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Abstract: Biosensors are ubiquitous in a variety of disciplines, such as biochemical, electrochemical,
agricultural, and biomedical areas. They can integrate various point-of-care applications, such as
in the food, healthcare, environmental monitoring, water quality, forensics, drug development, and
biological domains. Multiple strategies have been employed to develop and fabricate miniaturized
biosensors, including design, optimization, characterization, and testing. In view of their interactions
with high-affinity biomolecules, they find application in the sensitive detection of analytes, even in
small sample volumes. Among the many developed techniques, microfluidics have been widely
explored; these use fluid mechanics to operate miniaturized biosensors. The currently used com-
mercial devices are bulky, slow in operation, expensive, and require human intervention; thus, it is
difficult to automate, integrate, and miniaturize the existing conventional devices for multi-faceted
applications. Microfluidic biosensors have the advantages of mobility, operational transparency,
controllability, and stability with a small reaction volume for sensing. This review addresses biosensor
technologies, including the design, classification, advances, and challenges in microfluidic-based
biosensors. The value chain for developing miniaturized microfluidic-based biosensor devices is
critically discussed, including fabrication and other associated protocols for application in various
point-of-care testing applications.

Keywords: biosensor; electrochemical; miniaturization; microfluidics; fabrication; nanomaterials;
point of care (POC)

1. Introduction

Biosensors are attractive devices used in academia, industries, and research laborato-
ries [1–3]; they have the exceptional ability to recognize a biological event on a transducing
device using a signal proportional to the analyte concentration to quantify a biological
or biochemical response. In physiological fluids such as blood, urine, saliva, tears, and
sweat, biosensors monitor diseases, water contamination, and disease-causing bacteria,
and also act as biomarkers [4]. Biosensors have opened up new horizons in recent years,
emphasizing biological domains to benefit mankind, healthcare, food, and environmen-
tal monitoring [5]. They can also help in high-throughput screening, homeland security,
food safety, agriculture, medicine, environment, and pharmacology [6]. Advances in mi-
crofluidics have facilitated the design and development of miniaturized devices to control,
coordinate, and modify micro-volumes of fluid via microchannels ranging from 10 to
100 microns [7]. Microfluidics is an area of microscale laminar fluid flow for better heat
and mass transport which has created important platforms in biomedical diagnostics [8,9].
Due to a large surface-to-volume ratio, microfluidic-based devices can operate the fluid
management in microchannels by significantly lowering the reaction volume, thereby
demonstrating the essential movement of thermal mass and temperature gradients more
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efficiently and effectively. Furthermore, low-castability is a key point in the design and
fabrication of various biosensors.

Point-of-care testing (POCT) involves on-site testing or testing near the location where
care is to be given with the improvisation of healthcare devices. One of the most significant
components of POCT is a microfluidic device with an integrated readout device [10]. POCT-
based microdevices require very little human intervention, minimizing human errors
and using a minimum amount of power consumption in an affordable manner. Most
miniaturized and automated microfluidic POCT devices can be packed and integrated into
a unified interface, enabling sensitive, minimally invasive, and non-invasive devices to
detect several biomarkers associated with a biological sample such as saliva, urine, and
blood in a continuous, rapid, low-cost, and reliable manner [11,12]. Device miniaturization
has now become more common, particularly in electrochemical and biosensing analysis. In
electrochemical research, reducing the electrode size can influence the detection limits of
electrochemical techniques, along with the needed sensitivity, selectivity, repeatability, and
accuracy, thereby providing a low-cost approach with high-throughput analysis [13,14].

The present review critically discusses the evolution, design, working principles,
classifications, and recent advances in miniaturized microfluidic-based biosensors. Various
types of biosensors that can be designed and fabricated using multiple techniques such
as CO2 lasers, 3D printers, and UV direct lasers boost the importance of microfluidic-
based biosensors, thus challenging the associated developments of miniaturized biosensors
with the potential for automation, integration, and miniaturization. Further possibilities to
improvise the design and future scope of the field associated with miniaturized microfluidic-
based biosensors are discussed.

2. Evolution of Biosensors

Biosensors were first reported by Leland Charles Clark Jr. in 1962, who conceived
the idea of demonstrating the components of a biosensor along with a strategy to inte-
grate a bioreceptor with a transducer device [6]. Figure 1 shows three generations of the
development of biosensors, while Table 1 summarizes the evolution pathway.
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2.1. Design and Principles of Biosensors

Biosensors can come in various sizes, shapes, and electrode materials, and can detect
and evaluate viruses, pathogens, and diseases. They take the form of a small probe or an
electronic device to generate an indicator that can be used to quantify further processing; the
electronic device is responsible for communicating, recording, and detecting the changes in
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the physiological parameters of the biological or chemical components in the environment.
The device includes (i) an analyte, (ii) biological material, (iii) a transducer, (iv) an electronic
module, and (v) a display unit (see Figure 2). When the tested material is introduced
into an electrolytic solution, its constituents are recognized (alcohol, glucose, lactose, and
ammonia). Biorecognition creates a signal creation during the interaction between the
analyte and the biological components, while the transducer transforms a biorecognition
signal into a quantifiable electrical form, which indicates the presence of a biological or
chemical objective. The analyte–bioreceptor interactions are proportional to the electrical
or optical signals produced by the transducers, which can be connected to the cloud server
to access and store the data; the output data can take the form of graphical, numerical or
tabular analyses [6].

Table 1. Evolution of the development of biosensors.

Year Generation Development Phases of Biosensor

1906

First

M. Cramer noticed voltage difference generating between parts of the electrolyte.

1909 Sorensen described the idea of pH and pH sensors.

1909–1922 Nelson and Griffin were the first to discover that enzyme invertase could be immobilized on charcoal
aluminium hydroxide [15,16].

1922 Hughes observed a pH determination electrode [17].

1956 Clark first discovered the biosensor electrode that is capable of determining blood oxygen levels [18].

1962 Clark also demonstrated the use of an amperometric enzyme electrode for glucose sensing [19].

1967 Hicks et al. [20] enhanced Clark’s work; glucose oxidase was immobilized using an enzyme-based
working electrode with an oxygen sensor.

1969 The first potentiometric enzyme electrode-based urea detection sensor was reported by Montalvo
and Guilbault.

1970 Bergveld discovered ion-sensitive field-effect transistors (ISFET) [21].

1973 Lubrano and Guilbault demonstrated glucose and lactate enzyme platinum electrode to detect
hydrogen peroxide (H2O2) [22].

1974 Klaus Mosbach group developed a thermistor sensor based on a heat-sensitive enzyme [23].

1975 Opitz and Lubbers developed an optical biosensor for alcohol detection [24].

1976

Second

Clemens et al. [25] integrated an electrochemical biosensor for glucose detection into an artificial
bedside pancreas. A unique semi-continuous catheter-based blood glucose analyzer was also

demonstrated using VIA-based technology.

1977 La Roche introduced the lactate analyzer LA 640, which was utilized to transmit an electron from
dehydrogenase to an electrode [26].

1980 Peterson was the first to perform in vivo blood gas analysis to create a fiber-optic pH sensor [27].

1982 Schultz detected glucose by using the fiber-optic biosensor [28].

1983

Third

Liedberg discovered the reliance-based reactions in real time using the surface plasmon resonance
(SPR) method in real time [29].

1984 For glucose detection, the first mediated amperometric biosensor was constructed using ferrocene
and glucose oxidase [30].

1987 University of Cambridge created a pen-sized detector for assessing blood glucose levels.

1990 Pharmacia Biacore proposed an SPR-based biosensor [31].

1992 i-STAT developed a handheld blood biosensor [32].

2018 Girbi designed a neuron-on-chip biosensor to measure the nerve impulse conduction [33].

2021 Kulkarni et al. [34] described an Al-foil-based electrode for sensing cysteine.
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2.2. Classification of Biosensors

Sensors can be divided into several categories based on their components or analytes
to be detected. Active sensors must be powered from a separate source such as a ther-
mistor, microphone, or strain gauge, which are also called parametric sensors. Passive
sensors produce signals but do not need any external power source to operate; photodiode,
piezoelectric, thermocouple, and thermistor sensors are some examples. Contact-based
sensors such as temperature sensors and mechanical sensors necessitate physical contact
with stimuli, whereas contactless sensors such as magnetic and optical sensors do not
need any physical contact. Absolute sensors respond to stimuli on a vast scale, such as
strain gauges and thermistors. The environmental stress determines the pressure, while the
relative sensors detect the catalyst in relation to a fixed or changing reference, such as a
thermocouple measuring the heat difference. An analog sensor is a device that converts the
continuously changing physical parameter into an analog signal. Analog sensors include
temperature, humidity, and pressure, to name a few. In a digital sensor, the output is in
Boolean format. Depending on the type of signal detection, these sensors are classified
as (i) chemical, (ii) thermal, (iii) physical, and (iv) biological. These have been widely
employed in biomedical fields, as well as in the MEMS domain [35]. Figure 3 shows the
classification of various types of biosensors depending on the diverse use of bioreceptors
and transducers.

2.2.1. Based on Bioreceptors

Biosensors are classified as catalytic or non-catalytic, based on the biorecognition
concept. The interaction between analyte and bioreceptor in a catalytic biosensor results in
a unique biochemical product reaction. Tissues, whole cells, bacteria, and enzymes are all
included under this type of biosensor. The analyte is irreversibly coupled to the receptor in
a non-catalytic biosensor, and no new biochemical reaction product is formed during the
interaction. To identify the target, these sensors interact with nucleic acid, antibodies, and
cell receptors.

Enzymes, Antibodies, Whole Cell, and Hormone-Based Biosensors

Enzymes are biocatalysts that can increase the rate of biochemical reactions in the
bio-domain [36]. Other methods that are used in the recognition of the analyte include:
(i) the enzyme metabolizing the analyte and obtaining the concentration by determining
the catalytic conversion of the analyte; (ii) the analyte restraining or stimulating the enzyme
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where the concentration of the analyte is linked to reducing the formed enzymatic product;
(iii) monitoring the changes in enzyme characteristics. Antibodies have been employed
for several decades in a biomedical area [37], and these sensors can be implanted onto
the antibodies or ligands that can affect antibody–antigen interactions. These are further
divided into two categories: (i) non-labelled and (ii) labelled.
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Enzyme-labeling is a method used in bioanalysis to place a chemical marker on a
molecule within a substance. Enzyme-labeled antibodies are used for ELISA, Western
blotting, and immunostaining. Labeled antibodies are detected by reaction with a substrate
that emits light or changes color. Antibodies, like other proteins, can be labeled with small
molecules, radioisotopes, enzymatic proteins, and fluorescent dyes.

Fungi, bacteria, viruses, and algae are used in whole cell-based biosensors because
these biosensors have possible biological components in their structure. Without the
need for extraction or purification, these microorganisms can self-replicate and produce
recognition components such as antibodies. Cells can interrelate with a wide spectrum of
analytes in this environment, resulting in an electrochemical reaction that a transducer can
quickly detect and transmit.

Hormones are typically secreted by glands or certain types of cells that enter the blood-
stream, and are specifically designed to target cells. Hormone electrochemical biosensing
has become a tool for diagnosing and treating human diseases. The human body produces
extremely few hormones that govern and control the metabolism, prompting efforts to create
sensitive technology to identify them and overcome the shortcomings of other well-established
methods (such as ELISA) in terms of selectivity, sensitivity, and time performance.

Nanoparticles (NPs)

Due to advances in nanotechnology, biosensor research has become more diverse [38].
Exploring nanomaterials based on metals and metal oxide-based nanoparticles, nanorods,
nanowires, nanoflakes, nanocones, nanospherical, carbon nanotubes, quantum dots, and
nanocomposites opens up the possibility to boost biosensor performance, thereby raising de-
tection power by controlling size and shape [39,40]. Different kinds of nano-biosensors are
shown in Figure 4; these work on the same principles as their macro-and micro-counterparts,
but signal and data translation are performed at the nanoscale. Nano-biosensors are used
for (a) physical and chemical events that are being monitored in challenging circumstances,
(b) medical diagnostics and the detection of biochemicals in cellular organelles, (c) detecting
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nanoparticles in industrial and environmental applications, and (d) the detection of the
potentially dangerous contaminants at ultra-low concentrations.
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In recent years, nanoparticles (NPs) have been considered as a novel category of biore-
ceptors as a result of being used as transducers due to their signal-transducing abilities;
various inorganic nanoparticles such as carbon nanotubes (CNTs), metal nanoparticles, and
graphene have been used as transducers [41,42]. Table 2 summarizes different nanomateri-
als used in the development of biosensors.

Table 2. Nanomaterials used in the development of biosensors.

Nanoparticle Analyte Transducer Linear Range LOD Ref

Au NPs Aflatoxin B1 SPR
Impedimetric 0.2–600 nM 0.40 nM [43]

Au NPs Pb2+ Fluorescence 40 nm–3 µm 15.9 nm [44]

Ag NPs H2O2
Glucose Colorimetric 0.04–7.4 µm

1.4–3.5 µm
0.032 nm
0.29 nm [45]

Ag/Pd NPs Mucin 1 Electrochemi-
luminescence

1.210 fg mL−1

−0.2110 ng mL−1 0.45 fg mL−1 [46]

Au NPs/TiO2 H2O2 Electrochemical 67–1525 µm 6 µm [47]

Pt-Fe3O4@C Sarcosine Amperometric 0.4–62 µm 0.43 µm [48]

Pt NFs/PANi Urea Cyclic Voltammetry 25 mM 10 µm [49]

Pt@CeO2 Dopamine Electrochemical 2–185 nM 0.71 nM [50]

Cu/rGO-BP Glucose Electrochemical 0.3–5 mM 11 µm [51]

Ni/Cu MOF Glucose FET 2 µM−25 mM 0.51 µM [52]

NiO@Au Lactic acid Electrochemical 150 µM−0.6 M 11.6 µM [53]

Co3O4 Glutamate Electrochemical chip 12–650 µM 10 µM [54]

MnO2 Salmonella Impedimetric 3 × 101–3 × 106 19 CFU mL−1 [55]

ZnO-rGO Dopamine CV 0.5–1550 pM 8.75 ± 0.64 pM [56]

ZnO NPs Amyloid Optoelectronic 1–15 µL 2.76 ng [57]

TiO2 Asulam Photoelectrochemical 0.04–4 ng mL−1 4.1 pg mL−1 [58]
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2.2.2. Based on Transducers
Calorimetric Biosensors

Thermal biosensor takes advantage of one of the most important biological responses
(exothermic or endothermic), namely, the detection of a heat source absorbed or delivered.
A change in temperature (DT) is proportional to the reaction enthalpy (DH) and molar
number of the product (np), but inversely is proportional to mass (m) and reaction heat
capacity (Cp) [59], and can be written as:

DT = (np DH)/mCp

Calorimetric biosensors measure the extent of a reaction or the structural dynamics
of the dissolved biomolecules using heat [60]. The use of thermal sensors comprising
microelectromechanical (MEMS) materials to supervise metabolic applications based on
thermal monitoring has become popular lately [61].

Acoustic Biosensors

Acoustic biosensors work by changing the physical properties of an acoustic wave
in response to a change in the amount of analyte absorbed. Because of their capacity to
generate and transmit frequency-dependent acoustic waves, piezoelectric materials are
frequently utilized in sensor transducers. The physical size and qualities of the piezoelectric
crystal impact the ideal resonance frequency for acoustic wave propagation. Changes in
the surface material mass can cause observable changes in the crystal’s inherent resonance
frequency. Bulk acoustic wave (BAW) and surface acoustic wave (SAW) devices are two
types of mass balance acoustic transducers.

Electronic Biosensors

Field-effect transistors are commonly employed in the creation of electronic biosen-
sors (FETs). The FET is a three-terminal device that controls the current flowing through
it using an electric field. These devices work between the source and drain terminals
of a semiconductor, modifying the impedance that passes through the gate terminal.
Furthermore, FET-based biosensors have advantages over traditional biosensing meth-
ods. However, when used in in vitro applications, these have a number of limitations.
Ion-sensitive field-effect transistors (ISFETs) and metal-oxide semiconductor field-effect
transistors (MOSFETs) are commonly used transistor-based sensing platforms in bio-
logical applications, depending on the technique for applying the gate voltage, design,
and material of the gate and channel region. These electronic biosensors are shown
to address unmet needs in other important areas, such as sustainable agriculture and
environmental monitoring.

Electrochemical Biosensors

Biosensors have been fully investigated and extensively used in biological and bio-
chemical applications [62] since these work on analyte- and transducer-based electro-
chemical characteristics and have good selectivity, sensitivity, and bioanalyte detection
capability [63,64]. Electrochemical biosensors are classified based on their transduction
mechanism: (i) potentiometric, (ii) amperometric, (iii) impedimetric, (iv) conductometric,
and (v) voltammetric. Figure 5 shows a schematic representation of different types of
electrochemical biosensors.

Potentiometric biosensors detect the charge accumulated at the working electrode
due to analyte and bioreceptor interaction relative to the reference electrode under zero
current [65,66]. When a constant voltage is given to the working electrode with respect to
the reference electrode, these sensors can detect the current produced by the electrochemical
oxidation or reduction in the electroactive species at the working electrode. Conductometric
biosensors are used to determine how much conductance between two electrodes varies
due to an electrochemical reaction, while conductometric and impedimetric biosensors
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are frequently used to monitor the metabolic activity in living biological systems [67].
When a small sinusoidal stimulation pulse is delivered, impedimetric biosensors can detect
electrical impedance produced at the electrode/electrolyte contact. An impedance analyzer
is used to quantify in/out-of-phase current response as a function of frequency when a
low-amplitude AC voltage is applied to the sensor electrode [68]. Voltammetric biosensors
measure the current during a regulated voltage variation to detect the analytes. These
sensors have the advantages of high sensitivity readings and the simultaneous detection of
several analytes [69].
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Quartz crystal microbalance (QCM) is a biosensor platform that incorporates a mechan-
ical transducer and operates on the principle of mass detection. Furthermore, it monitors
changes in mass or the thickness of layers adhering to the surface of a quartz crystal [70].
Furthermore, a surface acoustic wave (SAW) biosensor produces an electromagnetic im-
pulse signal which is sent to the device via a wired connection or wireless antenna. The
electromagnetic signal is transduced into a surface acoustic wave by an interdigital trans-
ducer (IDT). These are based on horizontally polarized surface shear waves that enable
the direct and label-free detection of proteins in real time. Signal response changes result
mainly from mass increase and viscoelasticity changes on the device surface [71]. Table 3
shows electrochemical biosensors with principles, advantages, and disad-vantages.

2.2.3. Based on Detection System
Optical Biosensors

An optical biosensor is a small analytical device comprising a biorecognition sens-
ing element and an optical transducer method [72]. The fundamental goal of an optical
biosensor is to provide a signal proportional to the concentration of the substance being
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examined. As biorecognition elements, optical biosensors can be employed for enzymes,
antigens, antibodies, receptors, entire cells, nucleic acids, and tissues, among other bio-
logical materials [73]. Utilizing the interaction of the optical field and a biorecognition
component, optical detection is carried out. Label-free and label-based optical biosensing
can be generally divided into two general modes. Because they make it possible to detect
various biological and chemical compounds directly, in real time, and without the use
of labels, optical biosensors have significant benefits over traditional analytical methods.
High specificity, sensitivity, compact size, and economic value are the benefits of optical
biosensors. In brief, the measured signal in the label-free mode is produced directly by
the interaction of the material being studied with the transducer. In contrast, label-based
sensing uses a label and then uses a fluorescent, colorimetric, or luminescent approach to
produce the optical signal. Surface plasmon resonance (SPR), transient wave fluorescence,
and optical waveguide interferometry all employ evanescent fields close to the biosensor
surface to evaluate the interaction of a biorecognition element with the analyte. Optical
biosensors provide several advantages over traditional analytical techniques, including the
ability to detect a variety of biological and chemical analytes directly, without the use of
labels, and in real-time [74,75].

Table 3. Electrochemical biosensors with principles, advantages, and disadvantages.

Electrochemical Biosensors Principles Advantages Disadvantages

Potentiometric Electric potential
Decreased analysis time, good
selectivity and sensitivity, and
sample treatment not required.

Temperature, pH, and
immunological cross-reaction
variables all have an impact
on sensitivity and lifespan.

Amperometric Oxidation/reduction Portability due to the portable
system, high selectivity, sensitivity.

Regenerative between
measurements.

Impedimetric Change in impedance High selectivity and sensitivity,
simple operation, small device.

Complex construction,
expensive labelling markers.

Conductometric Change in conductance Low cost, fast response. Highly buffered solution may
interfere.

Mechanical Biosensors

Mechanical biosensors benefit from features that scale well when physical device size
decreases, as they have a high mass resolution and the excess mass found is proportional to
the total mass of the device [76]. While working in vacuum, nanoelectromechanical systems
(NEMS) have achieved zeptogram-scale mass resolution and nanogram resolution in a fluid
environment [77]. Mechanical biosensors are classified as: (1) affinity-based assays, which
can achieve extremely selective target identification and capture using high specificity
(affinity) between the target and functionalization at the device surface; (2) fingerprint
tests that can identify a target based on the distinctive binding affinities to a range of
sensors using a variety of less-selective functionalization layers; (3) spectrometric assays,
in which target mass or optical properties are measured to facilitate the identification;
or (4) separation-based assays, in which chemical interactions between the immobilized
species and the flowing analytes allow the analytes to be separated spatiotemporally.

2.2.4. Based on Technology
Miniaturized Biosensors

Miniaturized biosensors for POCT have been created with advanced technology in
recent years using current handheld systems and microfluidic platforms. Several basic
and compact instruments such as glucometers, pressure meters, thermometers, and pH
meters have proven to be helpful to determine the traditional physical characteristics [78].
New signaling pathways have been studied with small devices for low-cost, portable
POC testing that does not require bulky external gear. Microfluidic systems, on the other
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hand, are compared to miniature biology and chemistry laboratories. These devices handle
sample transmission, the mixing of solution, separation, physiological reaction, and signal
output. Target recognition is an essential component in small biosensors that allows
the microfluidic platform to identify various targets to evaluate sensor specificity [79].
Furthermore, miniaturized biosensors can be described based on existing handheld devices
or microfluidic systems for POC testing. Figure 6 shows the schematics of miniaturized
biosensors for both existing classical devices and microfluidic systems for point-of-care
testing. In general, target recognition determines the specificity of the biosensor, and the
transducer and amplifier determine the sensitivity of the biosensor. Miniaturized biosensors
have the potential to revolutionize healthcare by measuring ions and biomolecules in real
time with excellent sensitivity and precision. It has been demonstrated that these sensors
are highly suited for mobile applications such as wearables, where continuous monitoring
is necessary with minimum human intervention. Furthermore, three parameters such as
selectivity, specificity, and sensitivity are important and play a crucial role in biosensor
domains. Selectivity refers to the capability of a bioreceptor to identify a particular analyte
in a real sample comprising other additives and contaminants. Specificity describes the
ability of the biosensor to differentiate between target and non-targeted biological samples.
Sensitivity discusses the minimum amount of an analyte that can be detected by a biosensor,
defining its limit of detection (LOD).
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2.3. Characteristics of Biosensors

Static and dynamic requirements are essential factors for highly efficient and effec-
tive biosensor devices. The functionality of biosensors can be enhanced for commercial
applications. Different characteristics of biosensors include: (i) linearity, which plays a
role in determining results with a better detection of regent concentration; (ii) selectivity,
which is a fundamental parameter to be considered when selecting a recognition element
for a biosensor; (iii) stability, which refers to the biosensing device’s susceptibility to air
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disturbances both inside and outside the device (the development of biological components
and the degradation of biological components usually impacts stability); (iv) response
time, which is the time taken for achieving >95% of the results; (v) sensitivity, which is the
smallest amount of substance in a sample that can accurately be measured by an assay; and
(vi) reproducibility, which is characterized by accuracy and repeatability. Table 4 discloses
a list of different biosensors with working principles and applications.

Table 4. Different types of biosensors with working principles and applications.

Types Principles Applications Ref

Glucose oxidase electrode
biosensor

Glucose oxidation using
electrochemistry Glucose study in biological samples. [80]

Uric acid biosensor Electrochemistry The purpose of this test is to discover clinical
abnormalities or diseases. [81]

Piezoelectric biosensor Electrochemistry Detecting carbamate and organophosphate. [82]

Acetylcholinesterase
inhibition-based biosensor Electrochemistry Understanding the effects of pesticides. [83]

HbA1c biosensor Electrochemistry using
ferroceneboronic acid

Glycated haemoglobin measurement with a robust
analytical approach. [84]

Fluorescence-tagged
biosensor Fluorescence

For a better knowledge of biological processes
including the numerous molecular systems that

make up a cell.
[85]

Nanoparticles-based
biosensor Electrochemical/optical/visual Diagnostic tools are used in a variety of disciplines,

including biomedicine. [86]

Quartz–crystal biosensor Electromagnetic For the development of ultra-high-sensitive protein
detection in liquids. [87]

Silicon biosensor Optical/fluorescence Cancer therapy, bioimaging, and biosensing. [88]

Hydrogel biosensor Optical/visual Biomolecular immobilization. [89]

Microfabricated
biosensor

Optical using cytochrome
P450 enzyme Pharmaceutical research and development. [90]

Microfabricated
Biosensor Optical

To monitor biochemical oxygen demand and
environmental toxicity as well as heavy metal and

pesticide toxicity.
[91]

Nano-biosensors Fiber optic
Cylindrical waveguide that guides the light within
the core of the fiber used for nanomaterials and the
terahertz domain meta-surface-based refractometric.

[92]

Plasmonic biosensors Surface plasmon resonance
(SPR)

Highly sensitive to the refractive index (RI) of the
medium in direct contact with the metal film. [93]

GeO2-doped biosensors Refractive index (RI)
High sensitivity offers a promising approach for the
detection of unknown RI analytes in chemical and

biological fields in the near-infrared region.
[94]

Microchannel plasmon
biosensors Photonic crystal fiber D-shaped photonic crystal fiber (PCF) sensor for

malaria diagnosis. [95]

MXenes-based biosensors Fiber optic SPR sensor A spectral SPR-based fiber optic to diagnose
colorectal cancer. [96]

Au nanowire-based
biosensors Optics Embedded micro-drilled dual-channel

approach [97]

Au Nanowire-based
biosensors Optical Fiber Refractive Index

Concave-shaped refractive index sensor (CSRIS)
exploiting localized surface plasmon resonance

(LSPR).
[98]

Ag Nanowire-based
biosensors

Surface plasmon
resonance Concave-shaped microfluidic channel (CSMFC). [99]
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3. Miniaturized Microfluidic-Based Biosensors: Design and Fabrication

Point-of-care testing provides susceptible and non-invasive devices for detecting vari-
ous biomarkers such as glucose in biological samples in a continuous, fast, low-cost, and
reliable manner. Microfluidics is a form of technology that develops miniaturized biosen-
sors using fluid mechanics. On the other hand, existing commercial devices are large, slow,
expensive, and require human intervention. Despite substantial progress in developing
microfluidic-based biosensors, which will continue to evolve in tandem with existing or
well-established approaches, automating, integrating, and miniaturizing current conven-
tional devices on a single platform is a challenging task. This issue has gained significant
attention concerning the production of microfluidic-based small biosensors. Microfluidic
devices have the advantages of mobility, operational transparency, controllability, reliability,
accuracy, and stability, with a small response volume. Because of the few peripherals
required to execute numerous applications, microfluidic-based biosensors fabricated using
different techniques enable faster processing and greater efficiency. Figure 7 shows the
schematic representation of various microfabrication techniques which are widely used in
microfluidic-based biosensor development [100].
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Figure 7. Schematic representation of various fabrication techniques used in the development of
miniaturized microfluidic biosensors.

Table 5 summarizes the various microfabrication techniques used in the development
of miniaturized microfluidic biosensors with different materials/substrates employed in
building microfluidic devices, and their advantages and disadvantages.

Materials

Biosensors need a critical assortment of materials to fabricate a microfluidic device.
The employed materials for microfluidic channels must be sufficient and must exhibit
the necessary qualities. Glass and silicon were the first materials used in microfluidic
applications. Microfluidic biosensors have been developed using novel materials such
as polymers, composites, and paper as time has gone on and technology has advanced.
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Inorganic, polymeric, and paper materials can be used to fabricate microfluidic channels.
These materials ought to have a high melting point and strong thermal conductivity.
Furthermore, thermal plaster or paste can be used on the microchannel in order to
improve the thermal conductivity of the material. As a result, in microfluidic technol-
ogy, the materials used to develop microfluidic devices are quite crucial. In general,
microfluidic devices can be made from a variety of materials, such as silicone [108],
glass [109], paper [110], graphene [111], polydimethylsiloxane (PDMS) [112], and poly-
methylmethacrylate (PMMA) [113]. Table 6 showcases several materials utilized to
develop microfluidic biosensors.

Table 5. List of various microfabrication techniques used in the development of miniaturized
microfluidic biosensors.

Fabrication
Instruments

[Ref]
Materials Specifications Advantages Disadvantages

CO2 Laser
Ablation [101] PMMA, polyimide IR source, λ = 10.6 µm Precise dissection, good

efficiency Expensive instrument

Voltera Ink-jet
Printer [102]

Paper, PCB,
polyimide Minimum trace width = 0.2 mm Flexible substrates Refilling of

conductive ink

UV-Direct Laser
writer (DLW) [9] Glass, silicon wafer GaN laser diode, λ = 405 nm Better resolution Expensive instrument

FDM 3D
printer [103] ABS, PLA, PCL Filament Diameter = 1.75 mm,

accuracy = 100 µm Easily scaled to any size Less throughput, low
speed, low resolution

Z-morph 3D
printer [104]

Paper, wood,
PMMA Blue laser, λ = 420 nm

Multipurpose tool with
interchangeable tool

heads capable of FDM
3D printing (50 µm

accuracy), CNC
cutting/drilling, and

PCB engraving

Slow process

Photolithography
[105]

Dry film
photoresist (DFR)

Max width = 325 mm, maximum
substrate thickness = 3 mm

Photosensitive polymers
are necessary Mask is expensive

SLA 3D
printer [103]

Various liquid
resins Layer resolution = 35 microns Higher resolution and

accuracy

Requires
post-processing tasks
such as cleaning with

IPA and ethanol

Screen printer
[106] Cloth, paper Minimum trace width = 0.4 mm Low cost Less accurate

Sothlithography
[107] PDMS Silicone elastomer Transparent Low thermal

conductivity

Table 6. Different materials used for the fabrication of microfluidic biosensors.

Materials Melting Point
(◦C)

Thermal
Conductivity

(W/mK)
Advantages Disadvantages Ref

Polydimethylsiloxane
(PDMS) >200 ◦C 2.73

• Optical transparency;
• Low cost;
• Simple fabrication

process;
• Conformal contact

achievable on
non-planar surfaces;

• Preamble to a variety
of liquids and vapors;

• Excellent thermal
stability.

• Wide and shallow
microchannels easily
collapse during
bonding;

• Tends to shrink to a
factor of 1% upon
curing.

[112]
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Table 6. Cont.

Materials Melting Point
(◦C)

Thermal
Conductivity

(W/mK)
Advantages Disadvantages Ref

Polymethylmethacrylate
(PMMA) 150 ◦C 0.17–0.19

• Excellent transparency;
• High mechanical

strength and hardness;
• High rigidity;
• Good thermal stability;
• Low water adsorption.

• Brittle;
• Low impact

resistance;
• Low chemical

resistance;
• Possibility of stress

problems;
• Requires additional

instrument to
fabricate.

[113]

Graphene >250 ◦C ~4000

• Excellent electrical and
thermal conductivity;

• Lightweight;
• Flexible;
• Chemically inert.

• Susceptible to
oxidative
environment;

• Expensive.
[111]

Glass 1200 ◦C 0.76

• Cheaper;
• Good protection

power;
• Outstanding

transparency;
• Great heat resistance.

• Fragile;
• More weight. [109]

Silicone 350 ◦C 0.2

• Excellent thermal
stability;

• Good flexibility;
• Low chemical

reactivity;
• High efficiency.

• Brittle;
• Expensive for a

single substrate.
[108]

Paper (Cellulose) 220 ◦C 0.05

• Very cheap;
• Easy to process

materials;
• Fluid flow is

automatic;
• Biodegradable.

• Low resolution;
• Limited to simple

designs.
[110]

Jaligam et al. [114] describe a low-cost, microfluidic-based biosensor with three elec-
trodes manufactured with an ink-jet printer on a paper substrate in which ZnO nanoparti-
cles are drop-casted onto a working electrode (WE) to slightly modify it, as needed for the
operation of cyclic voltammetry (CV) and square wave voltammetry (SWV). The effects of
altering picric acid content and potential scan rates ranging from 10 to 300 mVs−1 were
examined (Figure 8A). During the experiment, linear range was between 4 µM and 60 µM,
while the detection limit was 4.04 µM, well within the safe limit of 8 µM.

Gomes et al. [115] developed a bacterial cellulose-based electrochemical sensing plat-
form that could be used for POC sensing; this was created by utilizing the screen printing
process. The substrate with bacterial cellulose displayed good resistance in terms of me-
chanical properties, even after measurement in an aqueous solution (Figure 8B). Lactate
was measured in artificial sweat using a disposable paper-based biosensor and 50 µL of
the reaction sample. The fabricated biosensor displayed an exceptional response in the
amperometric method, detecting lactate in the range of 1–24 mmol L−1 in artificial sweat
with a limit of detection of 1.31 mmol L−1 and a quantification limit of 4.38 mmol L−1.
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Figure 8. (A) Optimized ink-jetted paper device for electroanalytical detection of picric acid [114].
(B) Bacterial cellulose-based electrochemical sensing platform for miniaturized biosensors [115].
Reprinted from the above-mentioned references with the permission of copyright from the respec-
tive journals.

Yong et al. [116] reported a simple and new idea for the droplet-based electrochemical
sensing of several analytes associated with pharmaceutical, environmental, water, and food
monitoring, making it very useful due to its cost-effectiveness and easy screen printable
fabrication. The proposed biosensor has been employed in electrochemical applications in
microfluidic environments (Figure 9A).
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Figure 9. (A) (a) Schematic illustration of the fabrication of micro-patterned design with proposed
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printing [117]. Reprinted from the above-mentioned references with permission of copyright from
the respective journals.

Xuan et al. [117] reported the design and fabrication of a micro-patterned, reduced
graphene oxide (rGO) completely integrated with an electrochemical sensor (Figure 9B).
The square wave anodic stripping voltametric (SWASV) method was used to investigate
integrated electrochemical micro-ability sensors to detect the cadmium and lead ions in an
acetic acid buffer solution. For both the metal ions, the micro-sensor had a detection limit of
1 g L−1 to 120 g L−1, with detection limits of 0.4 g L−1 and 1 g L−1 (S/N = 3), respectively.

Sangam et al. [118] reported a three-electrode system fabricated with an ink-jet printer
for an integrated droplet-based microfluidic device used to detect ascorbic acid electro-
chemically. The ink-jet printer was used to produce and integrate a microfluidic T junction
device (Figure 10A). The fabricated microfluidic device was utilized to detect the ascor-
bic acid where accurate oxidation peaks—with a sharp peak at a potential of 0.28 V—
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were produced at lower flow rates (1 L/min and a combination of 2 mM concentration at
50 mV/s).
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Wang et al. [119] demonstrated a smartphone-based device with an integrated easy-to-
use microelectronic ionic sensor for electrochemical measurements via a smartphone audio
jack (Figure 10B) for which the detection limit was 0.2 ppm; thus, the smartphone-based
MoboSens platform (65 g) could measure the nitrate concentration in water in a minute. A
microfabricated microfluidic sensor on the MoboSens platform detects nitrate ions using
the cyclic voltammetry-based electrochemical method [120].

4. Applications

Biosensors are utilized to increase quality of life in a variety of applications. En-
vironmental monitoring, disease detection, food safety, defense, and drug research are
applications in this category. Figure 11 shows the schematic representation of various
applications of biosensors.

4.1. Food Processing and Environmental Monitoring

Biosensors are utilized to increase quality of life in a variety of applications. The quality,
safety, and upkeep of food items as well as their processing are difficult in food processing
industries, and hence the food sector would benefit from cost-effective technologies for food
authentication and monitoring [121–123]. Potentiometric alternating biosensing devices
are also used to detect the changes in pH caused by ammonia, and have been used to
identify E. coli [124]; ingredients were mixed in a sonicator to separate the bacteria from the
food [125].

Enzyme-based biosensors are also used in the dairy industry [126]; flow cells have
been linked to biosensors based on screen-printed carbon electrodes, and enzymes are
encapsulated by the polymer mounted onto the electrodes. Three organophosphate insec-
ticides in milk have thus been quantified using automated flow-based biosensors [127].
Sugar substitutes are one of the most widely used food additives that are related to a
number of conditions, including dental cavities, cardiovascular disease, obesity, and type II
diabetes. In this case, multichannel biosensors are considered to be effective for merging
lipid films via the electrochemical approaches for rapid and sensitive sweetener screening.
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Here, MATLAB software is used with a spatiotemporal method to evaluate the signals of
glucose and sucrose in natural sugars, saccharin, and cyclamate, which represent artificial
sweeteners [128].
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4.2. Biomedical Domain

In the field of medicine, biosensor applications are fast-growing. Glucose biosensors
are frequently used in clinical settings to diagnose diabetes mellitus, requiring precise
blood glucose control [129]. A lateral flow assay, also known as a rapid test, is a simple
device intended to detect the presence of a target substance in a liquid sample without
the need for specialized and costly equipment. Around 85% of the large global market for
blood glucose biosensors consists of items used at home. In the medical area, biosensors
are frequently employed to diagnose infectious diseases such as urinary tract infections
(UTIs), pathogen identification, and antibiotic susceptibility [130]. Human interleukin-II
has been detected early by using a novel biosensor based on hafnium (IV) oxide (HfO2).
For early cytokine detection, recombinant human IL-10 with a monoclonal antibody is used.
The interaction between antibodies and antigens has also been studied with fluorescence
patterns and electromechanical impedance spectroscopy, while fluorescence patterns have
been employed to produce the bio-recognition of protein. Chen et al. [131] used HfO2 as a
bio-field-effect transistor with high sensitivity [132].

4.3. Plant Biology

New revolutionary technologies in nucleic acid molecular imaging and sequencing
have enabled advances in plant research [133]. Conventional mass spectroscopy can accu-
rately identify cellular and subcellular localization and metabolite levels using critical data
on the dynamics and location of enzymes, although transporters, substrates, and receptors
still need advancement. Biosensors can access these data to quantify an active process un-
der physiological circumstances. Strategies to envision actual processes, such as changing
one metabolite into another or generating signal events, have also been attempted [133].
Tsien [134] was the first to produce protein prototype sensors for detecting caspase activity
and calcium levels in living cells. These sensors were made using fluorescence resonance
energy transfer (FRET) from green fluorescent protein (GFP) spectrum variants. The in vivo
detection of calcium oscillations with a high temporal resolution was achieved by the use
of a chameleon sensor [135].
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4.4. Biodefense Sensing

In the case of a biological agent, biosensors can be employed for military purposes.
Here, the primary goal is to promptly and correctly identify biowarfare agents (BWAs),
including bacteria (vegetative and spores), poisons, and viruses. Several attempts have
been made to use molecular techniques to build biosensors that can recognize the chemical
markers of BWAs. Furthermore, the human papillomavirus (HPV) is a DNA virus with
two strands that have been related to aggressive cervical cancer. HPV is divided into two
types: HPV 16 and HPV 18 [136,137].

5. Limitations and Challenges in Biosensors

Biosensors have been under development for over 50 years with substantial improve-
ments in academic and industries in the past few decades; however, only a few biosensors
have reached global market success, apart from lateral flow pregnancy tests and elec-
trochemical glucose biosensors. There are several reasons for this, such as difficulties
translating academic research into commercially viable prototypes for the industry, com-
plex regulatory issues in clinical applications, difficulty in finding qualified researchers with
a background in biosensor technology, and collaboration with researchers from various
science and engineering disciplines.

The existing commercial devices are large, slow, expensive, and require human inter-
vention. Despite substantial progress in developing microfluidic-based biosensors, which
will continue to evolve in tandem with the existing well-established approaches, this field
has gained significant growth in the production of microfluidic-based miniaturized biosen-
sors [138]. As a result, there are several unaddressed issues that need to be considered for
the development of miniaturized commercial biosensors, including marketable biosensors
that can detect specific analytes of interest that need to be identified. However, there are
obvious advantages over the conventional methods for analyzing specific analytes, such
as testing the biosensor performance during and after use, stability, cost, and the ease of
fabricating a miniaturized biosensor.

Specificity, sensitivity, non-toxicity, small concentration detection, and cost-effectiveness
are all factors in creating biosensors. Taking into account these qualities will help to solve
crucial criteria and concerns about biosensor technology with significant limits. In addi-
tion, the combination of electrochemical sensors and nanomaterials has resulted in the
development of novel types of biosensors. Furthermore, contact-based sensing for single
analyte detection has a number of advantages, including real-time molecule measure-
ment with high specificity. Because of differences in biomarkers between patients and
related diseases, these techniques limit multiple analyte detection. However, resonant
energy transfer technologies for diverse analyte detection are regularly demonstrated,
which is highly rewarded in clinical diagnostics. In electrochemical sensor biofabrication,
using micro- or nano-cantilevers as transducers provides a greater application potential
in multiple analyte detection. Non-contact sensors that use 3D bioprinting with ink-jet
or laser direct writing also perform better. The cost of these technologies, as well as
their potential to be adjusted, are imperative drawbacks. However, there are significant
drawbacks to these designs that make them unsuitable for widespread use. The first
is the matter of background information concerning the smallest biosensors’ design
and assembly.

Furthermore, in order to obtain a better comprehension of miniaturized biosensors, a
SWOT (strength, weakness, opportunity, and threat) analysis was performed, as shown
in Figure 12. It can be seen from Figure 12 that this field has outstanding strengths and
unlimited opportunities in numerous domains. It can also be seen that there are areas of
enhancements in respective fields that can be perfected with time and with advancement
in technology. Considering the benefits of the amalgamation of this field, we firmly believe
that these weaknesses can be overlooked. In addition, we trust that the collaboration of
miniaturized biosensors with advanced technology, in the near future, will pave the way to
achieving smart microfluidic systems for point-of-care applications.
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6. Future Scope

The ex vivo or in vivo delivery of genetically modified proteins into cells can be used
to create cell- and tissue-based biosensors. Using biophotonics or other physical principles,
researchers can continually and noninvasively monitor levels of hormones, medications, or
poisons. In this approach, scope could be valuable in future investigations. The market
for biosensor technologies is exploding at breakneck speed. In fact, it is predicted that
by 2020 it will be worth more than USD 22.5 billion. Biosensor technology is reaching
new heights at the same time that demand is growing. Furthermore, biological molecules
have separate structures and activities, making it difficult to combine the structure and
function of nanomaterials and biomolecules to construct single-molecule multifunctional
nanocomposites, nanofilms, and nanoelectrodes. Processing, testing, interface challenges,
high-quality nanomaterial availability, nanomaterial tailoring, and the principles guiding
the behavior of these nanoscale composites on electrode surfaces are all significant barriers
for current approaches. The value chain for developing miniaturized microfluidic-based
biosensor devices, including fabrication techniques and other relevant procedures, can be
utilized for several POCT applications.

Figure 13 shows the future scope of biosensors from design to commercialization.
The broad scope of applications emphasizes the importance of investigating biosensors
in future research. Future scope can be classified into three phases: design/development,
data acquisition/communication, and application. The design/development includes the
optimization, characterization and fabrication of miniaturized biosensors. Data acquisi-
tion/communication concerns graphical user interface with smartphone-enabled features.
Furthermore, biosensors find a wide range of applications in the biomedical, biochemical
and nanomaterial domains.
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7. Conclusions

In recent times, there has been a drastic shift in the development of miniaturized
microfluidic-based biosensors. The analysis of the interaction of biorecognition elements
with biomolecular analytes, the immobilization of biomolecules on solid surfaces, the devel-
opment of anti-fouling surface chemistries, fabrication, and the integration of biology with
microfluidic technology, on-chip electronics, and analytical chemistry are important areas
in the development of miniaturized biosensors. The rapid advances in biosensors, in terms
of both research and product development, have mainly been influenced by miniaturiza-
tion and microfabrication technology for better communication between life sciences and
engineers/physicists. Biosensor technology is now reaching new heights, and its demand
is growing. The future goals in this area should be to investigate how nanomaterials and
biomolecules interact on the surface of electrodes, and how to incorporate novel features
to create a new generation of biosensors with built-in advanced mechanisms to enhance
sensing factors. In conclusion, producing robust, miniaturized, low-cost, automated, and
easy-to-use biosensors can be helpful to mankind with an ideal mix of biosensing and
biofabrication in microfluidics technology.
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