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Abstract

We generalize the concept of biorthogonal wavelets to a local fieldK of positive char-
acteristic. We show that if the translates of the scaling functions of two multiresolution
analyses are biorthogonal, then the associated wavelet families are also biorthogonal.
Under mild assumptions on the scaling functions and the wavelets, we also show that
the wavelets generate Riesz bases forL2(K).
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1 Introduction

The concept of wavelet is defined and studied extensively in the Euclidean spacesRn,
see [10, 14, 21, 31, 32, 37, 38] and references therein. Subsequently, it has been extended
to many different setups. Dahlke [13] introduced this concept on locally compact abelian
groups. This was generalized to abstract Hilbert spaces by Han, Larson, Papadakis and
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Stavropoulos [20, 35]. Lemarie [28] extended this concept to stratified Lie groups. Re-
cently, R. L. Benedetto and J. J. Benedetto [6, 7] developed a wavelet theory for local fields
and related groups.

A field K equipped with a topology is called a local field if both the additive and mul-
tiplicative groups ofK are locally compact abelian groups. The local fields are essentially
of two types (excluding the connected local fieldsR andC). The local fields of character-
istic zero include thep-adic fieldQp. Examples of local fields of positive characteristic are
the Cantor dyadic group and the Vilenkinp-groups. Even though the structures and met-
rics of local fields of zero and positive characteristics are similar, their wavelet and MRA
(multiresolution analysis) theory are quite different.

Khrennikov, Shelkovich and Skopina [23] constructed a number of scaling functions
generating an MRA ofL2(Qp). But later on in [3], Albeverio, Evdokimov and Skopina
proved that all these scaling functions lead to the same Haar MRA and that there exist no
other orthogonal test scaling functions generating an MRA ofL2(Qp) except those described
in [23]. Some wavelet bases forL2(Qp) different from the Haar system were constructed
in [15] and [2]. These wavelet bases were obtained by relaxing the basis condition in the
definition of an MRA. Moreover, these systems form Riesz bases without any dual wavelet
systems.

Haar type wavelets can also be constructed on certain metric-measure spaces without
any algebraic structures, namely on a space (X,d,μ) of homogeneous type. A space of
homogeneous type is a quasi-metric spaceX with quasi-metricd such that thed-balls are
open sets, andμ is a regular measure defined on theσ-algebra containing thed-balls that
satisfies the “doubling condition”, i. e., there is a constantA such that the measure of a ball
of radius 2r is at mostA times the measure of the ball of radiusr with the same centre. We
refer to [1] for the details of this construction. Novikov and Skopina have observed that
this can also be done in the absence of a metric. In [33] they showed the existence of Haar
MRA on a measure space (Ω,Σ,μ) equipped with a topology such thatΣ contains all the
open sets and satisfies some other conditions.

On the other hand, Lang [25, 26, 27] constructed several examples of compactly sup-
ported wavelets for the Cantor dyadic group. Farkov [16, 17] has constructed many ex-
amples of wavelets for the Vilenkinp-groups. Several examples of biorthogonal wavelets
on the Vilenkin groups were constructed by Farkov in [18] and by Farkov and Rodionov
in [19]. By choosing the parameters appearing in these constructions suitably, we can see
that these wavelets are not orthogonal. Also, in [19], the authors have provided an algorithm
to construct biorthogonal wavelets on such groups.

For related works on zero-dimensional groups, we refer to [30] and references cited
there.

Jiang, Li and Jin [22] gave the definition of an MRA on a local fieldK of positive
characteristic and constructed the wavelets from an MRA. In [4], among other results, we
characterized the scaling functions of MRAs of local fields of positive characteristic, and
in [5], we constructed the wavelet packets and wavelet frame packets associated with such
MRAs.

The concept of biorthogonal wavelets plays an important role in applications. We refer
to [11, 12, 24] for various aspects of this theory onR. For the higher dimensional situation
onRn, we refer to the articles [8, 9, 29].
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In this article we generalize the concept of biorthogonal wavelets to a local fieldK of
positive characteristic. We show that ifϕ andϕ̃ are the scaling functions of two multires-
olution analyses (MRAs) such that their translates are biorthogonal, then the associated
families of wavelets are also biorthogonal. Under mild decay conditions on the scaling
functions and the wavelets, we also show that the wavelets generate Riesz bases forL2(K).

The article is organized as follows. In section 2, we give a brief introduction to local
fields and Fourier analysis on such a field. In section 3, we find necessary and sufficient
conditions for the translates of a function to form a Riesz basis for its closed linear span. We
give the definition of an MRA in section 4, where we also define the projection operators
associated with the MRAs and show that they are uniformly bounded onL2(K). In the
last section, we prove that the wavelets associated with dual MRAs are biorthogonal and
generate Riesz bases forL2(K).

2 Preliminaries on local fields

Let K be a field and a topological space. ThenK is called alocally compact fieldor a local
field if both K+ andK∗ are locally compact abelian groups, whereK+ andK∗ denote the
additive and multiplicative groups ofK respectively.

If K is any field and is endowed with the discrete topology, thenK is a local field.
Further, ifK is connected, thenK is eitherR or C. If K is not connected, then it is totally
disconnected. So by a local field, we mean a fieldK which is locally compact, nondiscrete
and totally disconnected.

We use the notation of the book by Taibleson [36]. Proofs of all the results stated in this
section can be found in the books [36] and [34].

Let K be a local field. SinceK+ is a locally compact abelian group, we choose a Haar
measuredx for K+. If α , 0,α ∈ K, thend(αx) is also a Haar measure. Letd(αx) = |α|dx.
We call |α| theabsolute valueor valuationof α. We also let|0| = 0.

The mapx→ |x| has the following properties:

(a) |x| = 0 if and only if x= 0;

(b) |xy| = |x||y| for all x,y ∈ K;

(c) |x+y| ≤max{|x|, |y|} for all x,y ∈ K.

Property (c) is called theultrametric inequality. It follows that

|x+y| = max{|x|, |y|} if |x| , |y|.

The setD = {x ∈ K : |x| ≤ 1} is called thering of integersin K. It is the unique maximal
compact subring ofK. DefineP = {x ∈ K : |x| < 1}. The setP is called theprime idealin
K. The prime ideal inK is the unique maximal ideal inD. It is principal and prime.

SinceK is totally disconnected, the set of values|x| asx varies overK is a discrete set
of the form{sk : k ∈ Z} ∪ {0} for somes> 0. Hence, there is an element ofP of maximal
absolute value. Letp be a fixed element of maximum absolute value inP. Such an element
is called aprime elementof K. Note that as an ideal inD,P = 〈p〉 = pD.
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It can be proved thatD is compact and open. Hence,P is compact and open. Therefore,
the residue spaceD/P is isomorphic to a finite fieldGF(q), whereq= pc for some primep
andc ∈ N. For a proof of this fact we refer to [36].

For a measurable subsetE of K, let |E| =
∫

K
χE(x)dx, whereχE is the characteristic

function ofE anddx is the Haar measure ofK normalized so that|D| = 1. Then, it is easy
to see that|P| = q−1 and|p| = q−1 (see [36]). It follows that ifx, 0, andx ∈ K, then|x| = qk

for somek ∈ Z.
LetD∗ =D \P = {x ∈ K : |x| = 1}. D∗ is the group of units inK∗. If x, 0, we can write

x= pkx′, with x′ ∈D∗.
Recall thatD/P �GF(q). LetU = {ai : i = 0,1, . . . ,q−1} be any fixed full set of coset

representatives ofP in D. Let Pk = pkD = {x ∈ K : |x| ≤ q−k},k ∈ Z. These are called
fractional ideals. EachPk is compact and open and is a subgroup ofK+ (see [34]).

If K is a local field, then there is a nontrivial, unitary, continuous characterχ on K+. It
can be proved thatK+ is self dual (see [36]).

Letχ be a fixed character onK+ that is trivial onD but is nontrivial onP−1. We can find
such a character by starting with any nontrivial character and rescaling. We will define such
a character for a local field of positive characteristic. Fory ∈ K, we defineχy(x) = χ(yx),
x ∈ K.

Definition 2.1. If f ∈ L1(K), then the Fourier transform off is the functionf̂ defined by

f̂ (ξ) =
∫

K
f (x)χξ(x) dx.

Note that

f̂ (ξ) =
∫

K
f (x)χ(ξx) dx=

∫

K
f (x)χ(−ξx) dx.

Similar to the standard Fourier analysis on the real line, one can prove the following
results.

(a) The mapf → f̂ is a bounded linear transformation ofL1(K) into L∞(K), and‖ f̂ ‖∞ ≤
‖ f ‖1.

(b) If f ∈ L1(K), then f̂ is uniformly continuous.

(c) If f ∈ L1(K)∩L2(K), then‖ f̂ ‖2 = ‖ f ‖2.

To define the Fourier transform of function inL2(K), we introduce the functionsΦk.
For k ∈ Z, letΦk be the characteristic function ofPk.

Definition 2.2. For f ∈ L2(K), let fk = fΦ−k and

f̂ (ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫

|x|≤qk
f (x)χξ(x) dξ,

where the limit is taken inL2(K).

We have the following theorem (see Theorem 2.3 in [36]).

Theorem 2.3. The Fourier transform is unitary on L2(K).
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A set of the formh+Pk will be called aspherewith centreh and radiusq−k. It follows
from the ultrametric inequality that ifS andT are two spheres inK, then eitherS andT are
disjoint or one sphere contains the other. Also, note that the characteristic function of the
sphereh+Pk is Φk(∙ −h) and thatΦk(∙ −h) is constant on cosets ofPk.

Definition 2.4. The setS is the space of all finite linear combinations of functions of the
formΦk(∙ −h), h ∈ K, k ∈ Z.

This class of functions can also be described in the following way. A functiong ∈ S if
and only if there exist integersk, l such thatg is constant on cosets ofPk and is supported
onPl .

It follows that S is closed under Fourier transform and is an algebra of continuous
functions with compact support, which is dense inC0(K) as well asLp(K),1≤ p<∞. We
have the following theorem (see [36]).

Theorem 2.5. If g ∈ S is constant on cosets ofPk and is supported onPl , thenĝ ∈ S is
constant on cosets ofP−l and is supported onP−k.

Let χu be any character onK+. SinceD is a subgroup ofK+, the restrictionχu|D is a
character onD. Also, as characters onD,χu = χv if and only if u−v ∈ D. That is,χu = χv

if u+D = v+D andχu , χv if (u+D)∩ (v+D) = φ. Hence, if{u(n)}∞n=0 is a complete list of
distinct coset representative ofD in K+, then{χu(n)}∞n=0 is a list of distinct characters onD.
It is proved in [36] that this list is complete. That is, we have the following proposition.

Proposition 2.6. Let {u(n)}∞n=0 be a complete list of (distinct) coset representatives ofD

in K+. Then{χu(n)}∞n=0 is a complete list of (distinct) characters onD. Moreover, it is a
complete orthonormal system onD.

Given such a list of characters{χu(n)}∞n=0, we define the Fourier coefficients of f ∈ L1(D)
as

f̂ (u(n)) =
∫

D

f (x)χu(n)(x)dx.

The series
∞∑

n=0
f̂ (u(n))χu(n)(x) is called the Fourier series off . From the standardL2-theory

for compact abelian groups we conclude that the Fourier series off converges tof in L2(D)
and Parseval’s identity holds:

∫

D

| f (x)|2dx=
∞∑

n=0

| f̂ (u(n))|2.

Also, if f ∈ L1(D) and f̂ (u(n)) = 0 for all n= 0,1,2, . . . , then f = 0 a. e.
These results hold irrespective of the ordering of the characters. We now proceed to

impose a natural order on the sequence{u(n)}∞n=0. Note thatΓ = D/P is isomorphic to the
finite field GF(q) andGF(q) is a c-dimensional vector space over the fieldGF(p). We
choose a set{1= ε0, ε1, ε2, ∙ ∙ ∙ , εc−1} ⊂ D∗ such that span{ε j}c−1

j=0 �GF(q). LetN0 = N∪ {0}.
For n ∈ N0 such that 0≤ n< q, we have

n= a0+a1p+ ∙ ∙ ∙+ac−1pc−1, 0≤ ak < p,k= 0,1, ∙ ∙ ∙ ,c−1.
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Define
u(n) = (a0+a1ε1+ ∙ ∙ ∙+ac−1εc−1)p−1. (2.1)

Note that{u(n) : n = 0,1, . . . ,q−1} is a complete set of coset representatives ofD in P−1.
Now, for n≥ 0, write

n= b0+b1q+b2q2+ ∙ ∙ ∙+bsq
s, 0≤ bk < q,k= 0,1,2, ∙ ∙ ∙ , s,

and define
u(n) = u(b0)+u(b1)p−1+ ∙ ∙ ∙+u(bs)p

−s. (2.2)

This definesu(n) for all n∈N0. In general, it is not true thatu(m+n) = u(m)+u(n). But
it follows that

u(rqk+ s) = u(r)p−k+u(s) if r ≥ 0,k≥ 0 and 0≤ s< qk.

In the following proposition we list some properties of{u(n)} which will be used later.
For a proof, we refer to [5].

Proposition 2.7. For n ∈ N0, let u(n) be defined as in(2.1)and (2.2). Then

(a) u(n) = 0 if and only if n= 0. If k ≥ 1, then|u(n)| = qk if and only if qk−1 ≤ n< qk;

(b) {u(k) : k ∈ N0} = {−u(k) : k ∈ N0};

(c) for a fixed l∈ N0, we have{u(l)+u(k) : k ∈ N0} = {u(k) : k ∈ N0}.

For brevity, we will writeχn = χu(n) for n ∈ N0. As mentioned before,{χn : n ∈ N0} is a
complete set of characters onD.

Let K be a local field of characteristicp> 0 andε0, ε1, . . . , εc−1 be as above. We define a
characterχ on K as follows (see [39]):

χ(εμp
− j) =

{
exp(2πi/p), μ = 0 and j = 1,
1, μ = 1, ∙ ∙ ∙ ,c−1 or j , 1.

Note thatχ is trivial onD but nontrivial onP−1.
In order to be able to define the concepts of multiresolution analysis and wavelet on local

fields, we need analogous notions of translation and dilation. Since
⋃

j∈Z
p− jD = K, we can

regardp−1 as the dilation (note that|p−1| = q) and since{u(n) : n ∈ N0} is a complete list of
distinct coset representatives ofD in K, the set{u(n) : n∈N0} can be treated as the translation
set. Note that it follows from Proposition 2.7 that the translation set{u(n) : n ∈ N0} is a
subgroup ofK+.

Since the dilation is induced byp−1 and
∣∣∣p−1

∣∣∣ = q, as in the case ofRn, we expect the
existence ofq−1 number of functions{ψ1,ψ2, ∙ ∙ ∙ ,ψq−1} to form a set of basic wavelets.

For f ∈ L2(K), j ∈ Z, andk ∈ N0, we define the dilation operatorδ j and the translation
operatorτk as follows:

δ j f (x) = qj/2 f (p−1x) and τk f (x) = f (x−u(k)).
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Let f j,k = δ jτk f . Then

f j,k(x) = qj/2 f (p− j x−u(k)), j ∈ Z,k ∈ N0.

It is easy to see that

‖ f j,k‖2 = ‖ f ‖2, 〈δ j f , δ jg〉 = 〈 f ,g〉, 〈 f , δ jg〉 = 〈δ− j f ,g〉.

and
( f j,k)

∧(ξ) = q− j/2χk(p jξ) f̂ (p jξ).

A function f on K will be calledintegral-periodicif

f (x+u(k)) = f (x) for all k ∈ N0.

3 Riesz bases of translates

In this section we consider translates of a single function and find necessary and sufficient
conditions when they form Riesz bases for their closed linear span.

Definition 3.1. Let {ψn : n∈N0} and{ψ̃n : n∈N0} be two collections of functions inL2(K).
We say that they are biorthogonal if

〈ψn, ψ̃m〉 = δn,m for everym,n ∈ N0.

A collection{ψn : n ∈ N0} of functions inL2(K) is said to be linearly independent if for
any`2-sequence{an : n∈N0} of coefficients with

∑

n∈N0

anψn = 0 in L2(K), we havean = 0 for

all n ∈ N0. It is easy to see that biorthogonal sets are linearly independent.

Lemma 3.2. Let {ψn : n∈ N0} be a collection of functions in L2(K). Suppose that there is a
collection{ψ̃n : n ∈ N0} in L2(K) which is biorthogonal to{ψn : n ∈ N0}. Then{ψn : n ∈ N0}
is linearly independent.

Proof. Let {an : n ∈ N0} be aǹ 2-sequence satisfying
∑

n∈N0

anψn = 0 in L2(K). Then for each

m∈ N0, we have

0= 〈0, ψ̃m〉 =
〈∑

n∈N0

anψn, ψ̃m

〉
=

∑

n∈N0

an〈ψn, ψ̃m〉 = am.

Hence,{ψn : n ∈ N0} is linearly independent. �

Definition 3.3. Let {xn : n∈ N0} be a subset of a Hilbert spaceH. Then{xn : n∈ N0} is said
to form a Riesz basis forH if

(a) {xn : n ∈ N0} is linearly independent, and

(b) there exist constantsA andB with 0< A≤ B<∞ such that

A‖x‖22 ≤
∑

n∈N0

|〈x, xn〉|
2 ≤ B‖x‖22 for everyx ∈ H.
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Note. The condition in (b) is known as the “frame condition”.

Remark3.4. The above definition is equivalent to the following definition. A subset{xn :
n ∈ N0} of a Hilbert spaceH forms a Riesz basis forH if

(a) span{xn : n ∈ N0} = H, and

(b) there exist constantsA andB with 0< A≤ B<∞ such that

A
∑

n∈N0

|cn|
2 ≤

∥∥∥∥
∑

n∈N0

cnxn

∥∥∥∥
2
≤ B

∑

n∈N0

|cn|
2 for every{cn} ∈ `

2(N0).

In the following lemma, we provide a necessary and sufficient condition for the trans-
lates of two functions to be biorthogonal.

Lemma 3.5. Letϕ, ϕ̃ ∈ L2(K) be given. Then{ϕ(∙ −u(n)) : n ∈ N0} is biorthogonal to{ϕ̃(∙ −
u(n)) : n ∈ N0} if and only if

∑

n∈N0

ϕ̂(ξ+u(n)) ˆ̃ϕ(ξ+u(n)) = 1 a.e.

Proof. For a fixedl ∈ N0, we have{u(l) + u(k) : k ∈ N0} = {u(k) : k ∈ N0} (see Proposi-
tion 2(c)). Hence, it follows that〈ϕ(∙ − u(n)), ϕ̃(∙ − u(m))〉 = δn,m if and only if 〈ϕ, ϕ̃(∙ −
u(m))〉 = δ0,m. Since

〈ϕ, ϕ̃(∙ −u(m))〉 =

∫

K
ϕ̂(ξ) ˆ̃ϕ(ξ)χm(ξ)dξ

=

∫

D

∑

l∈N0

ϕ̂(ξ+u(l)) ˆ̃ϕ(ξ+u(l))χm(ξ)dξ,

the result follows from the uniqueness of the Fourier series and the fact that{χm : m∈ N0}
is an orthonormal basis forL2(D). �

The following lemma provides a sufficient condition for the translates of a function to
be linearly independent.

Lemma 3.6. Letϕ ∈ L2(K). Assume that there exist constants c1,c2 > 0 such that

c1 ≤
∑

k∈N0

|ϕ̂(ξ+u(k))|2 ≤ c2 for a.eξ ∈ K. (3.1)

Then{ϕ(∙ −u(n)) : n ∈ N0} is linearly independent.

Proof. By Lemma 3.2, it suffices to find a function ˜ϕ whose translates are biorthogonal to
the translates ofϕ. We define ˜ϕ by

̂̃ϕ(ξ) =
ϕ̂(ξ)

∑

k∈N0

|ϕ̂(ξ+u(k))|2
.
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By (3.1), this function is well-defined. Now

∑

m∈N0

ϕ̂(ξ+u(m))̂ϕ̃(ξ+u(m)) =
∑

m∈N0

ϕ̂(ξ+u(m))
ϕ̂(ξ+u(m))

∑
k∈N0
|ϕ̂(ξ+u(k)+u(m))|2

=

∑

m∈N0

|ϕ̂(ξ+u(m))|2

∑

l∈N0

|ϕ̂(ξ+u(l))|2
= 1.

By Lemma 3.5,{ϕ(∙ −u(n)) : n ∈ N0} is biorthogonal to{ϕ̃(∙ −u(n)) : n ∈ N0}. �

Lemma 3.7. Suppose thatϕ satisfies(3.1). Any f inspan{ϕ(∙−u(n)) : n∈N0} is of the form
f =

∑

n∈N0

anϕ(∙−u(n)), where{an} is a finite sequence. Letâ be its Fourier transform, that is,

â(ξ) =
∑

n∈N0

anχn(ξ). Then

c1

∫

D

|â(ξ)|2 dξ ≤ ‖ f ‖22 ≤ c2

∫

D

|â(ξ)|2 dξ.

Proof. By Placherel’s theorem, we have
∫

K
| f (x)|2 dx =

∫

K

∣∣∣∣
∑

n∈N0

anϕ(x−u(n))
∣∣∣∣
2

dx

=

∫

K

∣∣∣∣
∑

n∈N0

anϕ̂(ξ)χn(ξ)
∣∣∣∣
2

dξ

=

∫

K
|ϕ̂(ξ)|2

∣∣∣∣
∑

n∈N0

anχn(ξ)
∣∣∣∣
2

dξ

=

∫

K
|ϕ̂(ξ)|2|â(ξ)|2 dξ

=

∫

D

∑

k∈N0

|ϕ̂(ξ+u(k))2â(ξ)|2 dξ.

The result follows by (3.1). �

Remark3.8. In particular, for a finite sequence{an}, we have

∥∥∥∥
∑

n∈N0

anϕ(∙ −u(n))
∥∥∥∥

2

2
≤ c2

∑

n∈N0

|an|
2.

Theorem 3.9. Let {ϕ(∙ −u(n)) : n ∈ N0} be a Riesz basis for its closed linear span. Suppose
that there exists a functioñϕ such that{ϕ̃(∙ −u(n)) : n ∈ N0} is biorthogonal to{ϕ(∙ −u(n)) :
n ∈ N0}. Then

(a) for every f∈ span{ϕ(∙ −u(n)) : n ∈ N0}, we have

f =
∑

n∈N0

〈 f , ϕ̃(∙ −u(n))〉ϕ(∙ −u(n));
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(b) there exist constants A,B> 0 such that for every f∈ span{ϕ(∙ −u(n)) : n ∈ N0}

A‖ f ‖22 ≤
∞∑

n=1

|〈 f , ϕ̃(∙ −u(n))〉|2 ≤ B‖ f ‖22.

Proof. Since{ϕ(∙ −u(n)) : n ∈ N0} forms a Riesz basis for its closed linear span, there exist
constantsc1 andc2 such that (3.1) holds (see Lemma 3.4 in [5]). We will first prove (a) and
(b) for f ∈ span{ϕ(∙ −u(n)) : n ∈ N0} and then generalize the results tospan{ϕ(∙ −u(n)) : n ∈
N0}.

(a) Let f ∈ span{ϕ(∙ − u(n)) : n ∈ N0}, then there exist a finite sequence{an} such that
f =

∑

n∈N0

anϕ(∙ −u(n)). Using biorthogonality, we have

〈 f , ϕ̃(∙ −u(k))〉 =
〈∑

n∈N0

anϕ(∙ −u(n)), ϕ̃(∙ −u(k))
〉

=
∑

n∈N0

an〈ϕ(∙ −u(n)), ϕ̃(∙ −u(k))〉

= ak.

(b) Since (3.1) is satisfied, by Lemma 3.7, for everyf ∈ span{ϕ(∙ −u(n)) : n ∈ N0}, we
have

c−1
2 ‖ f ‖

2
2 ≤

∫

D

|â(ξ)|2dξ ≤ c−1
1 ‖ f ‖

2
2.

By Plancherel formula for Fourier series and the fact thatan = 〈 f , ϕ̃(∙ −u(n))〉,
∫

D

|â(ξ)|2dξ =
∑

n∈N0

|an|
2 =

∑

n∈N0

|〈 f , ϕ̃(∙ −u(n))〉|2.

So (b) is proved.
We now generalize the results tospan{ϕ(∙ −u(n)) : n ∈ N0}. First we will prove (b). For

f ∈ span{ϕ(∙−u(n)) : n∈N0}, there exists a sequence{ fm : m∈N0} in span{ϕ(∙−u(n)) : n∈N0}
such that‖ fm− f ‖2→ 0 asm→∞. Hence, for eachn ∈ N0,

〈 fm, ϕ̃(∙ −u(n))〉 → 〈 f , ϕ̃(∙ −u(n))〉 asm→∞.

The result holds for eachfm. Hence,

N∑

n=0

|〈 f , ϕ̃(∙ −u(n))〉|2 =

N∑

n=0

lim
m→∞
|〈 fm, ϕ̃(∙ −u(n))〉|2

= lim
m→∞

N∑

n=0

|〈 fm, ϕ̃(∙ −u(n))〉|2

≤ B lim
m→∞
‖ fm‖

2
2

= B‖ f ‖22.
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Letting N→∞ in the above expression, we get
∑

n∈N0

|〈 f , ϕ̃(∙ −u(n))〉|2 ≤ B‖ f ‖22.

Hence, the upper bound in (3.9) holds. Now

(∑

n∈N0

|〈 fm, ϕ̃(∙ −u(n))〉|2
) 1

2

≤
(∑

n∈N0

|〈 fm− f , ϕ̃(∙ −u(n))〉|2
) 1

2
+

(∑

n∈N0

|〈 f , ϕ̃(∙ −u(n))〉|2
) 1

2 .

Since the upper bound in (3.9) holds for eachfm− f and the lower bound holds for eachfm,
we have

A
1
2 ‖ fm‖2 ≤ B

1
2 ‖ fm− f ‖2+

(∑

n∈N0

|〈 f , ϕ̃(∙ −u(n))〉|2
) 1

2 .

Taking limit asm→∞, we get

A‖ f ‖22 ≤
∑

n∈N0

|〈 f , ϕ̃(∙ −u(n))〉|2.

Now, we will prove (a) forf ∈ span{ϕ(∙ −u(n)) : n ∈ N0}. Let ε > 0 andg ∈ span{ϕ(∙ −
u(n)) : n ∈ N0} such that‖ f −g‖2 < ε. Since (a) holds forg, for large enoughN ∈ N0, we
have

f −
N∑

n=0

〈 f , ϕ̃(∙ −u(n))〉ϕ(∙ −u(n))

= f −g+
N∑

n=0

〈g, ϕ̃(∙ −u(n))〉ϕ(∙ −u(n))−
N∑

n=0

〈 f , ϕ̃(∙ −u(n))〉ϕ(∙ −u(n))

= f −g+
N∑

n=0

〈g− f , ϕ̃(∙ −u(n))〉ϕ(∙ −u(n)).

Hence,

∥∥∥∥ f −
N∑

n=0

〈 f , ϕ̃(∙ −u(n))〉ϕ(∙ −u(n))
∥∥∥∥

2

≤ ‖ f −g‖2+
wwwwww

N∑

n=0

〈g− f , ϕ̃(∙ −u(n))〉ϕ(∙ −u(n))
wwwwww2

≤ ‖ f −g‖2+
√

c2

( N∑

n=0

|〈g− f , ϕ̃(∙ −u(n))〉|2
) 1

2 (by Remark 3.8)

≤ ‖ f −g‖2+
√

c2

√
B‖ f −g‖2 < (1+

√
c2B)ε.

Sinceε is arbitrary, the result follows. �
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4 Multiresolution analysis on a local field

Definition 4.1. Let K be a local field of characteristicp> 0, p be a prime element ofK and
u(n),n ∈ N0, be as defined in (2.1) and (2.2). A multiresolution analysis (MRA) ofL2(K) is
a sequence{Vj : j ∈ Z} of closed subspaces ofL2(K) satisfying the following properties:

(a) Vj ⊂ Vj+1 for all j ∈ Z;

(b)
⋃

j∈Z
Vj is dense inL2(K);

(c)
⋂

j∈Z
Vj = {0};

(d) f ∈ Vj if and only if f (p−1∙) ∈ Vj+1 for all j ∈ Z;

(e) there is a functionϕ ∈ V0, called thescaling function, such that{ϕ(∙ −u(k)) : k ∈ N0}
forms a Riesz basis forV0.

In the usual definition of an MRA, it is required that{ϕ(∙ − u(k)) : k ∈ N0} forms an
orthonormal basis forV0. In [5], we proved that if{ϕ(∙ −u(k)) : k ∈ N0} forms a Riesz basis
for V0, then we can find another functionϕ1 ∈ V0 such that{ϕ1(∙ −u(k)) : k ∈ N0} forms an
orthonormal basis forV0. In the same paper, we also proved the following result.

Lemma 4.2. Letϕ ∈ L2(K) be such that{ϕ(∙−u(k)) : k∈N0} forms a Riesz basis of its closed
linear span. Then, there exist C1 and C2 such that for a.e.ξ ∈D,

C1 ≤
∑

k∈N0

|ϕ̂
(
ξ+u(k)

)
|2 ≤C2.

We can use the condition (e) in the definition of an MRA to get Riesz bases forVj .

Lemma 4.3. Let ϕ be the scaling function for an MRA{Vj : j ∈ Z}. Then, for each j∈ Z,
{ϕ j,k : k ∈ N0} is a Riesz basis for Vj.

Proof. If we defineϕ̃ by

ˆ̃ϕ(ξ) =
ϕ̂(ξ)

∑

k∈N0

|ϕ̂(ξ+u(k))|2
,

then{ϕ̃(∙−u(k)) : k∈N0} is biorthogonal to{ϕ(∙−u(k)) : k∈N0} (see the proof of Lemma 3.6).
Hence,

〈ϕ j,n, ϕ̃ j,m〉 = 〈δ jϕ(∙ −u(n)), δ j ϕ̃(∙ −u(m))〉 = 〈ϕ(∙ −u(n)), ϕ̃(∙ −u(m))〉 = δn,m.

That is,{ϕ̃ j,k : k∈N0} is biorthogonal to{ϕ j,k : k∈N0} for every j ∈Z. Hence, by Lemma 3.2,
{ϕ j,k : k ∈ N0} is linearly independent.

We need to show that{ϕ j,k : k ∈ N0} satisfies the frame condition. For anyf ∈ Vj , we
have ∑

k∈N0

|〈 f ,ϕ j,k〉|
2 =

∑

k∈N0

|〈 f , δ jϕ(∙ −u(k))〉|2 =
∑

k∈N0

|〈δ− j f ,ϕ(∙ −u(k))〉|2.
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Since{ϕ(∙−u(k)) : k ∈N0} is a Riesz basis forV0 andδ− j f ∈ V0, there are constantsA,B> 0
such that for everyf ∈ Vj ,

A‖δ− j f ‖22 ≤
∑

k∈N0

|〈δ− j f ,ϕ(∙ −u(k))〉|2 ≤ B‖δ− j f ‖22.

This is equivalent to

A‖ f ‖22 ≤
∑

k∈N0

|〈 f , δ jϕ(∙ −u(k))〉|2 ≤ B‖ f ‖22.

Hence,{ϕ j,k : k ∈ N0} satisfies the frame condition. �

Lemma 4.4. Suppose that{Vj : j ∈ Z} is an MRA with scaling functionϕ. Then there exists
a sequence{hn : n ∈ N0} in l2(N0) such that

ϕ(x) =
∑

n∈N0

hnq1/2ϕ(p−1x−u(n))

and an integral periodic function m0 such that

ϕ̂(ξ) = m0(pξ)ϕ̂(pξ).

Proof. Sinceq−1ϕ(p∙) ∈ V−1 ⊂ V0, by Theorem 3.9(a), we have

q−1ϕ(px) =
∑

n∈N0

〈 f , ϕ̃(∙ −u(n))〉ϕ(x−u(n)) =
∑

n∈N0

hnϕ(x−u(n)).

By Theorem 3.9(b),{hn} ∈ `2(N0). Taking Fourier transform, we get

ϕ̂(p−1ξ) =
∑

n∈N0

hnχn(ξ)ϕ̂(ξ) = m0(ξ)ϕ̂(ξ).

This is equivalent to
ϕ̂(ξ) = m0(pξ)ϕ̂(pξ).

As in Proposition 3 in [22], we can show thatm0 is integral-periodic. �

Definition 4.5. A pair of MRAs {Vj : j ∈ Z} and{Ṽj : j ∈ Z} with scaling functionsϕ andϕ̃
respectively are said to be dual to each other if{ϕ(∙−u(k)) : k ∈N0} and{ϕ̃(∙−u(k)) : k ∈N0}
are biorthogonal.

Definition 4.6. Let ϕ andϕ̃ be scaling functions for dual MRAs. For eachj ∈ Z, define the
operatorPj , P̃j on L2(K) by

Pj f =
∑

k∈N0

〈 f , ϕ̃ j,k〉ϕ j,k,

P̃j f =
∑

k∈N0

〈 f ,ϕ j,k〉ϕ̃ j,k.

We first note that the series defining these operators are convergent inL2(K) and that
these operators are uniformly bounded onL2(K).
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Lemma 4.7. The opeartors Pj andP̃j are uniformly bounded.

Proof. Since the translates ofϕ and ϕ̃ form Riesz bases for their closed linear spans, by
Lemma 4.2, there exist constantsC1 andC2 such that

C1 ≤
∑

k∈N0

|ϕ̂(ξ+u(k))|2 ≤C2 and C1 ≤
∑

k∈N0

| ˆ̃ϕ(ξ+u(k))|2 ≤C2.

Now, let {ck : k ∈ N0} ∈ `2(N0). Then, by Remark 3.4, there existsB> 0 such that

∥∥∥∥
∑

k∈N0

ckϕ0,k

∥∥∥∥
2

2
≤ B

∑

k∈N0

|ck|
2.

Now, for f ∈ L2(K), we have

∑

k∈N0

|〈 f ,ϕ0,k〉|
2 =

∑

k∈N0

∣∣∣∣

∫

K
f̂ (ξ)ϕ̂(ξ)χk(ξ) dξ

∣∣∣∣
2

=
∑

k∈N0

∣∣∣∣

∫

D

∑

l∈N0

f̂ (ξ+u(l))ϕ̂(ξ+u(l))χk(ξ) dξ
∣∣∣∣
2

=
∑

k∈N0

∣∣∣∣

∫

D

F(ξ)χk(ξ) dξ
∣∣∣∣
2
=

∑

k∈N0

|F̂(u(k))|2 = ‖F‖2L2(D)

=

∫

D

∣∣∣∣
∑

l∈N0

f̂ (ξ+u(l))ϕ̂(ξ+u(l))
∣∣∣∣
2

dξ

≤
∫

D

(∑

l∈N0

| f̂ (ξ+u(l))|2
)(∑

l∈N0

|ϕ̂(ξ+u(l))|2
)

dξ

≤ C2

∫

D

(∑

l∈N0

| f̂ (ξ+u(l))|2
)

dξ

= C2

∫

K
| f̂ (ξ)|2 dξ = C2‖ f ‖

2
2.

Similar estimates hold for ˜ϕ. Hence, forf ∈ L2(K), we have

‖P0 f ‖22 =
∥∥∥∥
∑

k∈N0

〈 f , ϕ̃0,k〉ϕ0,k

∥∥∥∥
2

2
≤ B

∑

k∈N0

|〈 f , ϕ̃0,k〉|
2 ≤ BC2‖ f ‖

2
2.

Thus,P0 is a bounded operator onL2(K) with norm at most
√

BC2 = C, say. Now, since
the dilation operators are unitary and since

Pj f =
∑

k∈N0

〈 f , ϕ̃ j,k〉ϕ j,k =
∑

k∈N0

〈δ− j f , ϕ̃0,k〉δ− jϕ0,k,

we conclude that the operator norm ofPj is at mostC. Similar arguments work for̃Pj . This
finishes the proof of the lemma. �

In the following lemma, we prove some useful properties of the operatorsPj andP̃j .
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Lemma 4.8. The operators Pj andP̃j satisfy the following properties.

(a) Pj f = f if and only if f ∈ Vj andP̃j f = f if and only if f ∈ Ṽj ;

(b) lim
j→∞
‖Pj f − f ‖2 = 0 and lim

j→−∞
‖Pj f ‖2 = 0 for every f∈ L2(K).

Proof. (a) Pj f = f if and only if f =
∑

n∈N0

〈 f , ϕ̃ j,n〉ϕ j,n. Since{ϕ j,n : n ∈ N0} is a Riesz basis

for Vj and {ϕ̃ j,n} is biorthogonal to{ϕ j,n}, the result follows from Theorem 3.9. Similar
argument works for̃Pj f .

(b) Let f ∈ L2(K) andε > 0. Since
⋃

j∈Z
Vj is dense inL2(K), there existsJ ∈ Z andg∈ VJ

such that‖ f − g‖2 < ε
1+C , whereC is as in Lemma 4.7. Ifg ∈ Vj , thenPjg = g for every

j ≥ J. Thus for j ≥ J,

‖ f −Pj f ‖2 ≤ ‖ f −g‖2+ ‖Pj( f −g)‖2
≤ (1+ ‖Pj‖)‖ f −g‖2
< (1+C)‖ f −g‖2 < ε.

This shows that
lim
j→∞
‖Pj f − f ‖2 = 0.

Now considerh ∈ S (see Definition 2.4). Then

‖Pjh‖
2
2 =

wwwwww
∑

k∈N0

〈h, ϕ̃ j,k〉ϕ j,k

wwwwww
2

2
≤ B

∑

k∈N0

|〈h, ϕ̃ j,k〉|
2.

In Theorem 4.1 in [5], we proved that ifh ∈ S, then
∑

k∈N0

|〈h, ϕ̃ j,k〉|2→ 0 as j→−∞. Hence,

‖Pjh‖2→ 0 as j→−∞. SinceS is dense inL2(K), givenε > 0, there existsh ∈ S such that
‖ f −h‖2 < ε. Hence,

‖Pj f ‖2 ≤ ‖Pj( f −h)‖2+ ‖Pjh‖2 ≤C‖ f −h‖2+ ‖Pjh‖2.

Therefore,‖Pj f ‖2→ 0 as j→−∞. �

5 Biorthogonality of the wavelets

Let {Vj : j ∈ Z} and{Ṽj : j ∈ Z} be biorthogonal MRAs with scaling functionϕ and ϕ̃ re-
spectively. By Lemma 4.4, there exist integral periodic functionsm0 and m̃0 such that
ϕ̂(ξ) = m0(pξ)ϕ̂(pξ) and̂̃ϕ(ξ) = m̃0(pξ)ϕ̂(pξ). Assume that there exist integral periodic func-
tionsml andm̃l , 1≤ l ≤ q−1, such that

M(ξ)M̃∗(ξ) = I , (5.1)

whereM(ξ) =
(
ml(pξ+pu(k))

)q−1

l,k=0
andM̃(ξ) =

(
m̃l(pξ+pu(k))

)q−1

l,k=0
. Now for 1≤ l ≤ q−1,

we define the associated waveletsψl andψ̃l as follows:

ψ̂l(ξ) = ml(pξ)ϕ̂(pξ) and ˆ̃ψl(ξ) = m̃l(pξ) ˆ̃ϕ(pξ).

We have the following lemma.



Biorthogonal Wavelets on Local Fields 67

Lemma 5.1. Let ϕ and ϕ̃ be the scaling functions for dual MRAs andψl , ψ̃l , 1≤ l ≤ q−1,
be the associated wavelets satisfying the matrix condition(5.1). Then the following hold.

(a) {ψl,0,n : n ∈ N0} is biorthogonal to{ψ̃l,0,n : n ∈ N0};

(b) 〈ψl,0,n, ϕ̃0,m〉 = 〈ψ̃l,0,n,ϕ0,m〉 = 0 for all m,n ∈ N0.

Proof. (a) We have

∑

n∈N0

ψ̂l(ξ+u(n)) ˆ̃ψl(ξ+u(n))

=
∑

n∈N0

ml(pξ+pu(n))ϕ̂(pξ+pu(n))m̃l(pξ+pu(n)) ˆ̃ϕ(pξ+pu(n))

=

q−1∑

s=0

∑

k∈N0

ml(pξ+pu(qk+ s))ϕ̂(pξ+pu(qk+ s))

× m̃l(pξ+pu(qk+ s)) ˆ̃ϕ(pξ+pu(qk+ s))

=

q−1∑

s=0

∑

k∈N0

ml(pξ+pu(s))ϕ̂(pξ+pu(s)+u(k))

× m̃l(pξ+pu(s)) ˆ̃ϕ(pξ+pu(s)+u(k))

=

q−1∑

s=0

ml(pξ+pu(s))m̃l(pξ+pu(s))

= 1.

Hence, by Lemma 3.5,{ψl,0,n : n ∈ N0} is biorthogonal to{ψ̃l,0,n : n ∈ N0}.
(b) Form,n ∈ N0, we have

〈ψl,0,n, ϕ̃0,m〉

= 〈ψl(∙ −u(n)), ϕ̃(∙ −u(m))〉

= 〈ψ̂lχn, ˆ̃ϕχm〉

=

∫

K
ml(pξ)ϕ̂(pξ)χn(ξ)m̃0(pξ) ˆ̃ϕ(pξ)χm(ξ) dξ

=

∫

D

∑

k∈N0

ml(pξ+pu(k))ϕ̂(pξ+pu(k))χn(ξ)

m̃0(pξ+pu(k)) ˆ̃ϕ(pξ+pu(k))χm(ξ) dξ

=

∫

D

q−1∑

s=0

∑

k∈N0

ml(pξ+pu(s)+u(k))ϕ̂(pξ+pu(s)+u(k))χn(ξ)

m̃0(pξ+pu(s)+u(k)) ˆ̃ϕ(pξ+pu(s)+u(k))χm(ξ) dξ

=

∫

D

{q−1∑

s=0

ml(pξ+pu(s))m̃0(pξ+pu(s))
}
χn(ξ)χm(ξ) dξ

= 0.
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Similarly, we can show that〈ψ̃l,0,n,ϕ0,m〉 = 0. �

Our aim is to show that the wavelets associated with dual MRAs are biorthogonal and
they form Riesz bases forL2(K). The following proposition is crucial for the proof of the
main result.

Proposition 5.2. Let ϕ, ϕ̃ andψl , ψ̃l for 1 ≤ l ≤ q−1 be as in Lemma5.1. Denoteψ0 = ϕ

andψ̃0 = ϕ̃. Then for every f∈ L2(K), we have

P1 f = P0 f +
q−1∑

l=1

∑

k∈N0

〈 f , ψ̃l,0,k〉ψl,0,k (5.2)

and

P̃1 f = P̃0 f +
q−1∑

l=1

∑

k∈N0

〈 f ,ψl,0,k〉ψ̃l,0,k, (5.3)

where the series converge in L2(K).

Proof. It is enough to prove (5.2) as the proof of (5.3) is similar. Moreover, it is enough to
prove (5.2) in the weak sense, that is, for allf ,g ∈ L2(K)

〈P1 f ,g〉 = 〈P0 f ,g〉+
q−1∑

l=1

∑

k∈N0

〈 f , ψ̃l,0,k〉〈g,ψl,0,k〉

=

q−1∑

l=0

∑

k∈N0

〈 f , ψ̃l,0,k〉〈g,ψl,0,k〉.

We have

q−1∑

l=0

∑

k∈N0

〈 f , ψ̃l,0,k〉〈g,ψl,0,k〉

=

q−1∑

l=0

∑

k∈N0

(∫

K
f̂ (ξ) ˆ̃ψl(ξ)χk(ξ)dξ

)(∫

K
ĝ(ξ)ψ̂l(ξ)χk(ξ)dξ

)

=

q−1∑

l=0

∑

k∈N0

(∫

D

∑

α∈N0

f̂ (ξ+u(α)) ˆ̃ψl(ξ+u(α))χk(ξ)dξ
)

×
(∫

D

∑

β∈N0

ĝ(ξ+u(β))ψ̂l(ξ+u(β))χk(ξ)dξ
)

=

q−1∑

l=0

∫

D

(∑

α∈N0

f̂ (ξ+u(α)) ˆ̃ψl(ξ+u(α))
)(∑

β∈N0

ĝ(ξ+u(β))ψ̂l(ξ+u(β))
)
dξ

=

∫

D

q−1∑

l=0

(∑

α∈N0

f̂ (ξ+u(α))m̃l(pξ+pu(α)) ˆ̃ϕ(pξ+pu(α))



Biorthogonal Wavelets on Local Fields 69

×
∑

β∈N0

ĝ(ξ+u(β))ml(pξ+pu(β))ϕ̂(pξ+pu(β))
)
dξ

=

∫

D

q−1∑

l=0

(q−1∑

ν=0

∑

α′∈N0

f̂ (ξ+u(qα′)+u(ν))m̃l(pξ+u(α′)+pu(ν))

× ˆ̃ϕ(pξ+u(α′)+pu(ν))

×
q−1∑

ν′=0

∑

β′∈N0

ĝ(ξ+u(qβ′)+u(ν′))ml(pξ+u(β′)+pu(ν′))

×ϕ̂(pξ+u(β′)+pu(ν′))
)
dξ

=

∫

D

∑

α′

∑

β′

∑

ν

∑

ν′

(∑

l

m̃l(pξ+pu(ν))ml(pξ+pu(ν′))

× f̂ (ξ+u(qα′)+u(ν)) ˆ̃ϕ(pξ+u(α′)+pu(ν))

×ĝ(ξ+u(qβ′)+u(ν′))ϕ̂(pξ+u(β′)+pu(ν′))
)
dξ

=

∫

D

∑

ν

∑

α′

∑

β′

(
f̂ (ξ+u(qα′)+u(ν)) ˆ̃ϕ(pξ+u(α′)+pu(ν))

×ĝ(ξ+u(qβ′)+u(ν))ϕ̂(pξ+u(β′)+pu(ν))
)
dξ

=
∑

ν

∫

D+u(ν)

∑

α′

∑

β′

f̂ (ξ+u(qα′)) ˆ̃ϕ(pξ+u(α′))ĝ(ξ+u(qβ′))ϕ̂(pξ+u(β′))dξ. (5.4)

On the other hand, we have
∑

k∈N0

〈 f , ϕ̃1,k〉〈g,ϕ1,k〉

=
∑

k∈N0

(∫

K
f̂ (ξ) ˜̂ϕ(pξ)χk(pξ)dξ

)(∫

K
ĝ(ξ)ϕ̂(pξ)χk(pξ)dξ

)

=
∑

k∈N0

(∫

P−1

∑

α

f̂ (ξ+p−1u(α)) ˆ̃ϕ(pξ+u(α))χk(pξ)dξ
)

×
(∫

P−1

∑

β

ĝ(ξ+p−1u(β))ϕ̂(pξ+u(β))χk(pξ)dξ
)

=

∫

P−1

∑

α

∑

β

f̂ (ξ+u(qα)) ˆ̃ϕ(pξ+u(α))ĝ(ξ+u(qβ))ϕ̂(pξ+u(β))dξ. (5.5)

Since the right sides of (5.4) and (5.5) are same, the proof is finished. �

Combining Lemma 4.8 and Proposition 5.2, we have the following proposition.

Proposition 5.3. Letϕ, ϕ̃ andψl , ψ̃l for 1≤ l ≤ q−1 be as above. Then for every f∈ L2(K),
we have

f =
q−1∑

l=1

∑

j∈Z

∑

k∈N0

〈 f , ψ̃l, j,k〉ψl, j,k =

q−1∑

l=1

∑

j∈Z

∑

k∈N0

〈 f ,ψl, j,k〉ψ̃l, j,k, (5.6)
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where the series converge in L2(K).

We now prove the main results of the article.

Theorem 5.4. Let ϕ and ϕ̃ be the scaling functions for dual MRAs andψl , ψ̃l , 1 ≤ l ≤
q−1, be the associated wavelets satisfying the matrix condition(5.1). Then the collections
{ψl, j,k : 1≤ l ≤ q−1, j ∈ Z,k ∈ N0} and {ψ̃l, j,k : 1≤ l ≤ q−1, j ∈ Z,k ∈ N0} are biorthogonal.
In addition, if

|ϕ̂(ξ)| ≤C(1+ |ξ|)−
1
2−ε , | ˆ̃ϕ(ξ)| ≤C(1+ |ξ|)−

1
2−ε , |ψ̂l(ξ)| ≤C|ξ|, and | ˆ̃ψl(ξ)| ≤C|ξ|, (5.7)

for some constant C> 0, ε > 0 and for a. e.ξ ∈ K, then{ψl, j,k : 1≤ l ≤ q−1, j ∈ Z,k ∈ N0}
and{ψ̃l, j,k : 1≤ l ≤ q−1, j ∈ Z,k ∈ N0} form Riesz bases for L2(K).

Proof. We begin by proving that{ψl, j,k : 1≤ l ≤ q−1, j ∈ Z,k ∈ N0} and{ψ̃l, j,k : 1≤ l ≤ q−
1, j ∈ Z,k ∈ N0} are biorthogonal to each other. First we will show that, forl = 1,2. . . ,q−1
and j ∈ Z,

〈ψl, j,k, ψ̃l, j,k′ 〉 = δk,k′ .

We have already proved it forj = 0 in Lemma 5.1(a). Ifj , 0, then

〈ψl, j,k, ψ̃l, j,k′ 〉 = 〈δ− jψl,0,k, δ− jψ̃l,0,k〉

= 〈ψl,0,k, ψ̃l,0,k〉

= δk,k′ .

Let k,k′ ∈ N0 be fixed and letj, j′ ∈ Z. Assume thatj < j′. We will show that

〈ψl, j,k, ψ̃l′, j′,k′ 〉 = 0.

It can be shown thatψl,0,k ∈ V1. Hence,ψl, j,k = δ− jψl,0,k ∈ Vj+1 ⊆ Vj′ . Therefore, it will
be enough to show that̃ψl′, j′,k′ is orthogonal to every element ofVj′ . Let f ∈ Vj′ . By
Lemma 4.3,{ϕ j′,k : k ∈ N0} is a Riesz basis forVj′ . Hence, there exists anl2-sequence{ck}
such thatf =

∑

k∈N0

ckϕ j′,k in L2(K). By Lemma 5.1(b),

〈ψ̃l′, j′,k′ ,ϕ j′,k〉 = 〈δ− j′ ψ̃l′,0,k′ , δ− j′ϕ0,k〉 = 〈ψ̃l′,0,k′ ,ϕ0,k〉 = 0.

Hence,
〈ψ̃l′, j′,k′ , f 〉 =

〈
ψ̃l′, j′,k′ ,

∑

k∈N0

ckϕ j′,k

〉
=

∑

k∈N0

ck〈ψ̃l′, j′,k′ ,ϕ j′,k〉 = 0.

In order to show that these two collections form Riesz bases forL2(K), we must verify
that they are linearly independent and satisfy the frame condition. Since they are biorthog-
onal to each other, both the collections are linearly independent by Lemma 3.2.

To show the frame condition, we must show that there exist constantsA,B, Ã, andB̃> 0
such that for everyf ∈ L2(K),

A‖ f ‖22 ≤
q−1∑

l=1

∑

j∈Z

∑

k∈N0

|〈 f ,ψl, j,k〉|
2 ≤ B‖ f ‖22, (5.8)
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and

Ã‖ f ‖22 ≤
q−1∑

l=1

∑

j∈Z

∑

k∈N0

|〈 f , ψ̃l, j,k〉|
2 ≤ B̃‖ f ‖22. (5.9)

We first show the existence of upper bounds in (5.8) and (5.9). We have
∑

k∈N0

|〈 f ,ψl, j,k〉|
2

=
∑

k∈N0

∣∣∣∣

∫

K
f̂ (ξ)q− j/2ψ̂l(p jξ)χk(p

jξ) dξ
∣∣∣∣
2

= q− j
∑

k∈N0

∣∣∣∣

∫

P− j

∑

m∈N0

f̂ (ξ+p− ju(m))ψ̂l(p jξ+u(m))χk(p
jξ) dξ

∣∣∣∣
2

=

∫

P− j

∣∣∣∣
∑

m∈N0

f̂ (ξ+p− ju(m))ψ̂l(p jξ+u(m))
∣∣∣∣
2

dξ

≤
∫

P− j

( ∑

m∈N0

| f̂ (ξ+p− ju(m))|2|ψ̂l(p
jξ+u(m))|2δ

)(∑

n∈N0

|ψ̂l(p
jξ+u(n))|2(1−δ)

)
dξ

=

∫

K
| f̂ (ξ)|2|ψ̂l(p

jξ)|2δ
∑

n∈N0

|ψ̂l(p
jξ+u(n))|2(1−δ) dξ.

We have assumed that|ϕ̂(ξ)| ≤ C(1+ |ξ|)−
1
2−ε , hence we have,|ψ̂l(ξ)| ≤ C(1+ |pξ|)−

1
2−ε .

So
∑

n∈N0

|ψ̂l(p jξ +u(n))|2(1−δ) is uniformly bounded ifδ < 2ε(1+2ε)−1. Hence, there exists

C > 0 such that
∑

j∈Z

∑

k∈N0

|〈 f ,ψl, j,k〉|
2

≤ C
∫

K
| f̂ (ξ)|2

∑

j∈Z

|ψ̂l(p
jξ)|2δ dξ

≤ Csup
{∑

j∈Z

|ψ̂l(p
jξ)|2δ : ξ ∈P−1 \D

}
‖ f ‖22.

The last step follows becauseK is a disjoint union ofP j , j ∈ Z, and the functionF(ξ) =∑

j∈Z
|ψ̂l(p jξ)|2δ has the property thatF(ξ) = F(pξ). Note thatD = P0. For ξ ∈ P−1 \D, we

have 1< |ξ| ≤ q. Hence,

0∑

j=−∞

|ψ̂l(p
jξ)|2δ ≤

∞∑

j=0

C2δ

(1+ |p− j+1ξ|)δ(1+2ε)

≤
∞∑

j=0

C2δ

(1+qj−1)δ(1+2ε)

≤
∞∑

j=0

C2δ

q( j−1)δ(1+2ε)
= C2δ qδ(1+2ε)

1−q−δ(1+2ε)
.
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Also,

∞∑

j=1

|ψ̂l(p
jξ)|2δ ≤

∞∑

j=1

(Cq− j |ξ|)2δ

≤ C2δ
∞∑

j=1

q(− j+1)2δ = C2δ 1
1−q−2δ

.

These two estimates show that sup
{ ∑

j∈Z
|ψ̂l(p jξ)|2δ : ξ ∈P−1 \D

}
is finite. Hence, there exists

B> 0 such that the second inequality in (5.8) holds. Similarly, we can show that the upper
bound in (5.9) holds.

Using the existence of the upper bounds, we now show that the lower bounds in (5.8)
and (5.9) also exist. It follows from Proposition 5.3 that, iff ∈ L2(K), then we have

f =
q−1∑

l=1

∑

j∈Z

∑

k∈N0

〈 f , ψ̃l, j,k〉ψl, j,k =

q−1∑

l=1

∑

j∈Z

∑

k∈N0

〈 f ,ψl, j,k〉ψ̃l, j,k.

Therefore,

‖ f ‖22 = 〈 f , f 〉

=
〈∑

l

∑

j

∑

k

〈 f , ψ̃l, j,k〉ψl, j,k, f
〉

=
∑

l

∑

j

∑

k

〈 f , ψ̃l, j,k〉〈ψl, j,k, f 〉

≤
(∑

l

∑

j

∑

k

|〈 f , ψ̃l, j,k〉|
2
) 1

2
(∑

l

∑

j

∑

k

|〈 f ,ψl, j,k〉|
2
) 1

2

≤ (B̃)
1
2 ‖ f ‖2

(∑

l

∑

j

∑

k

|〈 f ,ψl, j,k〉|
2
) 1

2 .

Hence,
1

B̃
‖ f ‖22 ≤

∑

l

∑

j

∑

k

|〈 f ,ψl, j,k〉|
2.

Similarly, we can show that

1
B
‖ f ‖22 ≤

∑

l

∑

j

∑

k

|〈 f , ψ̃l, j,k〉|
2.

This completes the proof of the theorem. �
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