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The gastrointestinal (GI) microbiota is essential in maintaining human health. 
Alteration of the GI microbiota or gut microbiota (GM) from homeostasis (i.e., 
dysbiosis) is associated with several communicable and non-communicable 
diseases. Thus, it is crucial to constantly monitor the GM composition and 
host–microbe interactions in the GI tract since they could provide vital health 
information and indicate possible predispositions to various diseases. Pathogens 
in the GI tract must be detected early to prevent dysbiosis and related diseases. 
Similarly, the consumed beneficial microbial strains (i.e., probiotics) also require 
real-time monitoring to quantify the actual number of their colony-forming units 
within the GI tract. Unfortunately, due to the inherent limitations associated with 
the conventional methods, routine monitoring of one’s GM health is not attainable 
till date. In this context, miniaturized diagnostic devices such as biosensors could 
provide alternative and rapid detection methods by offering robust, affordable, 
portable, convenient, and reliable technology. Though biosensors for GM are still 
at a relatively preliminary stage, they can potentially transform clinical diagnosis in 
the near future. In this mini-review, we have discussed the significance and recent 
advancements of biosensors in monitoring GM. Finally, the progresses on future 
biosensing techniques such as lab-on-chip, smart materials, ingestible capsules, 
wearable devices, and fusion of machine learning/artificial intelligence (ML/AI) 
have also been highlighted.
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1. Introduction

Trillions of microorganisms (bacteria, archaea, viruses, fungi, and protozoa) colonize in 
human gastrointestinal tract forming GM, which has a significant role in maintaining gut 
homeostasis (Schmidt et al., 2018). Within GM, these microbes co-evolve with the host and 
maintain a mutually beneficial relationship (Shreiner et al., 2015; Cani, 2018; Durack and Lynch, 
2019). However, such symbiotic relationships are at constant threat of disruption, leading to the 
overgrowth of a particular pathobiont. The resulting gut dysbiosis is known to be linked to 
several communicable and non-communicable diseases (Kho and Lal, 2018; Daliri et al., 2020). 
Besides, the human gut may also get infected by enteric pathogens leading to serious health 
concerns, including mortality. The resident microbiota and the invading pathogens generate 
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many metabolic products, which positively or negatively impact 
human health (Federici, 2019; de Vos et al., 2022).

Since the resident GM influences many physiological activities of 
the host, like immune response, nutrition, and metabolism, it is 
crucial to assess and monitor the composition of GM in real-time. In 
order to identify and determine the GI microflora, different 
approaches such as biochemical (culture-dependent) and molecular 
(culture-independent) techniques have been explored (Jian et  al., 
2020). Furthermore, many advanced high-throughput bio-analytical 
equipment is available to detect various microbes and their 
metabolites. Though such equipment offers highly sensitive, selective, 
and high throughput results, they are expensive, time-consuming, and 
require technical expertise to operate and interpret the results. 
Therefore, such instruments cannot be  used by everyone and 
anywhere (Montes-Cebrián et al., 2018).

Since the inception of glucose biosensors such as glucometer, 
different biosensors have been developed for various applications. 
With advanced biomedical engineering and biotechnology, 
nanotechnology, and microtechnology, modern biosensors are 
extremely useful in healthcare. Recently, several biosensors have been 
developed to detect pathogens in environmental samples (Ngashangva 
et al., 2022). In addition, integrating biosensors with inter-disciplinary 
research fields and advanced information technology, such as wireless 
and machine learning, is expanding rapidly (Cui et al., 2020). In this 
mini-review, we briefly discuss the potential of using biosensors as 
Point-of-Care (POC) and personalized devices for monitoring the 
pathogenic and beneficial microbes in GM.

1.1. GM in health and disease

Microbiota is the consortium of all microbial members colonized 
in a particular niche. Different human body niches carry different 
microbiota with distinct qualitative and quantitative compositions. 
In the human body, the GM is composed of the highest number of 
microbes of different kingdoms, including members of protozoa, 
archaea, eukaryotes, viruses, and bacteria (Barko et al., 2018). It is 
interesting to note that the composition and physiology of the GM 
that influence human health are also highly dependent on human 
lifestyle (e.g., diet, alcohol consumption, smoking, medication, 
stress, and sleep) and the surrounding environment. GM contributes 
to maintaining human health by preventing pathogenic infections 
(by occupying the gut space and modulating immunity) and by 
contributing to the nutrition and metabolism of the host (Thursby 
and Juge, 2017; Schmidt et al., 2018). However, the homeostasis in 
the GM may get disrupted due to alterations in either lifestyle or 
environment, leading to dysbiosis and associated complications 
(Bajaj et al., 2014). Dysbiosis in GM, inadequate nutrition, exposure 
to enteric pathogens due to improper hygiene early in life may result 
in environmental enteropathy, which impairs the immune, 
metabolic, and neuroendocrine physiology that may lead to the 
long-term cognitive deficit and poor vaccine efficacy (Watanabe and 
Petri, 2016; Hajela et al., 2020; Singhvi et al., 2020). In addition, 
dysbiosis may produce microbe-derived metabolites that are 
detrimental to the host and may result in diseases like non-alcoholic 
fatty liver disease (NAFLD) (Yuan et al., 2019). Maintaining a high 
diversity in GM is essential for gut homeostasis. The beneficial 
microbes like Lactobacillus plantarum and the bacteria-derived 

short-chain fatty acids such as butyrate are crucial in maintaining 
epithelial integrity (Karczewski et al., 2010).

Moreover, recent studies found that the abundance of two 
bacterial species, Faecalibacterium prausnitzii and Roseburia hominis, 
in the colon is significantly lower for the patients with ulcerative colitis 
than for the controls (Machiels et  al., 2014). Likewise, a lower 
abundance of Bifidobacterium in the gut is related to peptic ulcer and 
gastric cancer (Devi et al., 2021). In contrast, Fusobacterium nucleatum 
colonization is positively associated with colon cancer (Kostic et al., 
2012; Repass et al., 2018). Besides, by incorporating metagenomic 
sequencing technologies, large data comparison and analysis of the 
microbial communities have yielded the link between microbiome 
alteration with human diseases such as cancer (Yu et al., 2017; Thomas 
et al., 2019; Wirbel et al., 2019), type II diabetes (Wang et al., 2012), 
cirrhosis (Oh et al., 2020). For detailed perspectives on the inter-
relationship between gut microbiota and human health, the authors 
refer to Zheng et al. (2018), Durack and Lynch (2019), and Gibbons 
et al. (2022).

Understanding the interplay among GM, gut microbial 
metabolites, and the host in homeostasis and disease is one of the top 
challenges in modern science. Modern research on GM is now rapidly 
moving from relative to quantitative approaches, potentially revealing 
more information relevant to human health.

2. Biosensors as point-of-care 
diagnostics for GM

Microbial colonization in the human body can be identified using 
high-throughput diagnostic equipment that detects microbial nucleic 
acids, microbial proteins, and human antibody titers against specific 
antigens. Molecular techniques such as Enzyme-Linked Immuno-
Sorbent Assay (ELISA) (Yilmaz et  al., 2006), polymerase chain 
reaction (PCR) (Kim et al., 2020), fluorescent in situ hybridization 
(FISH) (Frickmann et al., 2017), etc., have been utilized to analyze 
human GI microflora. Additionally, microarray techniques such as 
DNA (Rivas et  al., 2018), oligonucleotide (Wang et  al., 2002), 
phylogenetic-microarray (Rigsbee et al., 2011), etc., are explored to 
meet the demand of simultaneous detection and quantifications of 
thousands of genes or target sequences within shorter period.

However, such classical instruments have several limitations, like 
high expense, less portability, the requirement of highly trained 
personnel, and lengthier procedure. In contrast, miniaturized 
diagnostic devices such as biosensors are now extensively explored in 
healthcare monitoring due to their easy operation and portability 
(Kim et al., 2019).

A biosensor is a device that yields a quantifiable and processable 
signal corresponding to the concentration of the target analyte. It 
usually integrates biological sensing elements or bioreceptors or 
biorecognition element (such as antibodies/enzymes/cell/nucleic acid/
aptamer, etc.), transducers of the physicochemical signals (semi-
conducting materials/nanomaterials, etc.), and digital displays (along 
with signal amplifier; Perumal and Hashim, 2014). Compared to 
classical bioanalytical instruments, biosensors may be more affordable, 
portable, user-friendly, rapid, among others. Additionally, patients can 
easily use them for routine health monitoring at the POC—diagnostic 
testing at or near-the-patient—or point-of-need (PON)—broader 
spectrum including on-site testing of environment, food samples, etc. 
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Personalized healthcare may be achieved as individuals/patients can 
monitor their health or the efficacy of the treatment by biosensors.

Biosensors as POC testing for pathogenic, beneficial gut microbes, 
and gut microbial metabolites are rapidly emerging Some of the 
recently developed biosensors and bioelectronics for GI microbes, and 
gut microbial metabolites are summarized in Table 1, and a schematic 
representation of the biosensors for GM is shown in Figure 1.

However, as compared to other areas of applications, biosensors 
for GM remained less progressed, which is partly due to many 
technical challenges such as: (i) most GI microbes cannot be cultured 
in vitro till date, (ii) it is challenging to isolate and perform standard 
assays from humans, (iii) challenges that exist to mimic the GI 
microbial ecosystem in the artificial model, (iv) GM gets altered by 
many other factors (e.g., diet).

2.1. Biosensors for the pathogenic 
microbes in GM

The biomarkers from GM can be  used for assessing various 
disease progressions, the nature of severity, and the response toward 
medical treatments. Microbial biomarkers have been proposed for 
different health problems, such as lung cancer (Liu et al., 2019; Temraz 
et al., 2019), obesity & diabetes (Zheng et al., 2018; Singer-Englar 
et al., 2019), and cirrhosis (Bajaj, 2019). Despite difficulties and low 
success rates, many studies attempted to target gut microbes for 
diagnostic purposes. Most of these attempts were focused on 
estimating the metabolites such as glucose, volatiles, endotoxins, etc. 
(Kassal et al., 2018). Due to the recent attention to the relationship 
between GM and health, novel microbial biomarkers are now 
being discovered.

Due to the advancement of synthetic biology and genetic 
engineering, biosensors such as whole-cell biosensors (WCBs) can 
detect target analytes directly from complex environments like 
wastewater or clinical samples. Bacterial biosensors, also called 
bactosensors, employ whole bacterial cells to determine various 
pathological biomarkers. Whole-cell bacterial bioreporters are 
designed to detect toxic chemicals. By integrating with 
microengineering, genetic circuits could be developed that translate 
the biochemical signals into quantifiable reporter protein signals 
(Van Der Meer and Belkin, 2010). Rutter et  al. developed an 
engineered bacterial biosensor using Caenorhabditis elegans as a 
novel model organism to determine isopropyl β-D-1-
thiogalactopyranoside (IPTG) in the gut (Rutter et  al., 2019). 
Further advancement in designing the engineered bacterial circuit 
may help monitor human GM and detect gut inflammation by 
nitrate sensing (Woo et al., 2020). Sensing the gut metabolites could 
also provide crucial information on the host–microbe interactions 
in the gut. With the help of bactosensors, metabolites such as 
benzoate, lactate, anhydrotetracycline, and bile acids could 
be  detected in human fecal samples. Microbe-associated fecal 
metabolites has the potential to be  used as diagnostics and 
theranostics explorations (Zúñiga et al., 2022). Another artificial 
receptor platform called EMeRALD (Engineered Modularized 
Receptors Activated via Ligand-induced Dimerization) was 
developed and utilized to detect bile salts (a biomarker of liver 
dysfunction; Chang H. J. et al., 2021). Biosensors for other essential 
metabolites, such as trimethylamine-N-oxide (TMAO) (Chang 

Y. C. et al., 2021; Lakshmi et al., 2021) and indole, have also been 
developed recently (Wang J. et al., 2021).

Biosensors for detecting gastric pathogen Helicobacter pylori have 
been developed based on different detection methods such as 
piezoelectric (Su and Li, 2001) and electrochemical (Del Pozo et al., 
2005; Ly et  al., 2011). Real-time monitoring of the interaction of 
H. pylori with the human gastric mucin was also studied using a 
resonant mirror-based biosensor (Hirmo et al., 1999). Conversely, 
Bifidobacterium bifidum, proposed to have protective roles against 
H. pylori induced gastric diseases (Alexander et al., 2021; Devi et al., 
2021), can be  detected using quartz crystal microbalance 
immunosensor (Hou et al., 2020).

There has been considerable growth in biosensor technology for 
gut microbiome recently. One of the reasons is the advancement of 
nanotechnologies/nanoengineering and their use in biosensors 
technologies (Yadav et al., 2022). Due to their intrinsic properties, 
nanoparticles are now increasingly used to detect various microbes 
and their activities in GM (Fuentes-Chust et al., 2021). For example, 
a plasmonic sensor— based on the molecularly imprinted 
nanoparticles— has been developed for detecting Enterococcus faecalis 
(Erdem et al., 2019), whereas Shigella spp. were detected using gold 
nanoparticles on lateral flow biosensor (Wang et al., 2016). Another 
emerging biorecognition element for biosensors is the aptamer 
biomolecule. Aptamer-based biosensors are significantly explored as 
they can replace conventional antibody-based diagnostic technologies 
due to their high specificity and selectivity to bind with the target 
analyte. A DNA aptamer-based biosensor has recently been developed 
to study and detect human gut bacterium Akkermansia muciniphila 
(Raber et al., 2021).

2.2. Biosensors for beneficial GM

Probiotics are specific strains of beneficial microbial species that 
provide health benefits to the host upon consumption in sufficient 
amounts. They are microorganisms with Generally Recognized As 
Safe (GRAS) status that are critical in preventing diseases like diarrhea, 
gut inflammation, viral infection, and even colorectal cancer (Uccello 
et al., 2012; Ghosh, 2018). The probiotics may help to increase the 
vaccine efficacy in developing countries (Hajela et  al., 2020). 
Nowadays, probiotics are being used even as functional foods. 
However, probiotics could induce an individualized impact on the gut 
transcriptome, and the effect may not be  universal (Zmora et  al., 
2018). Recently, probiotics have also initiated personalized therapies 
(Kort, 2014). Therefore, monitoring quantitative estimation of the 
probiotics within GM is very important for monitoring GI health and 
safety, and biosensor could become an instrumental technology.

Although studying the properties of probiotics by using 
biosensors is not widely used, some attempts have been made. The 
aptamer (Hemag1P) based biosensors were developed to detect 
Lactobacillus acidophilus with high selectivity and specificity 
(Urmann et al., 2016). This label-free, simple, and rapid method 
could distinguish between live and dead bacteria. An aptamer-based 
electronic biosensor has recently been developed for monitoring the 
gut bacterium Roseburia intestinalis (Xing et al., 2022). The yeasts, 
also being used as probiotics, have been detected by biosensors 
(Dacquay and McMillen, 2021). Many essential metabolites from 
beneficial microbes could be  targeted to assess human health. 
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Biosensors have developed for metabolites such as short chain fatty 
acid butyrate (Bai and Mansell, 2020; Chang Y. C. et al., 2021), lactic 
acid (Radoi et al., 2010) and indoxyl sulfate (Filik et al., 2016). The 
immunostimulatory effects usually exerted by the probiotics (e.g., 
some of the Lactobacillus strains) could also be traced by biosensors 
(Rocha-Ramírez et al., 2017). Importantly, probiotic microbes have 

been engineered to function as biosensors for detecting autoinducer 
peptide-I, a quorum-sensing molecule produced by Staphylococcus 
sp. (Lubkowicz et al., 2018). The engineered microbes can increase 
the complexity, stability, and safety during diagnosis or therapeutics, 
as observed with smart engineered probiotics (Rottinghaus 
et al., 2020).

TABLE 1 Some of the recent development of biosensors and bioelectronics for GI microbes and gut metabolites.

Biosensors Biorecognition element Target analyte LOD (Sample) Range Reference

Optical Oligonucleotide – AuNPs Helicobacter pylori 25 cfu/mL (Feces) 100–1,000 cfu/mL Fei et al. (2022)

Optical Cu2+ Nanoflowers Helicobacter pylori 50 cfu/mL (Artificial 

saliva)

0–105 cfu/mL Wang T. et al. (2021)

Optical Aptamer-Fe3O4 super-paramagnetic 

NPs

Helicobacter pylori 1 cfu/mL (Human 

feces)

10–107 cfu/mL Wang Z. et al. (2021)

Electrochemical Nucleic acid (DNA) Helicobacter pylori 12 fM (Dental plague) 6.55 pM–32.8 fM Chen et al. (2018)

Electrochemical Nucleic acid (DNA) Helicobacter pylori DNA ~6 pmol 5–20 pmol Del Pozo et al. (2005)

Electrochemical Bismuth-immobilized carbon 

nanotube

Helicobacter pylori DNA 0.6 μg/mL (patient’s 

gastric tissue)

0.72–7.92 μg/mL Ly et al. (2011)

Optical (Colorimetric) AuNPs Shigella 10 fg (culture), 5.86 cfu/

mL (human fecal)

10 ng–10 fg Wang et al. (2016)

Optical (Plasmonic) E. faecalis imprinted nanoparticles Enterococcus faecalis ~100 bac/mL (Sea 

water)

2 × 104–1 × 108 cfu/

mL

Erdem et al. (2019)

Piezoelectric Sulfo-LC-SPDP & MHDA Bifidobacterium bifidum 

01356 & Lactobacillus 

acidophilus 01132

103 cfu/mL (Milk) 103–5 × 105 cfu/ml Szalontai et al. (2012)

Optical (Fluorescence) DNAzyme-copper nanoclusters E. coli 0157:H7 1.57 cfu/mL (Drinking 

water, apple juice)

10–1,000 cfu/mL Zhou et al. (2020)

Electrochemical 

(Impedance)

OCMCS-Fe3O4 NPs Campylobacter jejuni 1 × 103 cfu/mL (Stool) 103–107 cfu/mL Huang et al. (2010)

Electrochemical Molecularly imprinted polymer TMAO 1 ppm/mL (Urine) 1–15 ppm Lakshmi et al. (2021)

Optical (Colorimetric) PAH@MnO2 nanozyme TMAO 6.7 μM [Blood (rats)] 15.6–500 μM Chang Y. C. et al. (2021)

Optical (Colorimetric) Antibody on lateral flow platform Salmonella Typhi 10 cfu/mL (Fecal) 101–107 cfu/mL Amalina et al. (2021)

Salmonella Paratyphi A 102 cfu/mL (Fecal)

Optical (Fluorescence) Engineered E. coli Nissle 1917 Nitrate 39 μM [Fecal, colon 

(mice)]

0–10 mM Woo et al. (2020)

Piezoelectric Antibody-AuNPs Bifidobacterium bifidum 2.1 × 102 cfu/ml [Fecal, 

food (milk)]

103–105 cfu/mL Hou et al. (2020)

Optical (Fluorescence) DNA-mediated Au@Ag@silica 

nanopopcorn

Lactobacillus Plantarum 15 cfu/mL (Mice) 105–109 cfu/mL Gao et al. (2022)

Optical Aptamer-decorated porous Si NS Lactobacillus acidophilus 106 cells/mL (selection 

buffer)

106–107 cfu/mL Urmann et al. (2016)

Electrochemical 

(Amperometric)

Lyophilized bacterial cell Lactate 0.012 mM (Milk, 

buttermilk, kefir)

0.1–1.0 mM Canbay et al. (2015)

Pyruvate 0.018 mM

Optical (Colorimetric) Aptamer-AuNPs Salmonella enteritidis 101 cfu/mL (Milk) 101–1012 cfu/mL Fang et al. (2014)

Electrochemical 

(Impedance)

PPy-Co-CPy – aptamer Salmonella typhimurium 3 cfu/mL (Apple juice) 102–108 cfu/mL Sheikhzadeh et al. (2016)

Optical (FOLSPR) Aptamer Salmonella typhimurium 128 cfu/mL (Chicken) 5 × 102–1 × 108 cfu/

mL

Xu et al. (2018)

AuNP, Gold nanoparticle; NP, Nanoparticle; LOD, limit of detection; bac/mL, bacteria/mL; cfu, colony forming unit; TMAO, Trimethylamine N-oxide; sulfo-LC-SPDP, sulfosuccinimidyl 
6-[3-(2-pyridyldithio)propionamido] hexanoate; MHDA, 16-mercapto-hexadecanoic acid; PAH@MnO2, Polyallylamine hydrochloride-capped manganese dioxide; OCMCS-Fe3O4 NP, 
O-carboxymethyl chitosan surface modified Fe3O4 nanoparticle; PPy-Co-CPy, poly[pyrrole-co-3-carboxyl-pyrrole]copolymer; FOLSPR, Fiber-optic localized surface plasmon resonance; Si 
NS, Silicon nanostructure.
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2.3. Emerging biosensors for GM

New biosensing concepts and techniques such as in vivo wireless 
and ingestible capsules, microfluidic chips, and internet of things 
(IoT) have emerged in the recent pasts that are more robust, compact, 
multiplex, programmable, and reliable. These innovative technologies 
and smart devices would augment conventional biosensors as efficient 
and robust POCT devices shortly.

Smart and responsive materials are now being explored to design 
and develop better and more robust biosensors (Ngashangva et al., 
2020). Using such advanced materials, the ingestible capsules were 
designed to collect microbiome samples from the GI tract. The capsule 
consisted of 3D-printed acrylic housing, hydrogel, and flexible PDMS 
membrane (Waimin et  al., 2020). This non-invasive sampling 
technique was validated using Escherichia coli. By employing ingestible 
electronic capsules and a self-powered biosensing system, the crucial 
metabolite composition of small intestines could also be monitored 
(De la Paz et al., 2022). Additionally, an ingestible probiotic biosensor 
has been developed to diagnose GI bleeding in swine. Such ingestible 
micro-bio-electronic devices have the potential to transform disease 
management and diagnosis of GI diseases (Mimee et  al., 2018). 
Volatile and gas molecules from a patient’s sample are used as 
bio-signatures. An electronic nose device based on an array of 13 
commercial electro-chemical and optical sensors has been designed 
to study the microbial volatile metabolites in urine sample of colorectal 
cancer patients (Westenbrink et al., 2015).

Due to the limitation of the animal model, microfluidic chip such as 
organ-on-chip has become a promising tool as the physiology and 
function of tissues or organs can be recapitulated in microfluidic in vitro 
devices. Gut-on-chips are explored to enhance understanding the 
complex nature of gut microbiota-host interaction (Puschhof et al., 2021; 
Signore et  al., 2021). Another possibility for exploring lab-on-chip 
technology is multiplex assay and detecting multiple target analytes on a 
single platform (Shah et  al., 2016). The concept of cost-effective, 
instrument-less, simple, and user-friendly sensing platforms such as 
microfluidic paper-based analytical devices (μ-PADs) have added benefits 
to the existing lab-on-chip based biosensor (Takahashi et al., 2022).

As clinical governance is becoming challenging, demanding, and 
laborious, ML/AI and the internet of medical things must 
be  incorporated with the biosensing concept. Additionally, medical 
science is transforming from traditional healthcare to digital healthcare 
monitoring systems that enable improved access to quality healthcare 
for patients, clinicians, and remote communities. Despite all the 
advantages, conventional biosensors have limitations such as low 
specificity, sensitivity, and selectivity compared to other bioanalytical 
techniques. The overall performance of the biosensor could be improved 
by integrating with ML/AI approaches. As the individual gut health 
involves complex interactions between diet, host, microbiota, real-time 
GM monitoring using ML-based big data collection and analysis with 
the help of a biosensor could be established (Sosnowski et al., 2020). The 
ML could also be used to screen the cause-effect relationship between 
GM dysbiosis and diseases (e.g., cardiovascular diseases; Aryal et al., 
2020). ML/AI-based approaches are meta-metabolic network models 
that are useful to predict the pattern and acquire insights into the 
synergistic, dysbiotic relationships, and phenotypic outcomes (Lloyd-
Price et  al., 2019; Cammarota et  al., 2020). By understanding such 
interconnections, development of robust personalized POC biosensors 
for gut health could be enhanced tremendously.

3. Conclusion and future perspective

Since GM is linked to maintaining human physiological 
processes, monitoring of GM eubiosis is likely to become fundamental 
in personalized healthcare. Biosensors could be a potential candidate 
as POC diagnostic devices for personalized monitoring of GM 
homeostasis. Though biosensors for diagnostics purposes are rapidly 
advancing, they are still in the preparatory stages for specifically 
monitoring GM. However, several approaches emerging from diverse 
fields of science and technology are promising. It is interesting to note 
that several groups have attempted to develop biosensors for GM by 
integrating advanced information technologies like ML. It is possible 
that precise non-invasive monitoring of GM health would be possible 
in the near future by employing ingestible 3D printed capsules and 

FIGURE 1

Schematic representation of biosensing techniques for GI microbes and gut metabolites. The target analyte (such as GI microbe or gut metabolite of 
interest) reacts with the corresponding bio-recognition element (bioelement or bioprobe) of the biosensor and such analyte-bioprobe interaction is 
selectively and sensitively analyzed using different detection methods such as optical, electrochemical, piezoelectric, thermoelectric, field-effect 
transistor (FET) approaches.
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pairing them with wireless and self-powered wearable electronic 
devices or even smartphones.

Research on developing biosensors for various gut microbes other 
than gut bacteria and gut metabolites/biomarkers should be explored to 
reinforce the personalized biosensor or POCT for GM. Since the results 
of different studies on gut microbiota are highly variable even in the 
same disease, methods to develop ultra-sensitive and specificity of 
biosensors may be focused on in the future, thereby enhancing the early 
personalized diagnosis and effective medical treatment. Moreover, 
developing ultra-sensitive biosensors for mental and gut health is an 
absolute need, as there is a bidirectional relationship between gut 
microbiota and cognitive behaviors. Furthermore, safety and 
psychological challenges are associated with continuous monitoring and 
in vivo monitoring devices like ingestible sensors for GM. A minimally 
invasive approach (such as wearable devices), affordable, and user-
friendly (such as μ-PADs) could be more focused in academia and the 
clinical industries. We believe that the rapid progress of nanotechnology 
and emerging multidisciplinary approaches would enable early on-site 
detection of gut metabolites and microbes that empower personalized 
POC diagnosis with efficient treatment.
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