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Abstract 

Biological cells, by definition, are the basic units which contain the fundamental molecules of life of which all living things 

are composed. Understanding how they function and differentiating cells from one another therefore is of paramount 

importance for disease diagnostics as well as therapeutics. Sensors focusing on the detection and stratification of cells have 

gained popularity as technological advancements have allowed for the miniaturization of various components inching us 

closer to Point-of-Care (POC) solutions with each passing day. Furthermore, Machine Learning has allowed for 

enhancement in analytical capabilities of these various biosensing modalities, especially the challenging task of 

classification of cells into various categories using a data-driven approach rather than physics-driven. In this review, we 

provide an account of how Machine Learning has been applied explicitly to sensors that detect and classify cells. We also 

provide a comparison of how different sensing modalities and algorithms affect the classifier accuracy and the dataset size 

required. 
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1. Introduction 

There are still numerous healthcare challenges despite many advances in technology.[1] Biosensors as 

analytical tools have several applications in different fields such as diagnostics and disease monitoring which 

play a significant role in this respect. [2] A biosensor is a system that can do selective and quantitative detection 

of an analyte or biomarker utilizing a biorecognition part and a signal transduction part.[3] These analytes can 

be non-biological such as drugs, toxins, dissolved gases, etc. or biological such as cells, proteins, DNAs, etc.[4] 

In a biosensor, once an analyte of interest is detected by a biorecognition element, the presence of the analyte is 

confirmed by a transducer quantitatively or semi-quantitatively. Then, the generated signal due to the 

recognition event is converted to an output signal. There has been a significant interest in biosensors in analytical 

systems for medical diagnostics.[5] Also, biosensor measurements in microchannels, considering the small 

volume of the fluid and its relative large  surface area, has also been quite popular and provides a number of 

benefits including a high rate of heat and mass transfer.[6] Biosensors that detect cells have garnered special 

interest in the last few decades with the advent of technologies which automate and miniaturize its different 

components. In particular, they are important for the diagnosis and detection of various diseases which include 

but are not limited to: Sickle cell Disease[7], Acute Myeloid Leukemia[8], and metastatic cancers[9] through 

detection of Circulating Tumor Cells (CTCs). An important stage when using these sensors in a clinical setting 

is converting the data obtained from these biosensors into useful information by classifying the cells into 
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different categories. For example, Circulating Tumor Cells need to be identified and separated from Red Blood 

Cells. There are a number of qualities which make a biosensor that detects cells more popular including rapid 

performance and response[10], high specificity[11], high sensitivity[12]. Also, other beneficial qualities include 

continuous measurement of analyte without involving experienced personnel[13], range[14], response time[15], 

stability[16], low cost[17], and accuracy.[18] Processing of the generated data from biosensors can be 

considered as an important stage that effectively influences the improvement of the above-mentioned qualities.  

Machine learning, a subset of artificial intelligence, is a framework allowing algorithms to learn 

automatically from data. Many techniques based on machine learning (ML) have been shown to solve 

significantly difficult tasks in the real world. They are especially applicable to tasks that require learning a 

variety of patterns obtained from data. The reason such models can work extremely efficiently and with human-

level performance is the fact that while using such methods, the given problem is defined in a precise 

mathematical framework. That framework uses large amounts of either labeled or unlabeled data, and then some 

general probabilistic algorithm is applied to find patterns in the dataset. Evidently, this can have numerous 

advantages as well as several drawbacks. These advantages include the fact that in many applications since some 

general model is used, there is no further need for hand-engineered expert knowledge which can be quite 

expensive or even ambiguous. For medical applications in particular, it has been shown that such methods can 

not only significantly outperform human-engineered expert knowledge, but they are also able to discover new 

knowledge.[19] Another advantage is that sometimes these methods discover patterns that could not have been 

discovered independently and might have seemed irrelevant at first. This overall makes them much more 

scalable compared to human intervened knowledge discovery. However, these approaches have some 

drawbacks as well. For example, in many applications, they are very heavy computations that takes several 

weeks for some models to train. More importantly, they require costly predefined labels in some supervised 

scenarios. Additionally, some applications are extremely sensitive to the choice of architectures or the 

hyperparameters are chosen. These drawbacks are being actively improved. As an example, in many classical 

classification problems, quite simple methods such as logistic regression or Support Vector Machine (SVM) 

have been shown to perform extremely well. For more complex tasks, more complex neural net-based 

architectures can be required. 

In some biosensors, a large amount of data is generated quickly at the output, and the analysis of this data 

requires further processing by an experienced user that can lead to errors. Processing by a person can take time 

to analyze data, which can greatly reduce the efficiency of the biosensor. On the other hand, ML can identify 

features and trends, and can also provide understandable output. A quick web search shows that the application 

of Machine Learning in biosensors have seen an exponential rise in the last decade. 

Other review papers have reviewed deep learning applied on microfluidics and image cytometry, but no 

paper specifically discussed the application of the broader concept of ML on biosensors detecting cells using 

various sensing modalities.[20],[21] In this paper, a review of ML publications on biosensors detecting cells is 

discussed whilst some pieces of useful information will be provided for biosensor engineers and scientists who 

want to use ML in their research. In this regard, an overview on main ML concepts is firstly discussed. The 

papers in this review are divided into four main categories based upon the detection mechanism used. These 

include: Electrical Detection, Optical Flow Cytometry, Microscopy-based detection, and Smartphone-based 

detection.  
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2. Overview of main concepts in machine learning 

2.1. Supervised ML 

In the supervised approach, a set of pre-defined labels should also be fed into the algorithm alongside the 

input dataset. It is then the algorithm’s job to first extract meaningful features from raw data and then find the 

best parameters that are able to predict the mentioned labels on a separate test dataset as accurately as possible. 

2.2. Unsupervised ML 

Unlike supervised ML approaches, in unsupervised approaches there are no pre-defined labels available in 

advance. As a result, algorithms themselves should discover the meaningful representations of the data that are 

useful per se or in some other downstream task, for instance a classification or regression problem as before. 

These algorithms can take different approaches towards finding such meaningful representations such as by 

probabilistic density estimation, clustering or latent variable modeling, etc. For instance, E.M (Expectation 

Maximization) is one of such methods. 

2.3. Artificial Neural Networks 

One branch in machine learning which has recently gotten significant attention is called Artificial Neural 

Nets (ANN). These methods are loosely inspired by the inner functioning of the human brain, but in fact such 

methods apply many highly nonlinear and complex functions, a.k.a neurons, to the input data in a parallel 

fashion. These complex nonlinear dynamics allow them to extract much more complex and useful feature 

representations from raw data, thus leading to more useful representations and significantly better performances 

in many complex tasks. The process of learning within such ANN models is in fact the finding of optimal 

parameters for synaptic weights of the neurons in order to gain a reasonable accuracy. Also, it is necessary to 

mention that in most ANN architectures, more than one layer of neural operations are cascaded to make them 

solve more complex tasks, thus giving them the name “Deep Learning models”. 

2.4. Convolutional Neural Networks 

A specific form of ANNs is called Convolutional Neural Nets (CNNs). These architectures are specifically 

designed for image-based tasks such as image/video classification, object detection, tracking, recognition, etc. 

although they have been applied to other problems as well. In contrast to Feed Forward Neural nets, these 

architectures use specially designed cells that utilize a convolution operation. More specifically, the learnable 

weights of the network are the parameters of a set of convolutional kernels which are convolved with the input 

images or the outputs of each layer.  Such architectures were initially designed for problems focusing on images, 

mainly because they take advantage of the effect of spatial-invariance in the images as well as the importance 

of locally-neighboring features. A result, they convolve the same shared parameters across the whole image. 

2.5. Support vector machine 

Support vector machine (SVM) is one of the most commonly used methods for many supervised 

classification tasks where a set of n-dimensional data-points are given as the input, each accompanying a true 

label. The goal of SVM is to find hyper-planes (generalization of lines and planes to higher dimensional spaces) 

that can accurately separate these data-points. For instance, in 2D space, this hyper-plane would be a simple 
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line which divides the space into two sub-regions, each corresponding to a different class. These hyperplanes 

are defined by a set of points called the support vectors. 

3. Machine Learning in Different Biosensing Techniques 

3.1. Microscopy-based Detection 

Microscopy-based detection implies the use of a microscope to obtain images or videos of cells. These 

images or videos need to be processed to identify and quantify cells.  ML has tremendous power in the analysis 

of microscopic image data by making accurate predictions on large sample datasets. ML algorithms eliminate 

much of the manual steps required to process data, thereby reducing the processing time and eliminating human 

error. In the next following paragraphs, we present sensing approaches based on ML algorithms on data obtained 

using this detection method. 

Neural networks are often utilized in image analysis, and thus, this technique also draw a lot of attention to 

the studies of cells using microscopic detection. Koohababni et al. utilized Mixture Density Networks (MDNs) 

to identify cell nucleus.[22] MDNs are suitable candidates for mapping single inputs to multi outputs. So, in 

their work, these NNs were used to detect several seeds in an image path. Features were learned by a CNN in 

which images were used as the input datasets. Furthermore, MDN detected nucleus within the image patch by 

a Gaussian distribution. Their presented method was able to identify cell nucleus in colorectal histology images. 

In another study, the authors used neural networks (NN) in inline holography microscopy for high-speed cell 

sorting.[23] They showed that this label-free imaging technique can be applied for ultrafast, cell sorting with a 

high accuracy. A CNN-based single-frame super-resolution processing proposed by Huang et al. for lensless 

microfluidic cell counting with a demonstrated lensless blood cell counting protype.[24] The CNN-based 

single-frame SR processing improved the low-resolution cell images with lower hardware cast thus making it 

potentially a viable candidate for use in point-of-care diagnostics. Mayerich and colleagues presented a method 

for cell soma detection in Knife-Edge Scanning Microscopy (KESM) using ML.[25] The high throughput of 

this data required cell classification to be performed at a high rate. In this paper, they used pattern recognition 

employing a multi-layer feed-forward neural network to accurately locate neuron positions in the rat brain. They 

demonstrated that the accuracy of their algorithm exceeded the performance of standard feature detection 

algorithms and can be implemented on commonly available and affordable hardware architectures. Other 

researchers demonstrated the use of a NN to simulate the movement and behaviour of red blood cells in blood 

plasma.[26] In this study, the NN was taking a numerical simulation as an input. Alternatively, the input could 

also be a video recorded from an actual biological experiment. Their results indicated that for uncomplicated 

box channels, there was no advantage of using this method instead of fluid streamlines. However, in a more 

complicated geometry, the NN performance showed a significant improvement. Such a simulation could be 

used for optimizing the microfluidic channel geometry. A combination of feature selection algorithm and NN 

classifiers was carried out in another research. The objective of this study was to recognize five types of white 

blood cells in the peripheral blood.[27] For this purpose, nucleus and cytoplasm were segmented using the 

Gram-Schmidt method and snake algorithm. Moreover, three kinds of features (morphological, textural, and 

color) were extracted from the segmented areas. Next, the best features were selected using Principal 

Component Analysis (PCA). Finally, five types of white blood cells were classified using Learning Vector 

Quantization neural network (LVQNN). Falk et al. proposed plugin in a software package for cell detection and 

cell segmentation based on deep learning allowing users to employ this plugin without having knowledge of 

ML.[28] Unlike previous similar software packages, their plugin, U-Net, had the capability to be trained and 

adapted to new sets of data and tasks by ImageJ® software interface. 
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Deep learning as a powerful tool to overcome image segmentation was also applied in the study performed 

by Van Valen and colleagues. The authors demonstrated that deep CNN is able to successfully segment and 

classify different mammalian cells. This deep learning technique was accurate, curated segmentation results in 

a short period of time, segmented variety of cell types, and differentiated different types of cell lines from each 

other.[29] Zhang and colleagues have recently demonstrated a novel cell detection and cytometry technique by 

incorporating magnetically modulated lensless imaging.[30] A deep learning-based classifier was empoyed to 

enhance the specificity of their cytometer which also allowed to detect MCF-7 circulating tumor cells based on 

their spatio-temporal features under a controlled magnetic force. In another study, Akram et al. presented a 

CNN-based method providing cell segmentation proposals. These proposals initially represented bounding 

boxes utilizing a fully CNN (FCN) and then predicted segmentation masks for bounding boxes using another 

CNN.[31] They compared their proposed techniques with other conventional cell detection and segmentation 

methods and concluded that their method has a better performance in terms of common evaluation parameters. 

Similarly, Xie et al. used a deep learning-based object detection method, Faster Region-based CNN, along with 

a transfer learning process to detect cells in microscopic images.[32] By conducting analysis on 314 images, 50 

for training and 314 for testing, they reported a miss rate of 1.3% and a detection accuracy of 98.4%. In another 

biosensor study, Faster Region-based CNN was applied for cell detection by segmentation and classification, 

to cell detection.[33] Their experiments showed that cells can be detected in microscopic images using Faster 

R-CNN. Furthermore, this technique improved cell detection performance, saved time, and was easily 

implemented. Another research group, developed a high-throughput and automated RBC classification method 

utilizing patient-specific microscopy images.[34] In this work, initially a hierarchical RBC patch extraction 

method was used for the sickle cell disease (SCD) sensing. Additionally, a shape-invariant RBC patch 

normalization technique was employed for the input of deep nets enabling to save time during learning and 

training procedures and to exclude unnecessary background patches. 

In a biosensor research, T-cells and B-cells were distinguished in a pillar-based microfluidic cell counting 

system by applying a SVM classifier based on the histogram of oriented gradients (HOG) and color distribution 

features (Fig. 1).[35] First, a linear-kernel SVM was trained to detect cells from a background in dual dyed 

images. Subsequently, the cells in a single dye image were identified by the first SVM based on HOG features 

found in the image using a sliding window method. At last, a Radial Basis Function (RBF)-kernel SVM was 

trained with the color information of found cells to differentiate T-cells from B-cells. 
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Fig. 1 Outline of the Microscopy-based system proposed in reference [35]. Blood was injected into the device 

through inlet while leukocytes were trapped in different zones based on the deformability and size difference. 

The proposed experiment setup and block diagram of cell detection using ML is also shown in this figure. In 

the block diagram of the cell detection framework, it can be inferred that using Support Vector Machine (SVM), 

training images are centered, cropped, and labeled. The Histogram of Gradients (HOG) and color data was 

computed using the processed images for the classification of cells. Adapted from [35]. 
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SVM can be used for image classification, and also for detecting and differentiating the cells in post-

processed images. A support vector machine was employed by Long et al. with an iterative training procedure 

to detect unstained viable cells in bright field images.[36] They proposed a novel algorithm called 

“Compensatory Iterative Sample Selection'' to handle the extremely unbalanced training sample set, which 

made the decision boundary more accurate. Uslu et al. developed computer vision-based algorithms to quantify 

the leukemia cells captured and separated by immunomagnetic beads.[37] SVM was implemented to quantify 

target cells in the images captured by a bright field microscope. To rebalance the dataset, where non-cell images 

were the majority, non-cell images were down sampled before the training, radial basis function was selected 

as the kernel function. In another work performed by Guo et al. an SVM was applied to analyze the intensity 

and phase images acquired by the optofluidic time-stretch quantitative phase microscopy.[38] They proposed a 

high-throughput label-free single-cell method for screening lipid-producing microalgal cells by optofluidic 

time-stretch quantitative phase microscopy. Features extracted from the images were used in the classification 

of nitrogen-sufficient and nitrogen-deficient E. gracilis cells. In another study, a computerized detection of 

Acute lymphoblastic leukemia using microscopic images was investigated.[39] K-means algorithm was 

performed after image processing to segment cell nuclei. The geometric features and statistical features were 

extracted for classification. Means of SVM classifier were used to classify cancerous and noncancerous cells. 

The cells were further classified into subtypes by a multi-SVM classifier. The accuracies of the two classifiers 

were both above 95%. Similarly, ML has also been used in image-based screening of bacterial growth. A live 

microscopy detection system of bacterial growth was presented by Wand et al.[40] They showed that this 

imaging platform was able to analyze the time-lapsed holographic images using deep NNs for rapid detection 

of bacterial colonies within 7–10 h. Guo and colleagues proposed a high-throughput label-free single-cell 

method for screening lipid-producing microalgal cells by optofluidic time-stretch quantitative phase 

microscopy.[41] A SVM was applied to analyze the intensity and phase images acquired by the optofluidic 

time-stretch quantitative phase microscopy. 188 features extracted from the images were used in the 

classification of nitrogen-sufficient and nitrogen-deficient E. gracilis cells. It achieved an 2.15% error rate in 

cell classification. 

Some other ML algorithms are also employed in analyzing the data obtained by microscopic image 

cytometry. Huang et al. demonstrated the use of a technique based on Extreme Learning Machines (ELM) for 

single-frame super-resolution processing applied on a microfluidic contact imaging cytometer platform.[42] 

Compared with the commercial flow cytometer, less than 8% error was observed for the absolute number of 

microbeads. They demonstrated in another paper that by mixed flowing of HepG2 and Huh7 cells as the inputs, 

the developed scheme achieved 23% better recognition accuracy compared to the one without error recovery. 

Whereas, it also achieved an average of 98.5% resource-saving compared to the previous multi-frame super-

resolution processing.[43] Autoencoders are considered an unsupervised learning technique since they don't 

need explicit labels to train on. However, to be more precise they are self-supervised because they generate 

their own labels from the training data. A microfluidics-based platform for single-cell imaging in-flow and 

subsequent image analysis using Variational Autoencoders (VAE) for unsupervised characterization of cellular 

mixtures was demonstrated In Constantinou’s paper.[44] Heterogeneous mixtures of yeast species were 

classified with 88% accuracy. Microfluidic Imaging Flow Cytometry (MIFC) is an emerging method of 

microscopic imaging, which aims to reduce the complexity of the tasks involved in cytometry by combining 

flow cytometry with digital microscopy.[45] This technique promised significantly higher throughput and was 

easy to set up with minimal expenses in Kalmady et. al study.[45] This group employed MIFC for obtaining 

images instead of image cytometry. They proposed a transfer learning and ensemble learning-based approach 

for the automation of cytopathological analysis of Leukemia cell-line images. Compared to earlier works, the 

use of fine-tuned features from a modified deep NN for transfer learning provided a substantial improvement 
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in performance. In another example, Tang Yu et al. employed image processing algorithms to classify yeast 

cells in a microfluidic channel.[46] They compared linear support vector machine (LSVM), distance-based 

classification (GED), and k-nearest-neighbor (KNN) classifiers. It was also shown that these three classifiers 

had similar accuracy in their biosensor among which KNN being the most versatile classifier, and SVM has the 

fastest processing time. 

A new segmentation algorithm for the classification of five types of white blood cells by Su et and 

colleagues.[47] Their segmentation algorithm was based on finding a discriminating region of white blood cell 

tones in the color space. In their study, three different NN-based classifiers of MLP, SVM and HRCNN were 

adopted for classifying white blood cells. It was shown that the proposed system incorporated with a trained 

MLP can reach the highest performance. In another label-free approach, Go et al. used digital in-line 

holographic microscopy (DIHM) paired with ML models to identify and classify different types of erythrocytes: 

discocytes, echinocytes, and spherocytes.[48] Four different models were used to determine the best algorithm: 

Support Vector Machine (SVM), Decision Trees, Linear Discrimination Classification (LDC), and k-nearest 

neighbor (KNN) classification. The decision trees exhibited the best identification performance for the training 

sets (n=440,98.18%) and test sets (n=140, 97.37%). In terms of two ML-based approaches, namely ELMSR 

and CNNSR, a research was conducted to solve the low-resolution problem in a lensless microfluidic imaging 

using CMOS image sensors for blood cell counting.[49] In this paper, low-resolution lensless of cell image was 

the input and an improved high-resolution cell image was the output. At the end, cell resolution was improved 

400% while the cell counting results were in line with commercial flow cytometers. The same group proposed 

a single frame lensless microfluidic imaging where a ML algorithm, ELM-SR, was used for recovering high-

frequency details existing in the low resolution frames.[50]  

 

Fig. 2 Inline digital holography microscopy (DHM) utilized in [51] by Singh and colleagues [51] for 

characterizing cells in flow. As shown, in this figure, experimental arrangement of inline-DHM is shown which 

enabled recording holograms of cells in bulk flow along with multiple experimental parameters. The output 

data was used in a classifier enabling detection of tumor cells. Adapted from [51]. 
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Singh et al. employed ML-based gating criteria to differentiate tumor MCF-7 circulating tumor cells from 

blood cells when flowing through a microchannel (Fig. 2).[51] First, classifiers were developed using extracted 

features from training sets of blood cells and tumor cell lines. This classification system was tested with CTS 

spiked in a background of blood cells and was able to identify tumor cells concentration of 10 cells per ml, with 

false positive rate of 0.001%. Mao et al. proposed an microscopic image-based circulating tumor cells (CTC) 

detection employing an SVM classifier with hard-coded Histograms of Oriented Gradients features and a CNN 

classifier with automatically learned features.[52] Their classifiers applied to a challenging dataset which 

showed that it detected CTC automatically in a minimally invasive way. This image-based CTC detection was 

independent of the cell marker expression and was not limited to any cancer type. 

3.2. Optical Flow Cytometry 

A microfluidic flow cytometer is an integrated system which consists of microchannels for flow and optical 

sensors for detection. Typically, the cell is detected using scattered light from laser beams illuminating the cells 

flowing through the detection chamber in a microchannel. Ideally, the biosensor would be portable, easy to 

operate, and suitable for use as a point-of-care diagnostic device.  

Various research groups applied deep learning with their microfluidic flow cytometers to analyze the single-

cell images for cells classification .[53] A CNN classifier allowed them to identify the class of 21-by-21 

pixel single-cell images in less than 1 millisecond. This classifier utilized image extraction and 

recognition by training the network on acquired image datasets of cells. With the help of classifier, the 

cytometer accurately counted and identified label-free flowing cells by using a live video stream of a 

large-volume sample. Soldati et al. classified droplet content by combining multiple ML 

algorithms.[54] By integrating computer vision techniques, automatic classification of droplets was 

carried out using CNNs with an accuracy of 96%. In addition, this group utilized NN for object detection 

and were able to segment the images of droplets and cells in order to measure their relative volumes. It 

corrected estimation of ECAR up to 20%. A deep learning pipeline was proposed by Li and his 

colleagues. It operated directly on the measured signal from the time-series waveforms of an imaging 

flow cytometer. The features were extracted employing the model itself (Fig. 3).[55] In this study, a 

long feature extraction and signal processing steps were entirely avoided so that the time of cell analysis 

was reduced significantly. It has been shown that this method was able to classify OT-II WBCs and 

SW-480 epithelial cancer cells with a high accuracy of 95%. Hence, cell sorting was performed in 

orders of magnitude faster than previous studies, enabling real-time label-free cell sorting. 
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Fig. 3 Overview of the application of deep learning in flow cytometry presented in [55]. In this research, 

hydrodynamic focusing mechanism was employed in a microfluidic channel to align the cells in the 

centerline of the main channel. Line images of the cells in the channel was captured by time-stretch 

imaging system by the rainbow pulses. These rainbows were images of cells which were flowing into 

the microchannel at high speed. Consequently, without further signal processing, the waveforms of 

time-stretch imaging were outputted to a deep NN where cell classification was carried out rapidly with 

high accuracy. Different cells were charged and then categorized before being separated into different 

collection tubes. Adapted from [55]. 

 

In a microfluidic-based imaging flow cytometry (IFC) technique, an accurate classification 

framework was presented for the first time. It was based on deep learning for unstained IFC data for 

three unstained, unlabeled, unstained leukemia cell lines.[56] They demonstrated that instead of using 

conventional fine segmentation and explicit feature extraction, by using deep-learning algorithms, 

coarsely localized cell lines can be successfully classified. Sun et al. used a deep CNN to learn the 

biological characteristics of 2D light scattering patterns in the azimuthal and polar angle from a 

microfluidic cytometer and ultimately identified label-free lymphocytic leukemia cells. Their deep 

learning network accurately detected Jurkat and BALL-1 cells with an accuracy of 0.932, and the 

sensitivity and specificity were 0.92 and 0.94453. An ANN was used in Glushkova and colleagues’ 

work to count blood cells based on the light signal, when cells passed through a microchannel.[57] This 

system was used for classification of leukocytes, erythrocytes and platelets of blood samples. Another 

research group, presented a label-free technique that used a digital inline holographic microscopy for 
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cell imaging, integrating NN for high-speed classification.[58] Their method classified cells at a much 

shorter process delay in comparison with previous studies due to the use of immediate holographic 

interface pattern as the the input of NN. An 89% accuracy was obtained from network simulations for 

a ternary classification task of WBCs. Chen et al. integrated feature extraction and deep learning with 

high-throughput quantitative imaging enabled by photonic time stretch, achieving high classification 

accuracy (95.5%).[59] Their system captures quantitative optical phase and intensity and extracts 

multiple biophysical features of individual cells. These biophysical measurements thus form a 

hyperdimensional feature space in which supervised ML is performed for cell classification.  

Among the studies employing ML for optical flow cytometers, SVM is one of the most popular 

algorithms. In an study, SVM algorithm was applied to analyze MFC dataset in order to detect minimal 

residue disease in acute myeloid leukemia and myelodysplastic syndrome patients automatically.[60] 

The original raw data were encoded using a multivariate Gaussian mixture model and then fed into the 

SVM classifier. They validated this with a large-scale clinical data and clinical outcome. Another 

research group developed an in vivo Photoacoustic Flow Cytometry (PAFC) system to achieve in vivo 

melanoma inspection.[61] They implemented a support vector machine algorithm to discriminate 

signals and noises based on the continuity, amplitude, and photoacoustic waveform pulse width 

extracted from photoacoustic waves. A model accuracy of 92% was accomplished. Lin et al. developed 

a label-free light-sheet microfluidic cytometer for single cell analysis by two-dimensional (2D) light 

scattering measurements.[62] Incorporating the cytometer with SVM algorithms, a high accuracy was 

achieved in automatic classification of senescent and normal human fibroblasts. Four parameters 

(contrast, correlation, energy and homogeneity) were calculated for light scattering patterns and used 

as features in the SVM classifier. A linear kernel function was adopted with 5-fold cross validation. 

The SVM was used by Toedling and colleagues for automatic detection of leukemic cells from patients' 

bone marrow and peripheral blood samples in flow cytometry readouts.[63] Manually gated leukemic 

cells were recovered by SVM with 98.87% specificity and 99.78% sensitivity which showed the 

potential of a well-established multivariate-analysis technique. 

3.3. Smartphone-based Detection 

Smartphone-based sensors are closely related to the microscopy-based sensors since they replace the 

microscope with the smartphone cameras, which are often supplemented by an attachment and have the same 

output i.e. image. They are becoming increasingly popular because of their small footprint and widespread 

availability of smartphones. Furthermore, they eliminate the need for specialized optical equipment like 

microscopes and spectroscopes by substituting it with relatively inexpensive and portable attachments. 

Smartphone-based biosensors utilizing ML, therefore, have tremendous promise for being used as point-of-care 

diagnostic devices with minimal training and knowledge required for operation. 

A cost-effective method proposed by De Haan et al. was capable of automatic screening of sickle 

cells (SC) in a deep learning framework.[64] The framework included two complementary deep NN 

(Fig. 4). The first one standardized and enhanced blood smear images from a smartphone microscope 

while the second one acted on the output of the first image and performed the semantic segmentation 

between SC and healthy cells in a blood smear. Furthermore, the segmented images were utilized for 

the diagnosis of SC disease and achieved an accuracy of 98%.  
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Fig. 4 Overview of smartphone-based biosensor employed by de Haan and colleagues. [64] (A) 

Photograph of the smartphone-based system, the overall design, and the light path is shown from left 

to right. Reprinted from [64] (B) workflow of deep learning process is presents. This learning algorithm 

has been used sickle cell analysis to enhance blood smear images and carry out semantic segmentation 

between SC and healthy cells. Adapted from [64].  

 

A comparison of different ML algorithms was carried out for waterborne pathogen (Giardi) detection 

using a smartphone- based setup.[65] The accuracy and the Area Under the ROC curve (AUROC) of 

different ML models were compared including, but not limited to SVM, nearest neighbors and ensemble 

methods. All the models had a classification accuracy above 81%, while the AUROC values were 

greater than 0.7. The best predictive performance was obtained using bagged trees (Ntree=400). Fine 

and cubic kNN classifiers provided fast fitting speeds, but their predictive accuracy was relatively poor. 

On the other hand, SVM and bagged ensemble classifiers were promising at their prediction accuracy, 

while their training speeds were slower. 

3.4. Electrical Detection 

Electrical detection refers to the use of electrical circuits to obtain data in the form of electrical signals. These 

signals can be impedance, voltage, current or any other electrical signal. Impedance is generally the most 

commonly used parameter to identify and quantify cells. When a cell passes through the electrodes in a 

microfluidic channel, a change in impedance occurs. The output signal is determined by the cell’s properties 

such as cell size, conductivity, and permittivity. Electrical Detection of cells has many advantages over 

traditional optical detection. Since there is no need for bulky optical equipment, electrical detection devices 
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usually have a small footprint and are less expensive. In the following paragraphs, we present biosensors 

utilizing ML techniques for electrical detection of various biomarkers. 

Integrated with ML algorithms, a microfluidic impedance cytometry for real-time, label-free 

multiparametric characterization of biological cells.[66] In this study, a recurrent NN was designed to 

predict cell diameter, velocity, and position from electric current signals, measured by a microfluidic 

impedance chip. The trained network was able to characterize geometric and electrical properties of 

beads, red blood cells, and yeasts with a good accuracy and a unitary prediction time of 0.4 ms. Zhao 

et al. designed a new microfluidic impedance cytometry with crossing constriction microchannels, 

which allows quantifying the cellular electrical markers.[67] Using an equivalent circuit model, they 

translated the measured impedance values to specific membrane capacitance and cytoplasm 

conductivity. A NN-based pattern recognition was used to classify tumor cell lines and tumor cells with 

epithelial-mesenchymal transitions. Precise measurement of mechanical and/or electrical properties of 

cells or cell components yields useful information on the physiological and pathological state of cells 

and is critical for cell classification. Yang et al. extracted deformability, electrical impedance and 

relaxation index of single cells from impedance spectroscopy measurements with self-aligned 3D 

electrodes.[68] They demonstrated the ability of their system to detect and classify cells using a back 

propagation NN completely based on the biophysical properties of the cells. In another study, a 

microfluidic constriction channel was designed to measure single-cell electrical properties.[69] A back 

propagation NN was used for cell classification based on three parameters of diameter, specific 

membrane capacitance, and cytoplasm conductivity. Finally, they showed that cell classification 

success rate significantly improved when information additional to cell size was included. 

In Chen and his colleagues’ work, osteoblasts and osteocytes were classified using a two-layer back 

propagation NN70. The input data had three groups of parameters measured on cells, namely, transit 

time, impedance amplitude ratio, and cell elongation length. Their results suggested that biomechanical 

and bioelectrical parameters, when used in combination, provided a higher cell classification success 

rate than using alone. In another study, a microfluidic system was presented for cell type classification 

based on size-independent electrical properties, specific membrane capacitance and cytoplasm 

conductivity.[70] Two lung tumor cell lines were classified using a two-layer back propagation NN. 

The NN-based classification resulted in a fairly acceptable classification success rate of 65.4% 

(CSpecific Membrane), 71.4% (σcytoplasm), and 74.4% (CSpecific Membrane combined with 

σcytoplasm). A microfluidic system proposed by Zhang et al. with a constriction channel. The channel 

was marginally smaller than the RBC’s diameters which was used to classify adult and neonatal RBCs 

using a back propagation NN through their biophysical properties (mechanical and electrical).[71] 

Electrical measurements were performed to characterize these properties. The input data had three 

group of parameters (transit time, amplitude ratio and phase increase). The results showed that when 

these parameters were used in combination, yielded a relatively higher classification accuracy (84.8%) 

than the time each parameter was used alone. Recently a study published where the authors used 

Quadratic Discriminant Analysis (QDA). This is a type of supervised ML algorithm that helped them 

extract six features from Red Blood Cells (RBCs) and yeast cells using Impedance micro-cytometry. 

They achieved the maximum test accuracy (99%) by using four features on RBCs. They also 

demonstrated the efficacy of their platform by classifying different cancer subtypes. The accuracy 

decreased when more than four features was used. It was because of overfitting of the model to the 

training data.[72] 

A study conducted cancer drug efficacy analysis using multifrequency impedance cytometry, 

measuring the impedance of a single cell at several discrete frequencies.[73] Support vector machine 

algorithm was implemented to help differentiate alive cells from dead cells. Song et al. employed a 
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support vector machine algorithm to help identify differentiation states of stem cells based on 

impedance signals collected by the microfluidic electrical impedance flow cytometer at 50 kHz, 250 

kHz, 500 kHz and 1 MHz.[74] Another research group discriminated strains of E. coli K-12, E. coli 

O157: H7, and Salmonella Thompson using a multichannel immunosensor incorporated with multiclass 

support vector machines.[75] Gini-SVM framework was adopted to design multiclass SVMs. To 

evaluate the performance, a 100-fold cross-validation procedure was implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Schematic diagram of an electrical impedance cytometer. As cells flow from the inlet to the 

outlet in these biosensors, the change in impedance is measured by a lock-in amplifier. The lock-in 

amplifier can apply signal in different frequencies at a time. The data are then recorded and analyzed 

using SVM. Adapted from [76]. 

 

Detection and enumeration of circulating tumor cells from red blood cells were performed in research 

using a micropore-based microfluidic impedance cytometer.[38] The peak amplitude and the pulse 

bandwidth of signal pulses were analyzed by SVM to differentiate cancer cells from red blood cells. 

Radial basis function (RBF) was appointed as the kernel function. The results of the proposed 

microfluidic sensor combined with SVM showed a good agreement with the results of a commercial 

flow cytometer. Wang and colleagues proposed a sensitive multiplex self-referencing SERS pathogen 

detection scheme.[77] A linear kernel-based SVM in conjunction of PCA was performed for rapid 

discrimination and classification of target bacteria with a detection accuracy above 95%. An approach 

for hematocrit estimation from the transduced anodic current curves introduced in a study. The curves 

were obtained by glucose-oxidase reaction in the strip-type electrochemical biosensors.[78] The support 

vector machine was implemented for regression with the target value of accurate hematocrit values 

measured by a hospital analysis system. 
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TABLE 1 Comparison of ML efficacy of different Biosensors for Cellular Analysis 

Author & 

Year of 

Publication 

Training 

Algorithm 

Detection 

Technique 
Sample Type Cell type 

Approximate 

Classifier 

Accuracy 

(Maximum)* 

Dataset 

Size 
Ratio 

Dataset size = number of cells 

Toedling 

[2006][63] 

Multivariate 

Classification, 

SVM 

Optical 

Flow 

Cytometry 

Yeast Culture Yeast Cells 82% 120 Cells 6.83E-01 

Tabrizi 

[2010][27] 

Neural 

Networks 

Microscopy-

based 

Biological 

Tissue 
Neuron Cell Soma 92.80% 2158 Cells 4.30E-02 

Chen 

[2011][79] 

Neural 

Networks 
Electrical 

Cell co-

culture 

RBC and HepG2 

Tumor Cells 
99% 

11909 

Cells 
8.31E-03 

Yu 

[2011][46] 

GED, SVM 

and KNN 

Microscopy-

based 
Blood Red Blood Cells 84.80% 

166326 

Cells 
5.07E-04 

Mayerich 

[2011][25] 

Neural 

Networks 

Microscopy-

based 

Stem Cell 

Solution 

Mouse Embryonic 

Carcinoma Cells (P 

19) 

95% 

98 Signals 

(Cells and 

Beads) 

9.69E-01 

Van Valen 

[2011][29] 
Deep learning 

Microscopy-

based 
Cell Culture 

CRL-5803 cells and 

CCL-185 Cells 
74.40% 976 Cells 7.62E-02 

Zheng 

[2012][71] 

Neural 

Networks 
Electrical 

Cell 

Suspension 

ML-2 and HL-60 

Cells 
93% 6647 Cells 1.40E-02 

Song 

[2013][74] 
SVM Electrical PBS 

HepG2 and RBC 

Cells 
92.00% 3698 Cells 2.49E-02 

Zhao 

[2013][70] 

Neural 

Networks 
Electrical 

Blood and 

Bone Marrow 

Smears 

Acute 

lymphoblastic 

leukemia Cells 

97% 958 Cells 1.01E-01 

Zheng 

[2013][69] 

Neural 

Networks 
Electrical Blood 

Monocytes, 

Granulocytes, and 

Lymphocytes 

89% 7500 Cells 1.19E-02 

Huang 

[2014][42] 

Neural 

Networks 

(ELM-SR) 

Microscopy-

based 
Blood Leukemia Cells 99.46% 

10000 

Cells 
9.94E-03 

Moradi 

[2015][39] 
SVM 

Microscopy-

based 
Cell Culture 

Fluo-N2DL-HeLa, 

PhC-HeLa and 

Hist-BM Cells 

96.90% 
34060 

Cells 
2.84E-03 

Schneider 

[2015][23] 

Neural 

Networks 

Microscopy-

based 

Lysis of 

RBCs 

MDA-MB-231 and 

MCF7 Cells 

False Positive 

Rate of at Most 

0.001% 

100000 

Cell 

Training 

Sets 

N/A 

Ni 

[2016][80] 
SVM 

Optical 

Flow 

Cytometry 

Cell lines 

Leukemia cell 

lines(K562, MOLT, 

and HL60) 

97.60% 618 Cells 1.58E-01 
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Akram 

[2016][31] 

Deep 

Learning 

Microscopy-

based 
Cell lines 

leukemia cell lines 

HL60, MOLT, and 

K562 

99.52% 

618 

Leukemia 

cells 

1.61E-01 

Singh 

[2017][51] 
Decision Tree 

Microscopy-

based 
Buffer 

Lung cancer cell 

lines ofH1299 and 

A549 

90.90% 
100,000 

Cells 
9.09E-04 

Gopakumar 

[2017][56] 

Deep 

Learning 

Optical flow 

cytometry 

Online 

Dataset 

Colorectal 

Adenocarcinoma 

Cells 

Precision=0.788 
29756 

Nuclei 
N/A 

Kalmady 

[2017][45] 

Neural 

Networks 

Optical 

Flow 

Cytometry 

Blood 
Erythrocytes and 

Platelets 

Minimum 

Error=0.003 
> 40k Cells N/A 

Zhao 

[2018][67] 

Neural 

Networks 
Electrical Buffer 

Normal Human 

Fibroblasts (NHFs) 

and Senescent 

Human Fibroblasts 

(SHFs) 

88% 

480 Cells 

(240 

Normal 

Human 

Fibroblasts 

(NHFs) and 

240 

Senescent 

Human 

Fibroblasts) 

1.83E-01 

Alemi 

[2018][22] 

Deep 

Learning 

Microscopy-

based 
Buffer T47D Cancer Cells 95.90% 

>1000 

Cells 
9.59E-02 

Glushkova 

[2018][57] 

Neural 

Networks 

Optical 

Flow 

Cytometry 

Biological 

Tissue 

Circulating Tumor 

Cells (CTCs) 
85% 

600000 

Cells 
1.42E-04 

Lin 

[2018][62] 
SVM 

Optical 

Flow 

Cytometry 

Blood 
RBCs  and Yeast 

Cells 

RMSE=1.2 um 

for particle size 

17000 

Single 

Particle 

Signals 

(Beads and 

Cells) 

N/A 

Ahuja 

[2019][73] 
SVM Electrical Yeast Culture Yeast Cells 82% 120 Cells 6.83E-01 

Fu 

[2019][61] 
SVM 

Optical 

Flow 

Cytometry 

Biological 

Tissue 
Neuron Cell Soma 92.80% 2158 Cells 4.30E-02 

Honrado 

[2020][66] 

Neural 

Networks 
Electrical 

Cell co-

culture 

RBC and HepG2 

Tumor Cells 
99% 

11909 

Cells 
8.31E-03 

Dataset size = Number of Images 

Long 

[2006][36] 
SVM 

Microscopy-

based 
Cell Culture 

B-cell Lymphoma 

Cells 
94% 59 Images 1.59 

Su 

[2014][47] 

Neural 

Networks 

Microscopy-

based 
Blood White Blood Cells 99.11% 450 Images 2.20E-01 
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Mao 

[2015][52] 
SVM, CNN 

Microscopy-

based 
Blood 

CTCs (Breast 

Cancer) 
91.20% 45 Images 2.03 

Heo 

[2017][53] 
CNN 

Optical 

Flow 

Cytometry 

Microparticles 

in Buffer 
K562 and RBCs 93.30% 

6000 

Images 
1.55E-02 

Xu 

[2017][34] 
CNN 

Microscopy-

based 
Blood Sickle Cells (RBCs) 89.28% 

> 7000 

single RBC 

images 

1.28E-02 

Go 

[2018][48] 

Decision 

Tree, SVM, 

kNN, Linear 

Discriminant 

Classification 

Microscopy-

based 
Blood 

Erythrocytes: 

Discocytes, 

Echinocytes, 

Spherocytes 

97.37% 630 Images 1.55E-01 

Turan 

[2018][35] 
SVM 

Microscopy-

based 
Blood T and B Cells 94% 

420 Scan 

Images 
2.24E-01 

Soldati 

[2018][54] 
CNN 

Optical 

Flow 

Cytometry 

Blood 
CTCs and CD45 

Cells 
90.20% 500 Images 1.80E-01 

Xia 

[2019][32] 

Deep 

Learning 

Microscopy-

based 
Buffer White Blood Cells 98.40% 364 Images 2.70E-01 

Sun 

[2019][81] 

Deep 

Learning 

Optical flow 

cytometry 
Buffer 

T Cells and B Cells 

(Acute Luekemia) 
93.20% 

2400 

Images 
3.88E-02 

Uslu 

[2019][37] 
SVM 

Microscopy-

based 
Buffer B Lymphoblast 87.40% 

100000 

Sub-images 
0.000874 

Dataset size = Other 

Park 

[2008][78] 

SVM, ELS-

ELM, RLS-

ELM, ELM 

Electrical Blood Red Blood Cells RMSE=0.74 
199 Blood 

Samples 
N/A 

Ko 

[2018][60] 
SVM 

Optical 

Flow 

Cytometry 

Blood 

Acute Myeloid 

Leukemia (AML) 

and 

Myelodysplastic 

Syndrome (MDS) 

Cells 

92.40% 
5333 MFC 

Data Points 
N/A 

Li 

[2019][55] 
Deep learning 

Optical 

Flow 

Cytometry 

Buffer 

OT-II White Blood 

Cells and SW-480 

Epithelial Cancer 

Cells 

95.74% 
6700 Data 

Points 
N/A 

de Haan 

[2019][64] 

Deep 

Learning 

Smartphone-

based 
Whole blood 

Sickle Cells and 

Healthy RBCs 
98% 

96 Patients' 

Blood 

Smear 

N/A 

Zhang 

[2019][30] 

Deep 

Learning 

Microscopy-

based 
Whole Blood 

MCF-7 Cancer 

Cells 
78% 

17,447 

Videos 
N/A 
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4. Conclusions 

ML has become a useful tool in analyzing and classifying the data obtained from biosensors for cellular 

analysis. Based on the papers we discussed here, we see that both SVM and ANN are the prevalent techniques 

which are effective in automating the classification of various cell types except for microscopy-based 

biosensors. This may be due to the fact that these are the most widely known techniques for researchers working 

in fields related to biosensors. In the case of microscopy-based biosensors, various NN architectures are 

preferred over SVM and other methods for classification of different cell types.  

Table I compares important characteristics for several papers that are discussed in this review. It is divided 

into 2 main categories for easily comparing each method’s efficacy. In the first part, we list the papers in which 

the number of cells are specified as the dataset size. The second part of the table contains the papers in which 

the number of images is considered as the dataset size. Other than these 2 main categories, we have listed a few 

papers in which the dataset neither corresponds to the number of images nor the number of cells. The last 

column of Table I is a ratio of the classifier accuracy (in percentage) to the dataset size. A higher number, 

therefore, indicates that the accuracy achieved corresponds to a relatively small dataset. 

We also noted that Deep Learning and ANN have grown more popular recently with the majority of the 

newer publications using these methods. Another interesting observation is that biosensors utilizing electrical 

detection methods rarely employ deep learning as the analytical tool for classifying cells. This may be due to 

the fact that deep learning is data hungry and databases for electrical biosensing data are not yet established. On 

the other hand, there is a plethora of datasets easily available that may be used as training samples for image 

and optical detection of various biomarkers. 

To summarize, the use of ML algorithms in biosensors have huge benefits that automate the cumbersome 

and complicated process of extracting, processing and analyzing data that is generated by the biosensors. Such 

an automation eliminates the need for an experienced professional to make sense of the data and moves us 

closer to providing Point-of-care health solutions in environments that have low resources. Although ML 

algorithms have been around for a while now and have huge benefits, the techniques discussed here mostly 

utilize code and require certain Integrated Development Environments (IDE’s) e.g. Python, MATLAB etc. for 

their use. Researchers should consider packaging of the softwares into a GUI which will make these relatively 

simple to interact with and less formidable. 

Conflicts of interest 

    Disclosure of potential conflict of interest: M. Javanmard and J. Sui has a pending patent for “Use of 

Multi-Frequency Impedance Cytometry in Conjunction with Machine Learning for Classification of Biological 

Particles” and M. Javanmard has equity in Rizlab Health Inc., a company dedicated to commercialization of a 

microfluidic hematology analyzer. 

Acknowledgements 

    This research was sponsored by National Science Foundation Awards 1556253 (IDBR), 1846740 

(CAREER), and 1711165 (ECCS-CCSS) and also the Defense Advanced Research Projects Agency (DARPA) 

Biological Technologies Office (BTO) Electrical Prescriptions (ElectRx) program managed by Dr. E. V. Giesen 

through the DARPA Contracts Management Office Grant/Contract Number HR0011-16-2-0026 and Contract 

Number N660011824018. The views, opinions and/or findings expressed are those of the authors and should 



  19 

not be interpreted as representing the official views or policies of the National Science Foundation, the 

Department of Defense, or the U.S. Government.   

References 

[1] M. Tayyab, M.A. Sami, H. Raji, S. Mushnoori, M. Javanmard, Potential microfluidic devices for 

COVID-19 Antibody detection at Point-of-Care (POC): A Review, IEEE Sens. J. (2020) 1–1. 

https://doi.org/10.1109/JSEN.2020.3034892. 

[2] D.R. The, ELECTROCHEMICAL BIOSENSORS : RECOMMENDED Electrochemical biosensors : 

Recommended de ® nitions and classi ® cation ( Technical Report ), Electroanal. Chem. 71 (1999) 

2333–2348. http://iupac.org/publications/pac/71/12/2333/. 

[3] U. Bora, Nucleic Acid Based Biosensors for Clinical Applications, Biosens. J. 02 (2013). 

https://doi.org/10.4172/2090-4967.1000104. 

[4] J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, A. Simonian, Biosensor technology: Recent advances in 

threat agent detection and medicine, Chem. Soc. Rev. 42 (2013) 8733–8768. 

https://doi.org/10.1039/c3cs60141b. 

[5] M.M. Hashemi, A. Nikfarjam, H. Raji, Novel fabrication of extremely high aspect ratio and straight 

nanogap and array nanogap electrodes, Microsyst. Technol. 25 (2019) 541–549. 

https://doi.org/10.1007/s00542-018-3993-0. 

[6] A. Bamshad, A. Nikfarjam, M.H. Sabour, H. Raji, Theoretical and Numerical Investigation of Liquid-

Gas Interface Location of Capillary Driven Flow during the Time Throughout Circular Microchannels, 

5th RSI Int. Conf. Robot. Mechatronics, IcRoM 2017. (2018) 432–438. 

https://doi.org/10.1109/ICRoM.2017.8466144. 

[7] M.A. Lizarralde Iragorri, S. El Hoss, V. Brousse, S.D. Lefevre, M. Dussiot, T. Xu, A.R. Ferreira, Y. 

Lamarre, A.C. Silva Pinto, S. Kashima, C. Lapouméroulie, D.T. Covas, C. Le Van Kim, Y. Colin, J. 

Elion, O. Français, B. Le Pioufle, W. El Nemer, A microfluidic approach to study the effect of 

mechanical stress on erythrocytes in sickle cell disease, Lab Chip. 18 (2018) 2975–2984. 

https://doi.org/10.1039/c8lc00637g. 

[8] J.M. Jackson, J.B. Taylor, M.A. Witek, S.A. Hunsucker, J.P. Waugh, Y. Fedoriw, T.C. Shea, S.A. 

Soper, P.M. Armistead, Microfluidics for the detection of minimal residual disease in acute myeloid 

leukemia patients using circulating leukemic cells selected from blood, Analyst. 141 (2016) 640–651. 

https://doi.org/10.1039/c5an01836f. 

[9] T.H. Kim, H.J. Yoon, S. Fouladdel, Y. Wang, M. Kozminsky, M.L. Burness, C. Paoletti, L. Zhao, E. 

Azizi, M.S. Wicha, S. Nagrath, Characterizing Circulating Tumor Cells Isolated from Metastatic Breast 

Cancer Patients Using Graphene Oxide Based Microfluidic Assay, Adv. Biosyst. 3 (2019) 1800278. 

https://doi.org/10.1002/adbi.201800278. 

[10] W. Xue, X. Tan, M.K. Khaing Oo, G. Kulkarni, M.A. Ilgen, X. Fan, Rapid and sensitive detection of 

drugs of abuse in sweat by multiplexed capillary based immuno-biosensors, Analyst. 145 (2020) 1346–

1354. https://doi.org/10.1039/c9an02498k. 

[11] M. Ugawa, C. Lei, T. Nozawa, T. Ideguchi, D. Di Carlo, S. Ota, Y. Ozeki, K. Goda, High-throughput 

optofluidic particle profiling with morphological and chemical specificity, Opt. Lett. 40 (2015) 4803. 

https://doi.org/10.1364/ol.40.004803. 

[12] A.T.H. Hsieh, P.J. Pan, A.P. Lee, A real-time characterization method to rapidly optimize molecular 

beacon signal for sensitive nucleic acids analysis, Anal. Bioanal. Chem. 406 (2014) 3059–3067. 

https://doi.org/10.1007/s00216-014-7721-z. 

[13] B.S. Lee, Y.U. Lee, H.S. Kim, T.H. Kim, J. Park, J.G. Lee, J. Kim, H. Kim, W.G. Lee, Y.K. Cho, Fully 

integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood, 



20  

Lab Chip. 11 (2011) 70–78. https://doi.org/10.1039/c0lc00205d. 

[14] H. Zhu, M. Zhou, J. Lee, R. Nidetz, K. Kurabayashi, X. Fan, Low-Power Miniaturized Helium 

Dielectric Barrier Discharge Photoionization Detectors for Highly Sensitive Vapor Detection, Anal. 

Chem. 88 (2016) 8780–8786. https://doi.org/10.1021/acs.analchem.6b02180. 

[15] K.R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, M.L. Yarmush, A high-throughput 

microfluidic real-time gene expression living cell array, Lab Chip. 7 (2007) 77–85. 

https://doi.org/10.1039/b612516f. 

[16] G.K. Mani, M. Morohoshi, Y. Yasoda, S. Yokoyama, H. Kimura, K. Tsuchiya, ZnO-Based Microfluidic 

pH Sensor: A Versatile Approach for Quick Recognition of Circulating Tumor Cells in Blood, ACS 

Appl. Mater. Interfaces. 9 (2017) 5193–5203. https://doi.org/10.1021/acsami.6b16261. 

[17] D. Bardin, A.P. Lee, Low-cost experimentation for the study of droplet microfluidics, Lab Chip. 14 

(2014) 3978–3986. https://doi.org/10.1039/c4lc00424h. 

[18] M. Carminati, G. Ferrari, M.D. Vahey, J. Voldman, M. Sampietro, Miniaturized Impedance Flow 

Cytometer: Design Rules and Integrated Readout, IEEE Trans. Biomed. Circuits Syst. 11 (2017) 1438–

1449. https://doi.org/10.1109/TBCAS.2017.2748158. 

[19] A. Najafi, S. Janghorbani, S.A. Motahari, E. Fatemizadeh, Statistical association mapping of 

population-structured genetic data, IEEE/ACM Trans. Comput. Biol. Bioinforma. 16 (2019) 636–649. 

https://doi.org/10.1109/TCBB.2017.2786239. 

[20] A. Gupta, P.J. Harrison, H. Wieslander, N. Pielawski, K. Kartasalo, G. Partel, L. Solorzano, A. Suveer, 

A.H. Klemm, O. Spjuth, I.M. Sintorn, C. Wählby, Deep Learning in Image Cytometry: A Review, 

Cytom. Part A. 95 (2019) 366–380. https://doi.org/10.1002/cyto.a.23701. 

[21] J. Riordon, D. Sovilj, S. Sanner, D. Sinton, E.W.K. Young, Deep Learning with Microfluidics for 

Biotechnology, Trends Biotechnol. 37 (2019) 310–324. https://doi.org/10.1016/j.tibtech.2018.08.005. 

[22] N.A. Koohababni, M. Jahanifar, A. Gooya, N. Rajpoot, Nuclei detection using mixture density 

networks, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), 2018. https://doi.org/10.1007/978-3-030-00919-9_28. 

[23] B. Schneider, G. Vanmeerbeeck, R. Stahl, L. Lagae, J. Dambre, P. Bienstman, Neural network for blood 

cell classification in a holographic microscopy system, in: Int. Conf. Transparent Opt. Networks, IEEE 

Computer Society, 2015. https://doi.org/10.1109/ICTON.2015.7193315. 

[24] X. Huang, Y. Jiang, H. Xu, X. Liu, H.W. Hou, M. Yan, H. Yu, A convolutional neural network based 

single-frame super-resolution for lensless blood cell counting, in: Proc. - 2016 IEEE Biomed. Circuits 

Syst. Conf. BioCAS 2016, Institute of Electrical and Electronics Engineers Inc., 2016: pp. 168–171. 

https://doi.org/10.1109/BioCAS.2016.7833758. 

[25] D. Mayerich, J. Kwon, A. Panchal, J. Keyser, Y. Choe, Fast cell detection in high-throughput imagery 

using GPU-accelerated machine learning, in: Proc. - Int. Symp. Biomed. Imaging, 2011: pp. 719–723. 

https://doi.org/10.1109/ISBI.2011.5872507. 

[26] H. Bachratý, K. Bachratá, M. Chovanec, I. Jančigová, M. Smiešková, K. Kovalčíková, Applications of 

machine learning for simulations of red blood cells in microfluidic devices, BMC Bioinformatics. 21 

(2020) 1–15. https://doi.org/10.1186/s12859-020-3357-5. 

[27] P.R. Tabrizi, S.H. Rezatofighi, M.J. Yazdanpanah, Using PCA and LVQ neural network for automatic 

recognition of five types of white blood cells, in: 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 

EMBC’10, 2010: pp. 5593–5596. https://doi.org/10.1109/IEMBS.2010.5626788. 

[28] T. Falk, D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm, J. Deubner, Z. Jäckel, 

K. Seiwald, A. Dovzhenko, O. Tietz, C. Dal Bosco, S. Walsh, D. Saltukoglu, T.L. Tay, M. Prinz, K. 

Palme, M. Simons, I. Diester, T. Brox, O. Ronneberger, U-Net: deep learning for cell counting, 

detection, and morphometry, Nat. Methods. 16 (2019) 67–70. https://doi.org/10.1038/s41592-018-

0261-2. 

[29] D.A. Van Valen, T. Kudo, K.M. Lane, D.N. Macklin, N.T. Quach, M.M. DeFelice, I. Maayan, Y. 



  21 

Tanouchi, E.A. Ashley, M.W. Covert, Deep Learning Automates the Quantitative Analysis of 

Individual Cells in Live-Cell Imaging Experiments, PLOS Comput. Biol. 12 (2016) e1005177. 

https://doi.org/10.1371/journal.pcbi.1005177. 

[30] Y. Zhang, M. Ouyang, A. Ray, T. Liu, J. Kong, B. Bai, D. Kim, A. Guziak, Y. Luo, A. Feizi, K. Tsai, 

Z. Duan, X. Liu, D. Kim, C. Cheung, S. Yalcin, H. Ceylan Koydemir, O.B. Garner, D. Di Carlo, A. 

Ozcan, Computational cytometer based on magnetically modulated coherent imaging and deep 

learning, Light Sci. Appl. 8 (2019) 2047–7538. https://doi.org/10.1038/s41377-019-0203-5. 

[31] S.U. Akram, J. Kannala, L. Eklund, J. Heikkilä, Cell segmentation proposal network for microscopy 

image analysis, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), Springer Verlag, 2016: pp. 21–29. https://doi.org/10.1007/978-3-319-46976-8_3. 

[32] T. Xia, R. Jiang, Y.Q. Fu, N. Jin, Automated Blood Cell Detection and Counting via Deep Learning for 

Microfluidic Point-of-Care Medical Devices, in: IOP Conf. Ser. Mater. Sci. Eng., Institute of Physics 

Publishing, 2019: p. 012048. https://doi.org/10.1088/1757-899X/646/1/012048. 

[33] S. Yang, B. Fang, W. Tang, X. Wu, J. Qian, W. Yang, Faster R-CNN based microscopic cell detection, 

in: 2017 Int. Conf. Secur. Pattern Anal. Cybern. SPAC 2017, Institute of Electrical and Electronics 

Engineers Inc., 2018: pp. 345–350. https://doi.org/10.1109/SPAC.2017.8304302. 

[34] M. Xu, D.P. Papageorgiou, S.Z. Abidi, M. Dao, H. Zhao, G.E. Karniadakis, A deep convolutional neural 

network for classification of red blood cells in sickle cell anemia, PLOS Comput. Biol. 13 (2017) 

e1005746. https://doi.org/10.1371/journal.pcbi.1005746. 

[35] B. Turan, T. Masuda, W. Lei, A.M. Noor, K. Horio, T.I. Saito, Y. Miyata, F. Arai, A pillar-based 

microfluidic chip for T-cells and B-cells isolation and detection with machine learning algorithm, 

ROBOMECH J. 5 (2018) 1–9. https://doi.org/10.1186/s40648-018-0124-8. 

[36] X. Long, L. Cleveland, Y. Lawrence Yao, Automatic detection of unstained viable cells in bright field 

images using a support vector machine with an improved training procedure, Comput. Biol. Med. 36 

(2006) 339–362. https://doi.org/10.1016/j.compbiomed.2004.12.002. 

[37] F. Uslu, K. Icoz, K. Tasdemir, B. Yilmaz, Automated quantification of immunomagnetic beads and 

leukemia cells from optical microscope images, Biomed. Signal Process. Control. 49 (2019) 473–482. 

https://doi.org/10.1016/j.bspc.2019.01.002. 

[38] J. Guo, Z. Chen, Y.-L. Ban, Y. Kang, Precise Enumeration of Circulating Tumor Cells Using Support 

Vector Machine Algorithm on a Microfluidic Sensor, IEEE Trans. Emerg. Top. Comput. 5 (2014) 518–

525. https://doi.org/10.1109/tetc.2014.2335539. 

[39] M.M. Amin, S. Kermani, A. Talebi, M.G. Oghli, Recognition of acute lymphoblastic leukemia cells in 

microscopic images using k-means clustering and support vector machine classifier, J. Med. Signals 

Sens. 5 (2015) 49–58. https://doi.org/10.4103/2228-7477.150428. 

[40] H. Wang, H.C. Koydemir, Y. Qiu, B. Bai, Y. Zhang, Y. Jin, S. Tok, E.C. Yilmaz, E. Gumustekin, Y. 

Rivenson, A. Ozcan, Early-detection and classification of live bacteria using time-lapse coherent 

imaging and deep learning, Light Sci. Appl. 9 (2020). https://doi.org/10.1038/s41377-020-00358-9. 

[41] B. Guo, C. Lei, H. Kobayashi, T. Ito, Y. Yalikun, Y. Jiang, Y. Tanaka, Y. Ozeki, K. Goda, High-

throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic 

time-stretch quantitative phase microscopy, Cytom. Part A. 91 (2017) 494–502. 

https://doi.org/10.1002/cyto.a.23084. 

[42] X. Huang, J. Guo, X. Wang, M. Yan, Y. Kang, H. Yu, A Contact-Imaging Based Microfluidic 

Cytometer with Machine-Learning for Single-Frame Super-Resolution Processing, PLoS One. 9 (2014) 

e104539. https://doi.org/10.1371/journal.pone.0104539. 

[43] X. Huang, X. Wang, M. Yan, H. Yu, A robust recognition error recovery for micro-flow cytometer by 

machine-learning enhanced single-frame super-resolution processing, Integration. 51 (2015) 208–218. 

https://doi.org/10.1016/j.vlsi.2014.07.004. 

[44] I. Constantinou, M. Jendrusch, T. Aspert, F. Görlitz, A. Schulze, G. Charvin, M. Knop, Self-Learning 



22  

Microfluidic Platform for Single-Cell Imaging and Classification in Flow, Micromachines. 10 (2019) 

311. https://doi.org/10.3390/mi10050311. 

[45] K.S. Kalmady, A.S. Kamath, G. Gopakumar, G.R.K.S. Subrahmanyam, S.S. Gorthi, Improved Transfer 

Learning through Shallow Network Embedding for Classification of Leukemia Cells, in: 2017 9th Int. 

Conf. Adv. Pattern Recognition, ICAPR 2017, Institute of Electrical and Electronics Engineers Inc., 

2018: pp. 127–132. https://doi.org/10.1109/ICAPR.2017.8593186. 

[46] B. Yang Yu, C. Elbuken, C.L. Ren, J.P. Huissoon, Image processing and classification algorithm for 

yeast cell morphology in a microfluidic chip, J. Biomed. Opt. 16 (2011) 066008. 

https://doi.org/10.1117/1.3589100. 

[47] M.C. Su, C.Y. Cheng, P.C. Wang, A neural-network-based approach to white blood cell classification, 

Sci. World J. 2014 (2014). https://doi.org/10.1155/2014/796371. 

[48] T. Go, H. Byeon, S.J. Lee, Label-free sensor for automatic identification of erythrocytes using digital 

in-line holographic microscopy and machine learning, Biosens. Bioelectron. 103 (2018) 12–18. 

https://doi.org/10.1016/j.bios.2017.12.020. 

[49] X. Huang, Y. Jiang, X. Liu, H. Xu, Z. Han, H. Rong, H. Yang, M. Yan, H. Yu, Machine Learning Based 

Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting, Sensors. 16 (2016) 1836. 

https://doi.org/10.3390/s16111836. 

[50] X. Huang, H. Yu, X. Liu, Y. Jiang, M. Yan, A single-frame superresolution algorithm for lab-on-a-chip 

lensless microfluidic imaging, IEEE Des. Test. 32 (2015) 32–40. 

https://doi.org/10.1109/MDAT.2015.2424418. 

[51] D.K. Singh, C.C. Ahrens, W. Li, S.A. Vanapalli, Label-free, high-throughput holographic screening 

and enumeration of tumor cells in blood, Lab Chip. 17 (2017) 2920–2932. 

https://doi.org/10.1039/c7lc00149e. 

[52] Y. Mao, Z. Yin, J.M. Schober, Iteratively training classifiers for circulating tumor cell detection, in: 

Proc. - Int. Symp. Biomed. Imaging, IEEE Computer Society, 2015: pp. 190–194. 

https://doi.org/10.1109/ISBI.2015.7163847. 

[53] Y.J. Heo, D. Lee, J. Kang, K. Lee, W.K. Chung, Real-time Image Processing for Microscopy-based 

Label-free Imaging Flow Cytometry in a Microfluidic Chip, Sci. Rep. 7 (2017) 790–784. 

https://doi.org/10.1038/s41598-017-11534-0. 

[54] G. Soldati, F. Del Ben, G. Brisotto, E. Biscontin, M. Bulfoni, A. Piruska, A. Steffan, M. Turetta, V. 

Della Mea, Microfluidic droplets content classification and analysis through convolutional neural 

networks in a liquid biopsy workflow, Am. J. Transl. Res. 10 (2018) 4004–4016. www.ajtr.org 

(accessed October 30, 2020). 

[55] Y. Li, A. Mahjoubfar, C.L. Chen, K.R. Niazi, L. Pei, B. Jalali, Deep Cytometry: Deep learning with 

Real-time Inference in Cell Sorting and Flow Cytometry, Sci. Rep. 9 (2019) 11088. 

https://doi.org/10.1038/s41598-019-47193-6. 

[56] G. Gopakumar, K. Hari Babu, D. Mishra, S.S. Gorthi, G.R.K. Sai Subrahmanyam, Cytopathological 

image analysis using deep-learning networks in microfluidic microscopy, J. Opt. Soc. Am. A. 34 (2017) 

111. https://doi.org/10.1364/josaa.34.000111. 

[57] E. Glushkova, V. Glushkov, Quantitative evaluation of blood cells using a neural network on a 

microfluidic chip, in: IOP Conf. Ser. Mater. Sci. Eng., Institute of Physics Publishing, 2018: p. 012141. 

https://doi.org/10.1088/1757-899X/420/1/012141. 

[58] B. Schneider, G. Vanmeerbeeck, R. Stahl, L. Lagae, P. Bienstman, Using neural networks for high-

speed blood cell classification in a holographic-microscopy flow-cytometry system, in: D.L. Farkas, D. 

V. Nicolau, R.C. Leif (Eds.), Imaging, Manip. Anal. Biomol. Cells, Tissues XIII, SPIE, 2015: p. 

93281F. https://doi.org/10.1117/12.2079436. 

[59] C.L. Chen, A. Mahjoubfar, L.C. Tai, I.K. Blaby, A. Huang, K.R. Niazi, B. Jalali, Deep Learning in 

Label-free Cell Classification, Sci. Rep. 6 (2016) 1–16. https://doi.org/10.1038/srep21471. 



  23 

[60] B.S. Ko, Y.F. Wang, J.L. Li, C.C. Li, P.F. Weng, S.C. Hsu, H.A. Hou, H.H. Huang, M. Yao, C.T. Lin, 

J.H. Liu, C.H. Tsai, T.C. Huang, S.J. Wu, S.Y. Huang, W.C. Chou, H.F. Tien, C.C. Lee, J.L. Tang, 

Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow 

cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome, EBioMedicine. 37 

(2018) 91–100. https://doi.org/10.1016/j.ebiom.2018.10.042. 

[61] Y. Fu, Q. Zhou, Q. Liu, L. Tao, X. Wei, Photoacoustic signal classification for in vivo photoacoustic 

flow cytometry based on support vector machine, in: Q. Luo, X. Li, Y. Tang, Y. Gu, D. Zhu (Eds.), 

Opt. Heal. Care Biomed. Opt. IX, SPIE, 2019: p. 89. https://doi.org/10.1117/12.2537481. 

[62] M. Lin, Q. Liu, C. Liu, X. Qiao, C. Shao, X. Su, Label-free light-sheet microfluidic cytometry for the 

automatic identification of senescent cells, Biomed. Opt. Express. 9 (2018) 1692. 

https://doi.org/10.1364/boe.9.001692. 

[63] J. Toedling, P. Rhein, R. Ratel, L. Karawajew, R. Spang, Automated in-silico detection of cell 

populations in flow cytometry readouts and its application to leukemia disease monitoring, BMC 

Bioinformatics. 7 (2006) 1–11. https://doi.org/10.1186/1471-2105-7-282. 

[64] K. de Haan, H. Ceylan Koydemir, Y. Rivenson, D. Tseng, E. Van Dyne, L. Bakic, D. Karinca, K. Liang, 

M. Ilango, E. Gumustekin, A. Ozcan, Automated screening of sickle cells using a smartphone-based 

microscope and deep learning, Npj Digit. Med. 3 (2020) 1–9. https://doi.org/10.1038/s41746-020-0282-

y. 

[65] H.C. Koydemir, S. Feng, K. Liang, R. Nadkarni, P. Benien, A. Ozcan, Comparison of supervised 

machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence 

microscopy, Nanophotonics. 6 (2017) 731–741. https://doi.org/10.1515/nanoph-2017-0001. 

[66] C. Honrado, J.S. McGrath, R. Reale, P. Bisegna, N.S. Swami, F. Caselli, A neural network approach 

for real-time particle/cell characterization in microfluidic impedance cytometry, Anal. Bioanal. Chem. 

412 (2020) 3835–3845. https://doi.org/10.1007/s00216-020-02497-9. 

[67] Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, C. Huang, Development of 

microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and 

cytoplasm conductivity from 100,000 single cells, Biosens. Bioelectron. 111 (2018) 138–143. 

https://doi.org/10.1016/j.bios.2018.04.015. 

[68] D. Yang, Y. Zhou, Y. Zhou, J. Han, Y. Ai, Biophysical phenotyping of single cells using a differential 

multiconstriction microfluidic device with self-aligned 3D electrodes, Biosens. Bioelectron. 133 (2019) 

16–23. https://doi.org/10.1016/j.bios.2019.03.002. 

[69] Y. Zheng, E. Shojaei-Baghini, C. Wang, Y. Sun, Microfluidic characterization of specific membrane 

capacitance and cytoplasm conductivity of single cells, Biosens. Bioelectron. 42 (2013) 496–502. 

https://doi.org/10.1016/j.bios.2012.10.081. 

[70] Y. Zhao, D. Chen, Y. Luo, H. Li, B. Deng, S. Bin Huang, T.K. Chiu, M.H. Wu, R. Long, H. Hu, X. 

Zhao, W. Yue, J. Wang, J. Chen, A microfluidic system for cell type classification based on cellular 

size-independent electrical properties, Lab Chip. 13 (2013) 2272–2277. 

https://doi.org/10.1039/c3lc41361f. 

[71] Y. Zheng, E. Shojaei-Baghini, A. Azad, C. Wang, Y. Sun, High-throughput biophysical measurement 

of human red blood cells, Lab Chip. 12 (2012) 2560–2567. https://doi.org/10.1039/c2lc21210b. 

[72] K. Joshi, A. Javani, J. Park, V. Velasco, B. Xu, O. Razorenova, R. Esfandyarpour, A Machine Learning‐

Assisted Nanoparticle‐Printed Biochip for Real‐Time Single Cancer Cell Analysis, Adv. Biosyst. 

(2020) 2000160. https://doi.org/10.1002/adbi.202000160. 

[73] K. Ahuja, G.M. Rather, Z. Lin, J. Sui, P. Xie, T. Le, J.R. Bertino, M. Javanmard, Toward point-of-care 

assessment of patient response: a portable tool for rapidly assessing cancer drug efficacy using 

multifrequency impedance cytometry and supervised machine learning, Microsystems Nanoeng. 5 

(2019) 1–11. https://doi.org/10.1038/s41378-019-0073-2. 

[74] H. Song, Y. Wang, J.M. Rosano, B. Prabhakarpandian, C. Garson, K. Pant, E. Lai, A microfluidic 



24  

impedance flow cytometer for identification of differentiation state of stem cells, Lab Chip. 13 (2013) 

2300–2310. https://doi.org/10.1039/c3lc41321g. 

[75] Y. Zuo, S. Chakrabartty, Z. Muhammad-Tahir, S. Pal, E.C. Alocilja, Spatio-temporal processing for 

multichannel biosensors using support vector machines, IEEE Sens. J. 6 (2006) 1644–1650. 

https://doi.org/10.1109/JSEN.2006.884445. 

[76] J. Sui, P. Xie, Z. Lin, M. Javanmard, Electronic classification of barcoded particles for multiplexed 

detection using supervised machine learning analysis, Talanta. 215 (2020) 120791. 

https://doi.org/10.1016/j.talanta.2020.120791. 

[77] C. Wang, F. Madiyar, C. Yu, J. Li, Detection of extremely low concentration waterborne pathogen 

using a multiplexing self-referencing SERS microfluidic biosensor, J. Biol. Eng. 11 (2017) 9. 

https://doi.org/10.1186/s13036-017-0051-x. 

[78] J.S. Park, H.T. Huynh, Y. Won, Support vector machine for hematocrit density estimation based on 

changing patterns of transduced anodic current, in: Proc. - 3rd Int. Conf. Converg. Hybrid Inf. Technol. 

ICCIT 2008, 2008: pp. 456–460. https://doi.org/10.1109/ICCIT.2008.213. 

[79] J. Chen, Y. Zheng, Q. Tan, E. Shojaei-Baghini, Y.L. Zhang, J. Li, P. Prasad, L. You, X.Y. Wu, Y. Sun, 

Classification of cell types using a microfluidic device for mechanical and electrical measurement on 

single cells, Lab Chip. 11 (2011) 3174–3181. https://doi.org/10.1039/c1lc20473d. 

[80] W. Ni, B. Hu, C. Zheng, Y. Tong, L. Wang, Q. qing Li, X. Tong, Y. Han, Automated analysis of acute 

myeloid leukemia minimal residual disease using a support vector machine, Oncotarget. 7 (2016) 

71915–71921. https://doi.org/10.18632/oncotarget.12430. 

[81] J. Sun, L. Wang, Q. Liu, X. Su, Automatic detection of leukemia cells by 2D light scattering 

microfluidic cytometry and deep learning, in: Q. Luo, X. Li, Y. Tang, Y. Gu, D. Zhu (Eds.), Opt. Heal. 

Care Biomed. Opt. IX, SPIE-Intl Soc Optical Eng, 2019: p. 65. https://doi.org/10.1117/12.2537094. 

 


