogonal system
for X,
(@4, ws)yer @i € X, ui € X* i€l

is total whenever lin {u; : ¢ € F} is dense in X;. When [z;:¢ € I] is
X such a system said to be complete. Whenever (i, ui);cr is both
complete and total then it is called a Markushevich basis. If besides
[u; : ¢ € I] = X* such a basis is said to be shrinking.

A polish space M is a separable topological space admitting a com-
patible metric d such that (M, d) is complete.

For a given set I, £() denotes the subspace of the topological space
R! formed by all elements {z; : i € I) such that the set

{i € I:z; # 0}

is countable. Every compact topological space homeomorphic to a sub-
space of £}, for some I, is called a Corson compact.

Let P and ¥ be two topological spaces. A mapping ¢ from P on the
power set of Y is said to be upper semicontinuous if, for a given p in P
and a neighbourhood V of the set w(p) there is a neighbourhood U of p
such that {g) is contained in V for every ¢ in U.

A topological space Y is defined as K -analytic, [3], if there is a polish
space P and a mapping ¢ from P in the compact subsets of ¥ satisfying
the following conditions

(a) ¢ is upper-semicontinuous.

(b) U{plp):p€ P} =Y.

In the above definition we want P to be only separable and metriz-
able, instead of polish, then ¥ is said to be countably determined, [12].

We say that the normed space X is weakly convex-K-analytic if there
is & mapping ¢ from a polish space P on the weakly compact absolutely
convex subsets of X such that it is upper semicontinuous respect to the
weak topology of X and U{w(p): p € P} = X. If in this definition we
want P to be separable and metrizable, instead of polish, we obtain the
definition of a wekly countable convex-determined normed space X, {11].
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1 Biorthogonal system in Asplund spaces

Before starting the construction of certain biorthogonal systems in As-
plund spaces we give three preliminary propositions.

Proposition 1 Let X be a Banach space. Leli A, and B, be infinite
subsets of X and X", respectively, such that | A |=| Bo |. Let (¥y)
be a segquence of continuous mappings from X into X* which converges
pointwise to the mapping . Then there are two closed subspaces E and
F of X and X*, respectively, satisfying the following conditions:

(a) dens E Sl Ao |, densF <| B, |, Ac C E, B, C F.
(b) Et is an orthogonal complement of F in F + E-.

{(c) For each z in E, yim(z) and ¥(z),n=1,2---, are in F.

Proof. For each u in X* and each positive integer n, we choose in X
an element z(u,n) such that

hown) =1, < = (wn)u>2] w |~

We proceed inductively and suposse that, for a non-negative integer m,
we have already found the sets

Am C X, Bn C X*, | Ao |=| A |=| Bm | .

Let €}, and Dy, be the lineat spans over the field of rationals of A,, and
By, respectively. We write

Ami1:CpU{z(u,n) :u € Dy, n=1,2,---}
Bmi1 = DU {¢n(z):2 € Cm,n=1,2,---}

Let E and F denote the closures of QJOAm and mQLj)O By, in X and
m=iy =Y
X*, respectively. Clearly, £ and F are Banach spaces such that

dens E <{ Ao |, dens ¥ <| By |, Ac CE, Bo C F.
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We take now v € EL, w € F and ¢ > 0. We may find a positive integer
m, L < e, and element v in By, so that || w — u [[< e. Then

1
lw l<lhw =+ ull< e+ < slu,m)u> -+

< 2+ < z(y,m),u+v >< 2t < 2y, m),u — w >|
+|< z(u,m)yv+w>|< 2t u—-w|+|lv+w|<3et|v+wl]

and consequently
w <l v+w],

hence we conclude that E- is an orthogonal complement of F in F+E-L.
Take now z in E. We many find a sequence (xy,) convergent to z so
that z,, 1s an A, m = 1,2--. If we fix a positive integer n, we have

'l’n(l'm) EF, m=1!2"'1

and thus
Yn(z) = im Pp(zm) € F,

hence
$(z) = lim ¥n(z) € F.

q.e.d.

Proposition 2 Let X be a Banach space that does not contain a copy
of 1. Let M be an absolutely convez bounded and closed subset of X*.
Let i be a mapping of the first Baire class from X to X* such that

Y(z) e M, < z,¢(x) >=sup{<z,u>:u€M}, z€X.

Then M is weak star compact and it coindices wit the closed absolutely
convex hull in X* of (1) {v(z) : z € X}.

Proof. Let us assume that the stated property does not hold. Let P
denote the weak-star closure of M in X*. We take an element u, in
P not contained in the closed absolutely convex hull of (1) in X*. Let
(yn) be a sequence of continuous mappings from X to X* pointwise
convergent to . We find two countably infinite subsets A, and B, of
X and X*, respectively, so that u, be in B,. By applying the former
proposition we get hold of two closed subspaces E and F of X and
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X*, respectively, with the properties there stated. We identify E* with
X*/#£4 in the usual manner. Let f denote the canonical mapping from
X* onto X*/EL. Let A be the closure of f(M) in X*/EL. If ¢ is the
restriction of f o to E, then, for every z of E,

w(z) = f(v(z)) € 4,
< z,p(z) >=<z,¥(z) >=sup{< z,u>u € M} =
= sup {< x,u>:u € A}.

Since E is separable with no copy of €1, we may apply [4, Th. IIL4] to
conclude that f(u.) is in the closed absolutely convex hull in X*/ B+ of

{@(x):z € B}.

Since F is lsometric to the subspace F(F) of X*/E* and u. belongs to
F we have that uo belongs to the closed absolutely convex hull in F of

{¢(z) : x € E},

which is a contradiction.
g.ed

Proposition 3 Lel X be a Banach space not containing copy of £1. Lel
¥ be & mapping of the first Beire class from X lo X* such that

| wiz) =1, <z, ¢(z) >=fz ||, z € X.

Let E dnd F be two closed subspaces of X and X*, respectively, such
that EL is an orthogonal complement of F in F + E L Ife(z) isin F
for each x in E then E4 is an orthogonal complement of F in X*,

Proof. As hefore, we identify £* with X*/EL. Again, let f denote the
canonical mapping from X* onto X*/ EL. Let ¢ be the restriction of
fo i to E. Then ¢ : E — X*/E" is of the first Baire class,

lo(z) =1, < z,0(z) >=| z ||, x € E,

hence, by Proposition 2, we have that B(X*/ E*) coincides with the
closed absolutely convex hull in X*/E* of

{p(z):x € E}.
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Thus, if M denotes the closed absolutely convex hull in F of
{¢(z):z € B}

it follows that F'(M) = B(X*/E'). But M C B(F) and f(B(F)) is
contained in B(X*/EL). Therefore, f(B(F)) = B(X*/E"), and s0 E+
is an orthogonal complement of F in X*.

g-e.d.

In the next two propositions we consider an infinite dimensional As-
plund space X such that dens X = dens X ). Let Y be a closed subspace
of X with densY, = dens X. Let g be the first ordinal of dens X. We
set

{wy:0<np < u}

to be a dense subset of X*. Let (1) be a sequence of continuous map-
pings from X to X* converging pointwise to the mapping ¥ such that

9@ =1 <z,¢@) >=lz|, z€X

The existence of these mappings in guaranteed by [6]. We represent by
‘H the family of all triples

((zi, us)icr, E, @)
which accomplish the following conditions:
1. (@3, ui)sey is a biorthogonal system for X, | I |> Ra.
2. E is a closed subspace of X such that

zi € ENY,i€l,densE =|1I].

3. Yn(@) €fui:i € I,n=1,2,--,2 € E, and [u;: i € I| has E*
as orthogonal complement in X*.

4., @ denotes an infinite ordinal not exceeding u and such that
fo|= 11,
wp€lui:i € I, 0< < a.

Proposition 4 H is non empty.
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Proof. We choose a countably infinite set A, formed by linearly inde-
pendent vectors of Y and a countably infinite subset B, of X* containing
{wy : 0 < n < w}. Proposition 1 yields two subspaces £ and F of X and
X*, respectively, with the properties there stated. Proposition 3 then
tells us that F has E* as orthogonal complement in X*. We apply now
the method described in [8, Prop. 1. £3} to find a biorthogonal system
(Zns tn)pen for X such that

lin{zp:n € N} =linA,, [un:n € N|=F.

Then
((a:n, Un)pe N > E,w) €EH.

g.ed.
Given two elements of H, we write

((zi, widicr, E, o) < ((vi,v5), G, 7)

whenever {(x;,u;) : ¢ € I'} and E are strictly contained in {(w;,v;) : 5 € J}
and G, respectively, and o < 7.

Proposition 3 (H, <} is an inductive ordered set.

Proof. Clearly, (H, <} is an ordered set. Let £ be a non-empty subset of
H such that (£, <) is linearly ordered. We denote by {(ck,ux) : k € K},
G and « the union of the sets {(z;, u;} : i € I'}, the closure of the union
of the sets E and the supremum of the ordinals o, respectively, when
((x4, u3)icr, E, ) ranges covers £. We then have that (zp, ug)icy is a
biorthogonal system for X, G is a closed subspace of X such that

zr € GNY, k€ K,densG =| K |,

Yp(z) Elug:k€K],,z€G,n=12---,

and, in light of Proposition 3, G is an orthogonal complement of
[ug : k € K] in X*. Finally

qu[UkaEK],OST]('}/,

and [y |=| K |.
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Theorem 1 Let X be an Asplund space such that dens X = dens X}.
Let Y be a closed subspace of X with densY,} = dens X. Then there is
a biorthogonal sytem (i, ui);c; for X such that

€Y, j€I, [us:i€l}=X".

Proof. We base our discussion on the density character of X. For
separable Banach spaces the property is certainly true, as it follows
from the proof of [8, Prop. 1. f 3]. Let us assume now taht X is
not separable and that, for each Asplund space Z such that dens Z =
dens Z,; < dens X and each closed subspace W of Z, dens W,; = dens Z,
there is a biorthogonal system (2, v;);c; such that

€W, j€J v;:jedJ]=2"

Let p be the first ordinal of dens X. We take a dense subset
{wn:0<n < pu}of X* In light of [6], we may find a mapping ¥ of the
first Baire class from X to X* such that

| () =1, < &, ¢(z) >=f = ||, z € X.

Let (¥,) be a sequence of continuous mappings from X to X* which
converges pointwise to y. We consider now the inductive ordered set
(H, <) formerly defined. Let ((zy, ui)ics, E, o) be a maximal element of
(H, <). Assume o < p. We open up a transfinite induction process by
setting Eq = E and F, := [u; :i € I]. Suppose also that, for a given
ordinal p, a < p < u, we have already defined E, and Fy, o < v < p, s0
that B, is an orthogonal complement of F, in X *, dens E, = dens F,, =
|v|, wy € Fp, 0 <y <,

Yn(z) € Fy,z € Ey,n=1,2---,

If p is an isolated ordinal, since densY; >| p —~ 1 |, we have that F,_;
cannot separate points in Y and hence there is a non-zero element z,
inY N(Fp-1),. Take M and P to be two dense subsets of E, 1 and
F,_1, respectively, with | M |=| P |= dens F,_;. Applying Propositions
1 and 3 to A, := M U {z,} and B, := P U {w,_1} we obtain two closed
subspaces E, and F, of X and X *, respectively, such that

(a) A, C Ep, B, C Fp, denS.Ep = dens Fp :I Ao I.
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(b) Yn(z) € Fp,z € Epyn=12,---
(c) E,;,L is an orthogonal complement of F, in X*.

If p is a limit ordinal, we define E, and F, as the closures of
U{E,:a<v<p}land U{F,:a<v <p}in X and X", respectively.
Then

dens E, = dens F, =| p |

and conditions (b). and (c) are thus satisfied.’
| We write Tp, o < p < u, for the projection of X* onto F, along _Ej,
and T, for the identity operator in X*. The collection

{Tpsa<PSl—"}

fulfills then all the requirements of a projective resolution of the identity
operator in X*, except that o may be different from w. Consequently,
given § > 0 and u in X*, the set of ordinals p for which

I (Tp1—Tp) (u) ||> 6
is finite.
By the procedure we have just followed, given o < £ < u, the sub-

space Y N Egyq N (Fe) . is different from {0}. Let u be any element of
X* and let us assume that the set of ordinals £ for which

Y NEepy N (Fe). C {u},
is not countable. We may then find
el <fiitl<<éiatlc - <m<mtl< - <y,
e>0and xm € Y NEg,+1 N (Fen) | || Tm [|= 1, such that
<zmu>>e,m=12---
Clearly,
< T, T 18 >=< T, >, < 2y, T, >=0,m = 1,2---

and thus
l|< T£m+1 - Tfm)(u’) "> g, m= 1:27' T
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a contradiction. Therefore, the set of such ordinals £ must be countable.
If now G stands for the closure in X of the linear

Y NEcaNFe), ra<é< 20},

then G is a closed subspace of the Asplund space Fg,. Let f be the
canonical mapping from Fo, onto E2,/Es. In the case | o [= R,
we have dens G} = dens Ez,. On the other hand, if | & |> R, for
a subset A of X*, we have in light of the argument above used that
the set of ordinals £, a < £ < 2a, for which there is some u in A not
vanishing in ¥ N B¢y N (F¢) | has a cardinal number not greater than
| A | Ro. Consequently, if A separates points in G, then | A |=| a |, and
dens G} = dens Ea,. Now, since Fo, has E4., as orthogonal complement
in X*, we may identify Fa, with the conjugate of Eo, and Fy, N Fi
with the conjugate of Eon/Ea. Since G is an orthogonal complement of
Fo in Eq + G, it follows that f(G) is a subspace of the Asplund space
Esn/ Ea isometric to G, hence

dens f(G); = dens (E2a/E,) < dens X

and we may thus find a biorthogonal system (t;, us);c;, for Eoa/Eq, I
disjoint from I, such that

t; € f(G),i € I, [ui:iEII}ZFgaﬂE“i‘.

By selecting z; in G with f(z;) = t;, i € I;, and setting J := T U I, it
turns out that
((zj: uj)jed, E20,2a) € H
and
((z4, wi)ier, B, @) < ((x4,4j)je7, B2a, 20},
thus attaining a contradiction. Thereby oo = u and (z4, ui);cr is a
biorthogonal system for X such that

zeY,icl, [u:iel]l=X"
qg.e.d.

Theorem 2 If X is an Asplund space, then there is o total biorthogo-
nal system for X, (xi,u;);cy, such that, if v; is the restriction of u; to
[zi:2 € 1], i € I, then (x4, v;),c; i3 a shrinking Markushevich basis for
(zi:i €Il
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Proof. }f X? is separable, the result then follows from {8, Prop. 1. f.
3]. Assuming that X} is not separable, let {w, :0 < 5 < u} be a dense
subset of X7, with p the first ordinal number of dens X}. Let (y) be
a sequence of continuous mappings from X to X* converging pointwise
to ¢ and such that-

I ¥(z) =1, < z,¢(z) >=[ z ||, z € X.

We consider a countably infinite set A, of linearly independent vectors
of X, as well as a countably infinite subset B, of X* such that w, €
B,,0 £ n < w. We apply Proposition 1 to obtain subspaces £ and F
with the properties there stated. We open up a new transfinite induction
process by setting F,, := E and F,, := F. Suppose that for an ordinal
pyw < p < u, a collection of subspaces E, and F,w < v < p have been
defined in such a way that E;- is an orthogonal complement of F,in X*,

densE, =dens F, =| v |, wy € Fy,,0 <> v,

¢ﬂ(x) EFV?xGElhn: 1s2!"'

Proceeding analdgously as in the proof of our last theorem, taking ¥ =
X, we are able to comstruct E, and E, Since E,;L is an orthogonal
complement of F, in X*, we may identify F, with the conjugate of E,.
For évery ordinal a,w < a < u, let S, be the mapping from Fj; onto Fo
along to EL N F,. Then '

{Sa:w<a<yu}

is a resolution of the identity operator in Fj,. The argument followed in
the proof of the mentioned theorem leads us to

dens E, = dens (E,)), =|n | -

By appling Theorem 1 we obtain a biorthogonal system (z;, u;);c; for
E, such that [u;:i € 1] = X*/ Ef; Hence, if v; denotes the restriction
of u; to [z; : i € I| we have that (i, vi);c; is a shrinking Markushevich
for {z; 14 € I].

ged.

Corollary If X is an Asplund space, then there is a totel biorthogo-
nal system for X, (zs,u);c;, such that [z; : i € I] is a weakly compactly
generated Banach space
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Proof. A straightorward consequence of the former theorem and [9, p.
700}.
g.e.d.

2 Weakly countably convex-determined normed
spaces

We give here a few results, some of which will be used in the next section.

Proposition 6 For ¢ Banach space X the following assertations are
equivalents:

(a) X is weakly countably convezr-determined.
(b} X is weakly countably determined.

{(c) There exists a metrizable separable topological space P end a map-
ping ¢ from P to the compact subsets of X, which is upper semi-
continuous, rvespect to the week topology of X, and such
that U{p(p) :p € P} is dense in X.

Proof. (a) = (b) and (b) = (c) are obvious. We show that (¢) = (a).
Since every polish space is a continuous image of nhN , IN equipped
with the discrete topology, it means no restriction to assume that P
is a subspace of IV N Tet B denote the closed unit ball of X. For

an element {n1,ng,---,ng,---) in P, let ¥(ny,ng, -+,nq---) represent
the closed absolutely convex hull of ¢(nj,ng,---,nq--+). By Krein's
theorem, (7, p.325], ¥ (n1,n2, - -, nq- - -) is weakly compact. Besides, it is

not difficult to verify that ¢ is upper semicontinuous respect to the weak
topology of X. Now, given a positive integer n and a double sequence
(nrq) such that, for each positive integer r, (ny1,mp2, -+, Tipg, - - +) is in
P, we define

Ao, (1rg)) = (B) N ([ B(me med -+ gy =) + =B)).

Clearly, this set is absolutely convex, closed and bounded in X. We
consider a sequence '

(2) (n, (Bg"))m = 1,2,
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such that
b(m)—n,.q,rq—-IQ -om,m=1,2,--.,

and, for fixed positive integers m and r, (b&’;")) be in P. For each positive
integer m, we choose an element z,, in A(n, (bg-?))). Let z, be a point in
the weak-star adherence of (z,,) in X**. For any fixed positive integer
T, we may write’

. 1
IZm = Ym + Zm, Ym € 'ﬂb(b-gn): b(m) b,(.’,}"), TN Zm € ;B.

Then there is a point z, in the weak-star adherence of (z,) in X ** such
that y, := x5 — 2o is in the weak-star closure of (yy) in X** and, since

rl Tq [
is a sequence in P converging to (ny1,nr, -, Rrg, ), it follows that
o belongs to ¥(ny1, nyo, -+, nrq- - -). Besides this, distance in X** from
zo to X is less or equal than || zo — yo {|=|| 2 [|< 1 and, being the

inequality true for any positive integer r, we have that z, is in X. it
is now clear that x, belongs to A(n, (nyg)). If the sequence (2) is taken
such that

b-g-gt) = "rq1 m,r.q =,1327" "

then z,, is in A(n, (nyg)),m = 1,2,---, and thus has its weak adherent
point z, in this set. Hence A(n, (n,g)) is weakly compact.

Now, let M be the set of all pairs (n, (nyq)), where n is a positive
integer such that, for each r, (nr1, 702, -+, 7g---,) is in P. We consider
in M the topology of termwise convergence. We then have that M is
metrizable separable topological space, and A is a8 mapping from M to
the weakly compact absolutely convex subsets of X. We see next that
A is upper semicontinuous respect to the weak topology of X. Take
(n,(nyg)) in M. Let V be a neighbourhood of A(n, (nrq)) in Xs. On
assuming that no image under A of any neighbourhood of (n, (nrg}) in M
is contained in V', we may find a sequence in M convergent to (n, (nyq))
and such that the image under A of each of its terms is not contained in
V. Since this sequence has a subsequence of the type (2), we may select

Zm € Aln, (BN, m = 1,2,
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Thus, if z, is a weak-star adherent point of (x,,) in X**, by the argument
formerly employed, we have z, in A(n, {nrq)), which is a contradiction.

Fipally, for a point z in X, we find a positive integer m such that
r € mB and, for each positive integer r, we find (my1, mp2, -+, Mirg, -+ -, )
in P such that

(= + %B) N(mel, me2, -, Mg+, ) # ¢-
Hence,
2 € (mB) N (P(met, e,y mrg-,) + 2B).
Consequently,
U{A(n, (nrg)) : (n,(nrg)) € M} = X.
g.ed.

Proposition 7 For o« Banach space X, the following assertions are
equivelent:

(a) X is weakly convezr K-analytic.
(b) X is weakly K -anclytic.

(c) There is polish space P and a mapping ¢ from P on the compact
subsets of X, which is upper semicontinuous with respect to the
weak topology on X, and such that U{p(p) :p € P} is dense in
X.

Proof. It is totally analogous to the proof of last proposition, only
noticing that P is now identifiable with IV N and M is the set of all pairs
(r,{nrq)), n being any positive integer and (nyq) any double sequence
of positive integers.

g.e.d.

Note 1 Let X be a weakly compactly generated Banach space. Let D
be a weakly compact absolutely convex hull of X such that lin D is dense
in X. Let ¢ denote the mapping from NV on the compact subsets of
X such that

(p(nlanQ,"'!nqa"l)=n1Dv(n11n2"”rnQ1“A') GNN

Then, condition (c) of the former proposition holds, this yielding Tala-
grand’s result that X is weakly K-analytic, [10].
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Proposition 8 For a normed space X the following assertions are equiv-
alent:

(a) X tis weakly countbly convex determined.

(b) X admits a sequence (Uy) of absolutely convez closed and bounded
zero-neighbourhoods such that, for each z in X, there i3 a decreas-

A 3 . . o bd o
ing subsequence (Up;) of (Uy) such that z is in ,nl Un; and ‘Ul Uy,
i8 a zero neighbourhood in X .

(¢) In X, there is a sequence (Bp) of compact absolutely conver sub-
sets such that for each zero-neighbourhood W it is possible to find

an increasing subsequence (Bn;} of (Bn) so that 'oljl Bn; be a zero-
J:

neighbourhood in X, contained in W .

Proof. (a) = (b).B denotes the closed unit ball of X. Let ¢ be an upper

semicontinuous mapping from a subspace P of IV N on the weakly com-
pact absolutely convex subset of X, X provided with the weak topology,
such that

X =U{plp) :p € P}

Given the positive integers j,m1,- -+, m;, we write Am1,mo,---,m; for
the subset of P whose elements (by,b,- -, by - -} satisfy

bq: Mg, § = 1,2,"',j-
Given the positive integers m, j, m1, mg, -+, m;, we define
Cm’ml’mz,...,mj ey X

whenever Apy my,...m; is empty. If this latter set is not empty, we write
By ,mg,,m; for the absolutely convex hull of (A, ms,, - m;) and denote
by Cinmy,ma,m; the closure in X of the set

1
(m B) n (Bml'mz,...'mj + J—B).

We order all the sets Cpymy,mj,-,m; in a sequence (Uy).
For a point z in X, we find (m1,ms2,---,mg,---) in P such that

T € go(ml,mg,---,mq,---).
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We determine also a positive integer m such that z is in mB. Then,
from the sequence

Cm,ml,mg,---,mjtj = ]-a 2? ST,

it is possible to find a subsequence which at the same time is a subse-
quence (Up;) of (Up). This subsequence is clearly decreasing and

o0 oo
z € 0 Un; = N Cryms maymy-

For each positive integer j, we take z; in Un,. Then, there is

1
yj E BmI,mQ,"',mj7 Zj [ ;‘B, y] + zj e m B,

|
=5 — (w5 +25) lI< ;,J=1,2,---

Since (z;) converges to zero in X, there is an element z, in X** which
is weak-star adherent to both sequences (z;) and (y;). Let us suppose
that z, does not belong to ¢(mi, ma,---,mgq,-- -}, Wefind u in X™* such
that

< Zo, U > 2> 1} |< x,u >E< lvx € (P(mlva:" 'Aamq," ')
We determine a positive integer r» such that
t< z,u >‘< 1’ T € (P(b].!b2!'.'?bQ'!"-)'r

(b1, b2, bg, ) EP, bj=my, i = 1,2,---,7.
Hence, |< yj,u >[< 1, 2 r, and |< o, u >|< 1, a contradiction. Thus,
oo

ﬂ Un; is weakly compact. Consider now
i=1

* oo [=]
veXtvg U U,
=1 ™
For each positive integer j, we select

25 € Up;, |< 25,0 >|> 1
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We proceed as before to find z. in ¢(m1,ma, -+, mg, - -) weakly adher-
ent to (zj). Then, |< z,,v >|> 1, and thus

oy [o o]
(3) weX":|<z,w>|<lze[|UnpC UUs.
j=t1 j=1
o
Since n Un; is absolutely convex and weakly compact, the conclusion
i=1

now follows from (3).
(b) = (a). We arrange in a sequence, (By), the sets

(U{Un:neJd})°®

with J ranging over the family of non-empty finite subsets of IN. These
sets are absolutely convex and compact in X;. Let W be a zero-
neighbourhood in this space. There is a finite number of points
T1,Ty,---,xy i X such that

{1'11 Lyt ?IT}O c W
We find, for each x4, 1 < i < r, a decreasing subsequence (Up, ;) of (Uy)
oo oo
such that z; is in n Un,; and U Ugj,i is a zero-neighbourhood in X /.

=1 j=1
From the sequence

(U{Unj,i‘i= 1,2,~--,r})°,j= 1,2,

we may find a subsequence at the same-time being a subsequence (Bn;)
of (Bp). Obviously, (Bp;) is increasing and

U By, CW
g=1 T

It can be easily seen that
T

A(OUS )= 0B
11 AT g TN

therefore this set is a zero-neighbourhood in X ).
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(¢) = (a). Let P stand for the subspace of IV N consisting on
all elements (ny,ng,---,ng,---) such that n; < njyy,j = 1,2,---, and

L,l1 Bp; be a zero-neighbourhood in X ;. We write
=

o
Qo(nlsn'2:"'1n'Qs ) = n BTOI.J

We have that ¢ maps P on the weakly compact absolutely convex parts
of X.
Given z in X, there is an increasing subsequence (Bp,) of (By) such

that U1 By, is contained in {z}° and is also a zero-neighbourhood in
J=
X ;. Then (ny,ny,---,ng,---) belong to P and

x Ecp(nlsnzv"'an ')

Henceforth,

U{‘P(nl,“%“';ﬂq,"') 3”1,"2a“‘:"q:"') E‘P}:-‘X

Assuming that ¢ is not upper semicontinuous, there are a point
(n1,n9,++,ng,---) in P, a neighbourhood V of p(ni,ng,---,ng,-++) in
X, and a sequence in P,

(n‘l 1n"2 1"'1“23")1"')?.7-:1121“'7
(J)

such that, for each positive integer j,n§ = ns, s=1,2,---,j, and

<p(n1 sng): ] (J) )¢ |4
Choosing
z; & (P(nl 1”%7)1"'111(?) )\Va
we have .
J 0
zT; € agl B,
For a given element u of X*, there are o > 0 and a positive integer m

such that au is in By,,. Thus

1
1< Ija“>‘$ E;:J > m,
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and so (z;) is a bounded sequence in X. Now, let z, be weak-star
adherent to (z;) in X**. Obviously,

zo & p(n1,no, -, ng, ).
Let v be an element of X* such that

< zo,v >|> 1, [< z,v >|< 1,z € p(n1,n2, -+, ng, ).

o :
Since Y Bp; is a zero-neighbourhood in X, we have that v belongs to

such a neighbourhood. Hence, there is a positive integer & such that v
is in Bp,. Thus, z; is in By, for j > k, which implies that < zo,v >< 1,
a contradiction.

' g.e.d.

Note 2 It is shown in [13] that if X is a weakly countably determined
Banach space, there is a sequence (Ay,) of absolutely convex closed and
bounded zero-neighbourhood in X such that, for each z in X, there is
a subsequence (Ap,) of (Ay) for which

w ~
T € ﬂAnj C X,
J=1

where A’nj denotes the weak-star closure of Ay, in X**,j = 1,2, .- This
result can be used to obtain condition (b) of proposition 8 when X is a
Banach space.

3 Markushevich bases in weakly countably con-
vex-determined normed spaces

It is shown in {12], using a method originally introduced by D. Amir and
J. Lindenstrauss to study certain properties of weakly compactly gen-
erated Banach spaces, [1], that a weakly countably determined Banach
space admits a projective resolution of the identity operator. This result
is extend in [11] for certain metrizable locally convex spaces by means
of a somewhat simpler method than that of [1].

Following a standard procedure, Markushevich bases for certain Ba-
nach spaces, such as those weakly countably determined, may be ob-
tained by means of projective resolutions of the identity operator.



Biorthogonal systems in certain Banach spaces 211

In this section we shall use some ideas of [11] to construct total
biorthogonal systems in certain Banach spaces, consequently obtains
Markushevich bases, with some additional properties, in weakly count-
ably determined Banach spaces with no mention of projective resolutions
of the identity operator.

In the next four propositions, we consider a Banach space X and a se-
quence (V) of absolutely convex closed and bounded zero-neighbourhood
in X, with || - |, being Minkowski’s functional of V;,n =1,2,--- Let Y
be a normed subspace of X. We assume that, for each y in Y, thereis'a

Q0
decreasing subsequence (Vy,;) of (Vi) such that y belongs to ﬂ Vp,; and
j=1
EJOI Vy; is a zero-neighbourhood of X* [e(X*,Y)].
i=

Proposition 9 Let A, and B, be two infinite subsets of Y and X*,
respectively, and let A be a cardinal number such that | A, |< A, | Bo |€
X. There are two closed subspaces E and F of Y and X, respectively,
such that

(a) E D Ao, dens E < A,
(b) F D Bo,dens F < A,

(c) If E;denotes the closure of E in X, F| is an orthogonal complement
of Ein E+ F| respect to || - |lp,n = 1,2,---

d) E+F . NY =Y.

Proof. If u is an element of X* and m is a positive integer, we put
| ¢ |m for the norm of u |y when we consider ¥ provided with the norm
restriction of || - ||;n. For every positive integer r ad z in X, we choose
u(z,r) in X* such that

" U(I,T) "T‘Z 1? H T ”7‘__"< z, u(:r,r) >.

Given two positive integers r, s and a vector v in X* we find z(v,r,s) in
Y such that

s—1

“ a7(""1"‘13) "‘l'= 1, I< :r(v, T >,U >l2 Iv |r
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Proceeding inductively, let us assume that, for a non-negative
integer n, we have subset A4,, and B, of Y and X*, respectively, with
| An |€ A,| Br | A. Denote by Cy, and Dy, the linear span over the
field of rational numbers of A, and B, respectively. We set '

An+1 = CnU{.’B(U,T’,I) iV € Dy, 8= 1,2""}a
Bnyy = Dp\Hulz,r) 2 € Cp, r=1,2,---},

If E and F are the closures of U A and Ll B, in Y and X, respec-

tively, with the topologies mduced by those spaces, then E and F are
lirear spaces such that

densE £ A, densF < X\, £ D A,, F D B..

Givenz in E,zin F|,r in IN and 6 > 0, we choose a positive integer n
and an element ¢ in A, with | z — ¢ |l,< . Then

lzll-<llz—tllr-+ 1l tlr< 6+ < t,ult,r) >= 6+ < t+z,ult,r) >

<ot l<z+z,ult,r) >+ <t —zx, ult,r) >|
<btlzt+zlr+lt—zlr<lz+z|r+26

and consequently
hzle<llz+2llp, r=1,2,---,

whence we have that ENF; = {0} and F| is an orthogonal complement
of E in E+ F, respecto to || - |, r = 1,2, -- Suppose now that E + F
does not contain ¥. We find w in X* whose restriction to ¥ does not
vanish while it does in the Banach space E + F|. Take y, in ¥ with
< Yo, v >= 3. We find a decreasing subsequence (Vy,;) of (V) such that

o0
Yo € M = r] an!
F=1
and
o0
(4) u V,‘,’J_
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is a zero-neighbourhood in X* [u(X*,Y)]. We claim that
() v+ M)NM° =g,

otherwise, if u were in (v + M°) N M°, then v — u and u would both
belong to M°, thus yielding the clear contradiction

1 2|< ¢o,v — u >|2|< yo, v >| = |< po, u >|2 2.

Since (4) is a zero-neighbourhood in X”* [u(X*,Y}| and v is in F, there,
is a term V; of (V») and an element w in X* such that

oo
(6) w € (v+ V)N (| Bn)-

n=0
It follows from (5) and (6) that w is not in M° and | w — v ||, < 1. But
M, being the polar of (4) in X, is a weakly compact absolutely convex
subset of Y, hence

oC
M= (Vo NY).
i=1
It is now plain that w is not in (V, NY)°® and so | w [r> 1. We take a
positive integer s such that 9;—1 |w |p> 1. Then z(w,r,z) is in E and
thus

-1
1 2“ w—=uv “!"2|< :r(w,r, s),w—v >|:|< x(wvr? 8),‘11) >IZ f“—_g,_ | w I!"> 1!

again a clear contradiction. it follows then that E + F; D Y. Finally,
take a point z in ¥. We find a decreasing subsequence (Vin,) of (Vin)
such that
o0
z€P = n Vin,
i=1
and

oo (=]
@ S,

is a zero-neighbourhood in X* [¢(X*,Y)]. Then P is the polar set of (7)
and thus it is a weakly absolutely convex subset of Y. Let 17" be denote
the projection of E + F; on E along F). Then

Q0 [s o]
Tz€T(P)C (| T(Vin) C [ Vm; =P CY,
=1 j:l
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and so z — Tz is also in Y. Hence
z=Tz+(2~Tz), Tz€ E,z—Tz € F| NY,

and we have E + F), NY =Y.
q.e.d.

Proposition 10 If densY > dens X, then densY = dens X,

Proof. Assume X := dens X} < densY. Let A, be an infinite subset
of Y with | 4 |[< A, and B. a dense subset of X} such that | B, [= A.
We apply our last proposition to obtain E and F with all the properties
there is stated. Since densE < Aand E+ F. NY =Y, it follows that
F, has infinite dimension . It is also clear that F coincides with X*,
thus attaining a contradiction.

g.e.d.

For the two coming propositions we assume X is infinite dimensional
and densY = dens X;. Let u denote ther first ordinal of densY. The
sets

{vy:0<np<pu}, {vn <y <p}

will be two dense subsets of Y and X7, respectively. We shall represent
by H the family of all pairs

({zi, ui))ier, @)
satisfying the following conditions:
1. (z4, ui)icr is a biorthogonal system for X.

2. {u;:i €1}, is an orthogonal complement of [x;:i € I] in
[¢i:i €I +{ui:i €I}, for the norms || - |n, n=1,2,---

3. a is an infinite ordinal not greater than p and such that | a |=| I |,
yp€lzi:i€l],0<n<a,
and if Fy denotes the closure of lin{u; :i € I} in X},

4 zieY,ic€l,and[zi:i € )NY +{u:i€l}, NY =Y.
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Proposition 11 H ts not empty.

Proof. We take two countably infinite subsets A, and B, of ¥ and X*,
respectively, such that lin Ao has infinite dimension and

quAo,'UQEBo,OST]<w.

Proposition 9 applies to yield £ and F with the afore mentioned prop-
erties. Using the method described in (8, Prop. 1, . 3| one can
easily construct a biorthogonal system (Tn, Un)pepv for X such that
lin{zn:n € N} and lin{un : n € N} be dense subspaces of E and F,
respectively. It follows inmediately that

((Zns tn) e v w) € H-

For two elements in M, we write

((z4, widier, @) < ((z5,v5)5e7, B)

whenever {(zi,u;) : i € I} is strictly contained in {(z;,v;) : € J} and
a< B

Proposition 12 (H, <) is an inductive ordered set.

Proof. It is plain that (H, <) is an ordered set. Let £ denote a non-
empty linearly ordered subset of (H, <). We denote by {(zx, ug): k € K}
and 7 the union of all sets {(zs,u;} : ¢ € I} and the supremum of all or-
dinal e, respectively, when ((z;, ui)icr, @) ranges over L.

We then have that (xk, ux)kck is a biorthogonal system for X such
that zx is in Y, k € K. Clearly, {ux: k € K}, is su orthogonal comple-
ment of [zg : k € K|in [zx : k € K]+{ux : k € K}, respect to || - n,n =
1,2,--- Besides, v is an infinite ordinal, v < g, such that | v |=| K |,

ynE[l‘k:kEKl,OSﬂ'(%
and, if Fx is the closure of lin {ug : k¥ € K} in Xg, then
vg € Fi, 0 S n <.

Let us take
A= ((.7,‘," “i)ieh C!) eL
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and choose z in ¥. Then
z=y(A)+z(A), y(A) € [zi:i € IINY, 2(A) € {up:i € I}, ny.

We find a decreasing subsequence (V}, ;) of (V) such that
o0
z €P = (| Vp,
=1

and EJOI Vy,, be a zero-neighbourhood in X* [u(X*,Y)]. Now followin ga
g e

similar argument to that of Proposition 9, we have that y(A) belongs to
the weakly compact absolutely compact subset P of Y. Hence, the net
{y(A) : A € £, <} has a weakly adherent point y in PNz : k € K|. The
point z := z—y is therefore weakly adherent to the net {z(A) : A € £, <},
thus obtaining

T=yt+z€[zr:k€KINY +{ux:k €K} NY

and 50 [z : k € K|NY +{ux: k € K}, NY =Y. We may thus conclude
that ((z, ux)kck,7) is an upper bound of £ in (M, <).

Theorem 3 Let X be a Banach space. Let Y be a normed subspace
of X such that densY < densX}. IfY is weakly countably conver
determined, then there is a total biorthogonal system (x4, ui)icy for X
such that lin {z : i € I} is a dense subspace of Y.

Proof. We proceed over the density character of Y. If Y is separable,
the stated property can be shown via the method of [8, Prop. 1. f. 3.
Assume now that Y is not separable and that for each Banach space W
with a normed subspace H such that dens > dens W,,dens H < densY’,
being H weakly countably convex-determined, there is a total system
(zj, wj)jes such that lin {z;: j € J} is a dense subset of H. Let (U,) be
a sequence of zero neighbourhoods in ¥ such that they are absolutely

convex closed and bounded and, for each y in Y, there is a decreasing
oo

subsequence (U, ) of (Uy) such that y belongs to n Uy, and, if Wy, is

=1
the polar set of U, in Y*,n = 1,2, .- -, 9] Wy, be a zero-neighbourhood
=1 "
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in Y*[u(Y*,Y)]. We denote by V,, the closure in X of Un + %B(X). It
is clear that '061 U,‘,:J. is a zero neighbourhood in X * [u(X*,Y)]. Let u be
j= :

an element of —é- EJOI U;:J.. We find a positive integer  such that 2u € Uy
J:

- a m -
and 2 || u ||< ny. Let us assume that u is not in 'Ul V,fj. Thus, u is not
J:

in V,; , and hence thereis an « in Up, + %B(X) such that < z,u > > L.
We write

1
x=x1+zo, ) €EUp,.,x2 € -n—B(X)
r

We have then

1 u 1
—>< 2,0 >=< 2, u> — < :cg,u>>—lfu—" > 3

2 Ty

a contradiction. Therefore

8

Q ©a Le]
1 Uns < 5L=Jl Vo

[ =N
IN'C

J

and fJol Vs, is a zero-neighbourhood in X* [u(X*,Y)].
J:

Now, Proposition 10 may be applied. Let i denote the first ordinal
of densY = dens X 2. We choose and set {y, <5 < p}, {vy:0 <n < p}
and (#, <) as before. By applying Proposition 12 we obtain a maximal
element ((z:, ui)icr, @) in (H, <). Suppose a < p. Then | e |=| I |<| |-
We choose a subspace H of Y N {u;:i € I}, with densH =| a |. We
take a dense subspace A of H with | A |=| a |. Applying Proposition 9
for

Ao:i={z;:i € I}UAU {ya}

Bo:={u;:i€ItU{va}

and A :=| a |, we get two subspaces £ and F with all the properties
there mentioned. Let G represent the closure of lin{u;:i € I} in Xg.
Let ¢ be the canonical mapping from X onto X/F;. If L := ¢(E), then
L is isomorphic to E and thus is weakly countably convex-determined.
We identify F, in the usual manner, with the topological dual of X/F,.
Let M denote the orthogonal complement of G in X/F|. Then, M N L
is a topological complement of ¢([z;:i € I]NY) in L. We have thus
the following situation: M is a Banach space whose topological dual is
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F{G; MNL is a normed subspace of M such that it is weakly countably
convex-determined and

| @ |= dens(M N L) > dens(F/G).

Hence, there is a total biorthogonal system (t;,w;);es for M, J disjoint
from I, such that lin{¢;: j € J} is a dense subset of M N L. Let %
denote the canonical mapping from F onto F/G. For every j in J
we take z; in EN{u;:i €I}, and u; in F Njz;:i€ I]" such that
w(z;) = t; and ¥(uy) = wj. Setting K := JUJ, we have that (z;, u;)icx
is .a biorthogonal system for X such that [x;:i€ K]NY = E, and
lin{u;:i € K} is dense in F. It is easy to see that ((z;, us)ick, o + 1)
belongs to (H, <) and it is clearly strictly posterior to ((xi, ui)ies, ).
We have thus attained a contradiction. Hence o = #, (zi, ui)icr satisfies
the required properties.
g.e.d.

Corollary Let Y be o dense subspace of a Banach space X. IfY
is weakly countably convezr determined there is a Markushevich basis
(i, ui)icr for X such thatz; €Y,i € 1.

Note 3 Let X be a weakly countably determined Banach space. Propo-
sition 6 and the former corollary allow us to assert that there is a Marku-
shevich basis (s, us)ics for X. Let M be the subset of X* consisting on
all elements u such that

{iEI:(I,‘,‘u>7£0}

is countable. Clearly, M is a linear subspace of X*, Let (By,) denote the
sequence of weakly compact absolutely convex subsets of X2 defined by
means of condition (c) of Proposition 8. Let v be a point in the closure
of M N B(X*) in X}. Given a positive integer n, if

(v+ Bp) N M N B(X*)

is not void, we take vy, in such a set; on the other hand, if it is empty,
we take vy, to be the zero vector of X*, Let V be a zero-neighbourhood
in X;. We find an increasing subsequence (By,) of (By) such that

Bﬂj C Vsj:1327""
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and U Br; is a zero-neighbourhood in X ;. Since M N B(X*) is convex,

its closures in X; and X, respectively, coincide, and hence we bave that

v+ fJol By; meets M N B(X*). Thus, there is a positive integer j such
=

that
v+ B, "M NB(X") # ¢,

and so0 up; belongs to v+ V. Consequently, (v,) has v as an adherent
point in X* and we conclude that v is in M. Then, M N B(X*)
weak-star closed By Krein-Smulian theorem, [5, p. 246], we have that
M coincides with X*. A consequence of this is the well known result
which states that, for a weakly countably determined Banach space X,
the closed unit ball of its dual is a Corson compact for the weak-star
topology, [12].
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