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ABSTRACT Heavy equipment operation is a responsible and difficult task causing mental workload on

a human operator and exposing the operator to a range of harmful factors. Human factors and ergonomics

in heavy equipment design have traditionally been focused on anthropometry and questionnaires. More

advanced techniques involving biosignal measurements were not applied to heavy equipment, mainly

due to the diversity of real working conditions that were hard to reproduce in a laboratory environment

and that prevented ambulatory studies. Recent advances in wearable biosensors and real-time simulators

produce the capability of using biosignals for improving the ergonomics of heavy equipment operation.

The present paper reviews the use of biosignals in human factors and the ergonomics of heavy machines

by focusing on stress detection for the last ten years. The aim of the paper is analyzing the previous

implemented algorithms to find a set of biosignals and methods of stress identification that could be

suitable for identifying stress in heavy equipment operators both in laboratory and ambulatory studies.

The conclusion emphasizes successful stress identification methods and a combination of the algorithms

from different studies that facilitate the use of heavy equipment operator’s applications. Also, feasible

methods and directions for future research are considered.

INDEX TERMS Human Stress Detection, Pattern Recognition, Biosignal Processing, Human Factors

and Heavy Equipment Operator Ergonomics.

I. INTRODUCTION

Heavy equipment is utilized in construction, mining, and

agriculture is a powerful but dangerous tool. It can neg-

atively affect an operator, exposing him to a high level

of whole-body vibrations, durable static postures, noise,

sunlight, dust, and a wide range of temperature. At the same

time, the operator working in harsh conditions must provide

high productivity and safe operation since inefficiency and

mistakes in operation can be expensive and dangerous.

The above-mentioned items lead to the necessity of pay-

ing special attention to human factors and ergonomics at the

design phase of heavy equipment and to monitoring of the

operator state during his work. Extending traditionally used

anthropometry and questionnaires with biosignal measure-

ments is a modern approach in ergonomics that is widely

used in aviation [1], intelligent cars [2], manufacturing [3],

and marketing [4].

In the field of heavy equipment design, the main focus

is on ensuring safety, accounting for anthropometrics, and

protection from harmful external factors [5], [6] such as

whole-body vibration [7]. The affective states of the op-

erator, such as stress, arousal, and fatigue are taken into

account to a lesser extent. Recent advances in wearable

biosensors, telecommunication and computing technologies,

and machine learning allow filling this gap.

In the present paper, our contribution is in reviewing
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the utilized methods and considering the limitations, pros,

and cons for identification of stress vehicle drivers and

heavy equipment operators (HEOs), and in considering the

possibility of applying suitably analyzed methods for vehicle

driver’s stress identification for HEOs, both in laboratory

and ambulatory studies. The focus of our review is on stress

identification since the stress level directly influences the

performance and health of the operator. Moreover, the use

of biosignals in human factors and ergonomics research is

considered for the last ten years of studies. We also consider

and emphasize the use of real-time simulators of heavy

equipment as a convenient way of making laboratory studies

closer to a real working environment. The paper concludes

with a set of selected biosignals and data processing meth-

ods that can be suitable for stress detection in HEOs and

with directions for future research.

The present study, continues in the following steps: Sec-

tion II: Definition and physiology of stress and influence of

stress on the HEO’s efficiency; Section III: Real-time simu-

lators and utilized methods for operator’s health monitoring

and stress detection; Section IV: Concepts of implemented

stress identification algorithms; Section V: Discussion; and

Section VI: Conclusion.

II. DEFINITION AND PHYSIOLOGY OF STRESS AND
INFLUENCE OF STRESS ON THE HEO’S EFFICIENCY
Stress can be defined in at least three different aspects.

The first definition states that stress results from pressure (a

stimulus-based definition) [8]. The second definition states

that stress is a response to noxious stimuli (a response-

based definition) [9] and the third definition states that

stress is a dynamic process that reflects both internal factors

(characteristics of a person) and external factors (harmful

stimulus in the vicinity) as the interactions between them

(stress as a dynamic process) [10]. Based on the second

definition, Selye et. al. [10] conceived the model for physio-

logical response to stress. This template is called the general

adaptation syndrome, and it consists of three stages. The

first stage is the alarm reaction; during that phase, the body

is alerted by the sympathetic nervous system. The second

phase is resistance reaction, where the body prepares to deal

with the stress, and the capacity of the body to resist stress

increases. Both the first and second phases increase the

performance of the subjects. However, if the stress reaction

continues for a long time and exceeds the capacity of the

body to respond, the systems of the body will be injured.

This third phase of the process is the stage of exhaustion

[9].

A. PHYSIOLOGY OF STRESS
In short, stress affects human physiology in three phases:

(1) alarm, (2) resistance, and (3) exhaustion. In the alarm

phase of the stress reaction, homeostasis of the body, tissues,

and cells change. The metabolism of the body accelerates,

and the physiologic responses to stress are mainly caused

by the activation of the sympathetic nervous system and the

hypothalamic-pituitary-adrenal axis, in which neuromuscu-

lar, endocrinologic, and cardiovascular systems activate. In

the alarm phase, stress is primarily a consequence of in-

creased plasma concentrations of catecholamine hormones.

These hormones accelerate Heart Rate (HR) and Breath Rate

(BR) frequency, raise Blood Pressure (BP), increase muscle

tonus, and liberate nutrients (glucose and fat) for muscular

action. These changes in body momentarily increase the

physical and psychical performance of subjects [11].

B. MENTAL STRESS
Mental stress at work, also known as mental workload,

is directly related to the proportion of mental capacity an

operator expends when performing tasks. The measurement

of mental workload is the specification of that proportion

[11]. Tao et al. [12] suggested that mental workload is

caused by task demands, while task load is more focused

on the human body. Mental workload is the “level of

attentional resources required to meet both objective and

subjective performance criteria, which may be mediated

by task demands, external support, and past experience.”

Mental workload could be induced by task demands, stress,

and fatigue.

C. PHYSICAL STRESS
Physical Stress is defined as the force applied to a given

area of biological tissue, and it may affect musculoskeletal

(bone, muscle, tendon, ligament, and cartilage), integumen-

tary (skin), cardiopulmonary/vascular (heart, blood vessels),

and neuromuscular (neurons) organ systems of the human

body [13]. During routine work, tissues accommodate to

physical stresses by altering their structure and composi-

tion to meet the mechanical demands [14]. The strain of

tissues occurs along a continuum from acute micro- or

macrotraumatic injuries or from chronic overuse or over-

load, poor motor control, posture and alignment, physical

activity, and occupational, leisure, and self-care activities

and may result in damage to structural protein and the

blood supply. The general work-related injuries of upper

limb are muscle fatigue and pain, tendon-related disorders

(e.g., epicondylitis), carpal tunnel syndrome and cramping

of the hand and forearm, and low back injuries caused by

disc degeneration or a disc prolapse [15].

In the resistance phase of a stress reaction, the body

enhances its capacity to resist stress. The increasing use

of energy is an adaptive mechanism of the body to react

to changing demands of the environment. Activation of the

energy system and high corticosteroid concentrations lead to

other physical adaption changes in the body, which include

the elevation of core temperature and increased arousal and

cardiovascular functions. These changes mainly increase the

performance of subjects, but some detrimental aspects (e.g.,

insomnia, high BP, and weight loss) appear as well. A

continuous accelerated metabolic condition may drift into

exhaustion [11].
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The exhaustion phase leads to the development of patho-

logical process or damage in the body. The immune system

of the body works incompletely, and the internal organs

are unable to maintain their normal functions. Different

symptoms of the autonomic nervous system (e.g., palpitation

of the heart, nausea, and perspiration) and infections often

exist, and the physical and psychical performances of the

subjects crash down [11].

D. HEALTH RISKS OF STRESS
The human body’s physiologic responses to a long-duration

stress reaction can cause problems in physical and mental

health [15]. The prolonged stress reaction has detrimental

effects on the function of the cardiovascular system, such as

HR, Heart Rate Variation (HRV), BP, and arteries endothe-

lium [16]. These changes increase the risk of myocardial

infarction, cardiac arrhythmias, and sudden death [17]. The

prolonged stress reaction also affects both the central ner-

vous system (hypothalamus and pituitary), which may cause

a decrease in brain mass and the periphery internal organ

system (adrenomedullary system) [18]. The chronic stress

can lead to depression [19] or Alzheimer’s disease [20].

The changed plasma concentrations of hormones induce

behavioral modifications (e.g., increased arousal, alertness,

vigilance) and physiological consequences (sweating, core

temperature, appetite). In addition, the stress has negative

effects on many brain functions, such as memory [21],

learning [22], and cognition [23]. The stress also nega-

tively affects dynamic and static balance [24], skilled motor

performance [25], and driving ability [26], furthers the

development of tinnitus [27], and suppresses immune system

functions, leading to the development of malignant tumors

[28].

1) Environmental Aspects of Stress
The environmental risks at a workplace include physical

hazards—noise, temperature, ventilation, vibration, light-

ning, and radiation [29] [30]. Environmental stress can

impair working capacity [31], diminish work safety [32],

and increase health risks [33]. Currently, the limitations on

these factors to protect the safety and health of employees

are defined by international and European standards (to be

presented in parts II–E1), and and guidance [11].

Temperature: Temperature. The human body has the abil-

ity to regulate body temperature by perspiration, vasocon-

striction\vasodilatation, metabolism, and muscular work, but

the temperature range and tolerance for optimal body func-

tions are quite narrow and if exceeded can cause the collapse

of internal organs. A hot environment leads to heat-related

illnesses, such as heat stroke, heat exhaustion, heat cramps,

and heat rashes [33]. Protective clothing can create a serious

heat stress problem for HEOs [34]. On the other hand, the

main cold-related illnesses appear in the respiratory system

(asthma), the cardiovascular system (coronary disease), the

peripheral circulatory system (Raynaud’s disease), the mus-

culoskeletal system (tension neck), and the dermatological

system (cold urticaria, freezing injuries), which significantly

decrease the productivity of employees [35].
Vibration, Noise and Dust: Vibration, Noise, and Dust.

The other external stressors that increase the occupational

stress level among heavy equipment operators during the

work days are noise, vibration, and dust. At earth-moving

workplaces, noise, dust, and body vibration levels are signif-

icantly high and cause health disorders. For example, long-

term whole body vibration causes lumbar spine injuries [36],

and hand-transmitted vibrations cause neurological disorders

to the upper extremities and neck-shoulder problems [16].

Dust causes respiratory, cardiovascular disorders, and skin

irritation [37].

E. INFLUENCE OF STRESS ON THE PERFORMANCE
OF HEOS
In order to analyze the performance influence of different

carriers, specifically HEOs, several standards have been

defined as follows: Occupational Health and Safety Organi-

zations, NIOSH (National Institute for Safety and Health)

[10], EU-OSHA (European Agency for Safety and Health at

Work) [38], ILO (International Labour Organization) [11],

and national institutes such the Centre for Occupational

Safety in Finland [30], and the Finnish Institute of Occu-

pational Health [29] [39]. The organizations at workplaces

have the same purpose—to protect the health and safety

of the employees and employers and support their well-

being at work. Each of the standards concerns a different

combination of factors, such as physical risks, handling

loads, awkward positions, repetitive work, risk factors (tem-

perature, ventilation, noise, vibration, and radiation) [40].

1) Ergonomic Conditions and Standards For Risk Control
Factors Of Physical Stress
The known reported risk factors for work-related muscu-

loskeletal disorders are excessive repetition, awkward pos-

tures, and heavy lifting [41]. The extrinsic risk factors are

ergonomic environment [15] that studied as static postures

or ergonomic topics. Ergonomic posture solutions, such

as a well-designed structure of the cabin, seat, steering

devices, and pedals, help prevent awkward posture. A vi-

bration prevention solution: seat shock absorbers to dampen

frequencies between 1 to 20 Hz and a seat with a vertically

moving backrest reduced vibration motion between the seat

backrest and the vehicle floor [42]. An upper limb repetition

disorder solution: using a joystick that reduces risk factors

in upper body limbs compared to steering wheels [43].

Therefore, to control physical risk stress, different standards

have been defined, as follows:

• Earth-moving machinery: EN-ISO 3411:2007 is related

to the physical dimensions of operators and the mini-

mum space envelope around the operator [18].

• Safety of machinery: EN 547-3 is related to human

body measurements.

• Earth-moving machinery: ISO 11112 is related to oper-

ator’s seat dimensions and requirements, which include
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knowledge of designing the structures and dimensions

of the cabin [41].

• Safety of machinery: EN 1005-4 + A1 is related to

human physical performance, evaluation of working

postures, and movements in relation to the machine

[44].

• Static posture: ISO 11226:2000 is related to the eval-

uation of static working postures based on current

ergonomic knowledge [22].

• Whole-body vibration: ISO 2631-1 defines the evalua-

tion of human exposure to whole-body vibration [45].

• The standards ISO/CD 11228-3 (ISO 2003), EN 1005-

3 (CEN 2002), and prEN 1005-5(CEN 2003b) offer

useful knowledge to designers and manufacturers of

machines to avoid structures and devices causing awk-

ward working postures [19]. The standards are de-

signed based on ergonomic postures in biomechanical

science and experiments, without using biosignals such

as an EEG, EMG, or ECG in HEOs’ health monitoring.

III. REAL-TIME SIMULATORS
Real-time simulators have been known as a powerful tool for

product development and training for more than a century

[46]. They have been widely used to evaluate how an

operation environment affects a trainee and how the new

design of a machine will affect its driver in the aerospace, lo-

comotive, marine, and car industries. Advances in computer

hardware and simulation methods development have greatly

simplified the process of real-time simulator creation. A

modern system consisting of an operator seat installed on

a motion platform and equipped with a set of controls,

a visualization display, a sound system, and a powerful

computer with simulation software allows the creation of

real-time simulators for different types of machines. Such a

system can simulate cars, trucks, tractors, excavators, wheel-

loaders, cranes, forestry, and mining equipment by running

different simulation models without hardware modifications.

This has extended the boundaries of real-time simulation

from “high-tech” to “practical” applications in the construc-

tion, mining, forestry, and agriculture segments. Examples

of real-time simulators are depicted in Figure 1.

Data presented in Table 1 and Table 2 show that sim-

ulators are widely used in stress identification studies.

An advantage of using them in research related to heavy

equipment operators is the possibility of keeping different

environmental parameters under control. By varying the

sound and vibration levels, lighting and visibility conditions,

temperature and humidity, and electromagnetic field, it is

possible to study the influence of environmental parameters

on the operator’s condition. Another advantage is the ca-

pability of changing design parameters of a machine and

studying the influence of these changes on the operator. A

wide set of controllable and monitored machine parameters

delivered by the simulator, combined with a set of biosignals

obtained from the operator, provides ample opportunities

for creating efficient cyber-physical systems. For health

monitoring (physical and mental), different instruments are

used. They are explained in the following sections.

IV. MOVEMENT ANALYSIS FOR DIAGNOSING
PHYSICAL STRESS BASED ON OBSERVATION AND
VIDEO RECORDING
Physical stress caused by posture and motions at work

is measured by different observation approaches. These

measurements are based on video recording and quantitative

analysis by observations such as OWAS (Ovako Working

Posture Assessment System), RULA (Rapid Upper Limb

Assessment), REBA (Rapid Entire Body Assessment), and

OCRA [19]. These ergonomic assessment tools are used to

evaluate selected body postures, forceful exertions, type of

movements and repetition.

A. OWAS METHOD FOR HEALTH MONITORING
OWAS is the visual evaluation by a video camera for whole-

body working and awkward positions. OWAS considers

in detail the posture of the back, upper limbs, feet, and

the force demanded during the work cycle. In the OWAS

method, evaluations of different postures are performed once

a minute, and each posture is marked on a worksheet using

its code. A posture summation indicates possible overload

during the working day. The OWAS method has been

applied mainly in manufacturing industries, healthcare and

social assistance activities [16].

B. RULA METHOD FOR HEALTH MONITORING
RULA was developed for evaluating the postural load of

job tasks on the neck, trunk, and upper extremities and

the required force and repetition during the most difficult

work tasks. The postures are marked and graded on a

single-age worksheet. The final score represents the level

of musculoskeletal risk [16].

C. REBA METHOD FOR HEALTH MONITORING
REBA was developed based on RULA. It is applied pri-

marily in healthcare services and service industries. REBA

is used for evaluating the trunk, neck, and legs and to the

human-load interface coupling the upper limbs. The posi-

tions are scored and then processed to provide a combined

risk score [16].

D. OCRA METHOD FOR HEALTH MONITORING
OCRA is an evaluation method for the risk assessment

of repetitive strain injury in the upper limbs [19]. The

evaluation is based on video analysis during repetitive

movement tasks while the operator applies shifts that consist

of several technical actions (reach, move, grasp, grasp with

the other hand, grasp again). The final OCRA index is the

combination of defined codes for movements and positions

of the humeroscapular joints, elbows, wrists, and finger

grips. The calculation model uses multiplier factors for

force, posture, complementary factors, and lack of recovery

[16].
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FIGURE 1. Examples of heavy machine simulators (Laboratory of Intelligent Machines, LUT University, and www.mevea.com)

E. UPPER LIMB HEALTH MONITORING

The Upper Limb expert tool was developed at the Finnish

Institute for Occupational Health. It is based on a simple

presence/absence scale of hazards, such as repetitive use of

the hand, the hand force, and awkward postures. The more

“yes” answers there are to the presence hazard, the greater

the risk [28].

F. COMPUTER-BASED MOTION INSTRUMENTS FOR
PHYSICAL HEALTH MONITORING

Systems for health monitoring, which are based on different

sensors, can provide more reliable data than assessments.

One of the useful health monitoring systems is the

XSENS system, which obtains data from an accelerometer,

gyroscope, and magnetometer to estimate the orientation and

position of a body segment. In addition, the XSENS system

computes 3D joint kinematics and analyzes motion without

external emitters and cameras [20].

The system for assessing the trunk and lower limb joint

kinematics is the Xsens MVN Awinda with 17 wireless

sensors fitted in a suit. The inertial sensors (MVN Awinda)

provide ambulatory motion analysis of the trunk and limb

joints, which is performed in real-time. The Industrial

Athlete system combines inertial sensors, biomechanical

models, and load weights.

The motion capture system enables ergonomic analysis

under real working conditions in real-time. The frequent

load types such as force, force posture, and repetition can

be identified for each body region and evaluated according

to the biomechanical and ergonomic criteria [21], which is

suitable in a heavy machine workplace environment.

G. BIOMARKERS FOR STRESS DETECTION

Several parameters of biofluids can be used as physiological

biomarkers of stress. The fluids suitable for analysis are

blood, saliva, and sweat. The cortisol level is known as

a good indicator of stress. The lactate level can be used

to track body exertion, and the glucose level shows the

overall fatigue level. This paper excludes biomarkers from

consideration since their use appears to be inconvenient for

HEOs, being invasive in case of a blood test or requiring

additional actions from the operator in case of a saliva test.

An overview of the methods involving biomarkers for stress

detection can be found in [47]. The state of the art in the

understanding of biomarkers present in sweat under stress

and emotional events is considered in [48].

Analysis of sweat provides an interesting opportunity with

the recent advancements in on-skin patch-like sensors. This

type of sensor is actively studied at the moment in sports

medicine [49]. Although the amount of sweat generated in

sports activities is much greater than in heavy equipment

operation, the ability to continuously monitor the chemical

composition of sweat using noninvasive methods looks

promising for detecting stress in HEOs. It is an interesting

opportunity for future research.
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1) Biosignal Measurement Instruments for Mental Health
Monitoring
The methods described above measure the reactions of

the autonomic nervous system and the activities of the

sympathetic and parasympathetic nervous systems. Health

monitoring of the HEOs originated from fatigue, stress,

and confusion during multiple complicated tasks. Therefore,

studies usually focused on utilizing the biosignals for mon-

itoring the operator’s health recorders such as electrocar-

diography (ECG), BP, BR, Galvanic Skin Response (GSR),

photoplethysmography (PPG), body temperature, electroen-

cephalography (EEG), and electromyography (EMG). In the

next section, biosignal instruments and successful mathe-

matical methods for detecting stress are considered.

V. CONCEPTS OF IMPLEMENTED STRESS
IDENTIFICATION ALGORITHMS
In this section, we first present the steps in stress identi-

fication algorithms. Then, the employed sensors for stress

identification are introduced. After that, the effective relative

stress identification studies for drivers and heavy equipment

are evaluated. In order to identify stress patterns, different

approaches have been developed that follow the same con-

cept. Conceptually, algorithms are divided into five main

steps, which are illustrated in Figure 2 and explained as

follows:

I) pre-processing: includes signal segmentation (also

called windowing), filtering, and normalizing signals. Filters

are designed based on the frequencies that the patterns

generate [50];

II) Feature extraction, which defines the functions that

reflect a specific behavior in a biosignal. In recent studies,

a large number of new features have been extracted [51]–

[55]. For example, Lanata et al. [53] designed three driving

scenarios for applying stress. In total, 42 features were

extracted for detecting three levels of stress. A short list of

effective biosignal features from the ECG and GSR in the

reviewed studies (tables 1 and 2) are HRV [56], HR [57],

difference and phasic-tonic components of EDA signals

[58], inter-beat-interval (IBI) [59], wavelet components [55],

[60], non-biosignal features extracted from video (head

movement and the mean level of the eye opening) [51],

environmental data (light, darkness, fog) [50], and GPS

position [61].

Also, a short list of useful features from EEG signals in-

cludes amplitude, mean, variance, standard deviation (STD),

first absolute deviation (FAD), skewness, kurtosis, zero

cross, power, and energy, fractal dimensions Sevcik, Higuchi

and Katz, chaotic algorithms: largest lyapunov exponent, op-

timized wavelet packets with detrended fluctuations analysis

(DFA), and common spatial patterns [62];

III) The second important part of stress identification is

using appropriate feature selection algorithms. The aim of

feature selection algorithms is to remove irrelevant features

from processing such as linear discriminant analysis (LDA),

and principal component analysis (PCA) [63]. Since a set of

extracted features can be redundant, a process of selecting

the most informative features is important. For example, Lee

et al. [54], [64] extracted 46 features from biosignals and

vehicle sensors, of which only 22 features were diagnosed

as informative features using a stepwise feature selection

algorithm. Therefore, the computed features are not effective

or necessarily required to be reduced.

Some feature selection algorithms achieve better results

with a specific classifier’s decision-maker. For example,

Dobbins et al. [65] computed a feature pool that included

26 types of features, and then the RELIEFF algorithm was

used to select features. Different classifiers were then tested

to find the best match to the selected features as an ensemble

classifier.

IV) Feature classification: the algorithms for categorizing

the selected features among defined classes. Different in-

vestigations have been employed to find the best classifiers

for the selected features. The evaluation is performed by

comparing the obtained accuracies from different classifiers,

which are in three categories of predefined [54], [58],

[59], [66], combined [65], and new/optimized developed

classifiers [67]. For example, Hekmatmanesh et al. [63],

[68] employed a set of different predefined classifiers and

compared them with optimized predefined classifiers such as

generalizing SVM and generalizing RBF methods. In a re-

cent combined classifier study, Rastgoo et al. [50] classified

the combined features of the convolutional neural network

(CNN) and long short-term memory (LSTM) using the

deep learning (DL) classifier. In short, the reliable methods

in real-time experiments use a combination of non-linear

feature selection algorithms with an ensemble classifier that

simultaneously takes advantage of optimization methods

[65], [69].

The employed classifiers for HEOs’ and vehicle drivers’

stress detection are Support Vector Machine (SVM), Mul-

tiLayer Perceptron Neural Network with Back Propagation

(MLP-NN), K-Nearest Neighbor (KNN), DL, RBF kernel,

Neural Networks (NN), KNN, Nearest Mean Classifier

(NMC), Bayesian Network, Layer Recurrent Neural Net-

works (LRNN), Decision Tree, Extreme Learning Machine

(ELM), Fuzzy c-means clustering and Logistic Regression,

(LR), as shown in tables 1 and 2;

V) The final step is the statistical analysis of the re-

sults, which includes accuracy, specificity, sensitivity with

paired t-test, ANOVA, Wilcoxon Signed Rank, and post-hoc

significance analysis by Tukey correction tests. Accuracy

is computed with four main parameters: True Negative,

False Negative, True Positive, and False Positive [70]. The

combination methods have been used to reach persuasive

precision in drivers’ stress detection [66], but each step of

the identification algorithm has the potential of amending

by adding suitable optimization algorithms for the HEO

applications. In the next part, relative studies for stress

detection for drivers are presented based on the employed

sensors.
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FIGURE 2. The flowchart of the main concept of the stress detection and identification algorithms. The presented methods are some of the implemented
algorithms in the studies.

A. THE ROLE OF SENSORS IN VEHICLE DRIVER’S AND
HEO’S STRESS IDENTIFICATION APPLICATIONS
In order to create automatic stress identification algorithms,

several methods have been developed based on different

biosignals, tasks, and applications. Our focus is on the

methods and algorithms that can be applied to heavy equip-

ment operators. We also consider the methods designed for

vehicle driver’s stress that can be suitable for HEOs. The

employed biosignals for stress identification are considered

individually as follows.

1) ECG Role in Stress Identification
Depending on the level of stress, the functionality of the

heart alters. Therefore, an ECG signal that reflects heart

activity can be used to identify stress. Some of the useful

extracted features from the ECG signal for studying stress

are HR, the interbeat interval (IBI), and the variations

in the IBI value from beat to beat (known as HRV).

Well-established techniques for stress evaluation using the

ECG signal are described in [71]. Traditional methods for

obtaining a reliable ECG signal and processing the ECG

signal in time and frequency domains are provided in the

guidelines of the Task Force of the European Society of

Cardiology and the North American Society of Pacing and

Electrophysiology [72]. In an effort to standardize reporting

on the HRV research in psychiatry and related disciplines,

these guidelines where later supplemented with a GRAPH

checklist [73].

The stress reaction accelerates HR and decreases HRV.

The HRV measurements and analyses are divided into the

time and frequency domain methods. In the time domain

method, the most common calculated parameters are HR,

SDNN, and RMSSD. SDNN is the STD of the normal R-

R intervals during ECG recording; it is the "gold standard"

for the medical stratification of cardiac risk [74]. RMSSD is

the root mean square of successive differences between the

normal heartbeat; it mainly estimates the parasympathetic

regulation of the heart. In the frequency domain methods,

the high-frequency component (0.15 to 0.4 Hz) indicates

parasympathetic nervous system and vagal activity. The

relationship between the low-frequency component (0.04

to 0.15 Hz) and the high-frequency component (LF/HF)

denotes sympathetic nervous system activity. That ratio is

used to determine the balance of the autonomic nervous

system [74]. Based on the above-mentioned findings, HRV

is an acceptable method to measure stress in the human

body [16].

The application of ECG-based methods for HEOs re-

quires consideration of several peculiarities related to the

operation task and work environment. Heavy equipment

operation is accompanied by the operator’s body motion,

vibration, and electromagnetic fields, which can be a source

of artifacts in the ECG signal. Since condition-monitoring

of operators should be performed automatically, artifact de-

tection methods play an important role in heavy equipment

applications. The other important signal for revealing stress

is the EEG signal, which is considered in the next part.

2) EEG Role in Stress Identification
The EEG device is effectively helpful in identifying stress

and fatigue. Under a high level of stress/fatigue, there is

a loss of concentration. That causes significant changes

in alpha (8 to 12 Hz) and beta (12 to 38 Hz) waves.

For instance, alpha waves disappear or gradually diminish
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during concentration lapses and drowsiness. On the other

hand, if attention increases abnormally, the rate of alpha

waves increases abnormally, too [75].

Stimulators such as stress causes frequency changes in

neural activity [75] and generates specific patterns in the

EEG after onset of the stressor, namely event-related po-

tentials (ERPs). For example, Brookhuis et al. [76] de-

signed a health monitoring system for driver workload using

ECG and EEG signals. In the health monitoring algorithm,

features such as HRV and HR were extracted from the

ECG signal, and ERP features extracted were from the

EEG signal. The reason for the insignificant results was

the varying ERPs when the subjects change. The authors

claimed that stress at different ages produce different P300

patterns (positive peaks after 300 ms onset of stress) in brain

neurons in different situations. The EEG signals contains

valuable information that is a reflection of stressors.

Afterwards, Noh et al. [77] used the EEG and ECG

biosignals to identify stress on three levels and consider

productivity in the experimental HEO’s tasks. In the algo-

rithm, entropy of frequency-based features from the EEG,

HRV, and environmental data were extracted for stress iden-

tification. It is concluded that stress changes the productivity

of the subjects as operators. The disadvantage of employing

the EEG signal for stress detection in the HEO experiments

is that the EEG is sensitive to noise and it can be easily

contaminated in HEO applications (high level of sound and

vibration). Therefore, the EEG is not the most suitable

biosignal for detecting stress in real working conditions,

but for heavy machine simulators, it can be useful because

noises are controllable in the simulators. The solution for

HEO applications is designing cabins with the special

properties of diminishing noises. The advantage of using a

clear EEG signal is that it can compute relevant information

about the operator’s condition and has can detect stress in

the early stages. The next biosignal for stress identification

is the EMG, as explained below.

3) EMG Role in Stress Identification
Investigators study the relationship between muscle activity

and psychophysiological stress response because there is

high prevalence of musculoskeletal disorders associated with

stressful work [78]. In stress research based on the EMG,

the trapezius, sternocleidomastoid, and masseter muscles

are commonly studied. The results of these studies have

addressed significantly higher amplitudes of EMG signals

during stressful situations compared to rest periods [56],

[79]. On the other hand, some studies confirmed that EMG

is not good for stress identification. Wen et al. [61] applied

short-term stress on the drivers in a real car race experiment

to find out how the human body reacts to real stress. In

the experiment, a combination of EMG (masseter muscle),

HRV, and GSR signals was employed. In the stress detection

algorithm, a camera and GPS were also used for monitoring

the driver and the car position. The results showed that

GSR and HRV were strongly related to stress, and EMG

did not contain enough stress information. Stress patterns

in the EMG signals were not revealed well, and they were

highly dependent on the subject. The disadvantage of EMG

signals for HEOs is that vibration may affect the signals

significantly. In general, the EMG signal, as well as respi-

ration, BP, and GSR signals, are counted as complementary

signals that provide supplementary information for stress

identification. The GSR role in stress detection is considered

in the next part.

4) GSR Role in Stress Identification
GSR is the electrical phenomenon in human skin col-

lectively known as Electrodermal Activity (EDA). GSR

measurements are performed with a wearable sensor based

on the phenomenon that skin conductance varies following

the state of sweat glands in the skin. Since sweating is

controlled by the sympathetic nervous system, the GSR

indirectly measures the activity of the sympathetic nervous

system and a human reaction to physical and psycholog-

ical stress. When psychological or physiological arousal

increases, sweat gland activity also accelerates, which leads

to a decrease in skin conductance. Measurement and anal-

ysis of the GSR uses the above-mentioned physiological

features to estimate the stress level in humans [80]. Rec-

ommendations for performing electrodermal measurements

can be found in [81]. Although the EDA is frequently used

as a stress indicator during the presentation of different

stressful stimuli [82], and presents demonstrated sensitivity

to workload and emotional strain [71], it is prone to artifacts

in nonlaboratory settings. This creates obstacles for EDA

measurements in the working environment of the HEOs. The

important issues of ambulatory skin conductance recording

in HEO applications are the stability of the electrodes and

the influence of temperature and physical activities [81]. The

next biosignal for considering stress for HEOs applications

is the respiration signal, which is considered next.

5) Respiration Role in Stress Identification
A higher rate of breathing is a symptom during stress in

comparison with normal situations. The respiration signal

is usually recorded at a low-frequency sampling rate such

as 3 Hz, which does not have enough information for

detecting stress individually. Therefore, the BR signal is

usually used with other signals such as ECG, GSR, and

EMG to detect stress [51], [55], [60]. For example, Soman

et al. [83] used the driver’s ECG and respiration signals

for identifying stress. The designed algorithms were based

on the correlation between the QRS and BR features and

stress situations (Table 1). The QRS is a combination of a Q

wave, R wave, and S wave in the ECG signals, representing

ventricular depolarization. In another investigation, Singh

et al. [84] completed the previous study [85]using hybrid

biosignals consisting of ECG, EMG, GSR, and BR to detect

stress on three levels (low, moderate, and high stress). The

results are presented in Table 1. The algorithm developed in

the study [84] was not applied to a real-time system, so its
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usability in such applications is unclear. In conclusion, the

respiration information can be used as complementary data

for stress identification in HEO applications.

6) Hybrid Methods and External Sensors in Stress
Identification
Hybrid methods combine different biosensors for data ac-

quisition and produce more reliable results for health mon-

itoring. Each biosignal has specific hallmark features for

stress detection, and the hybrid methods combine them in

one algorithm. Several studies successfully employed hybrid

methods [61], [76], [84]. For example, Brookhuis et al. [76]

investigated drivers’ mental workload in driving simulators

using the ECG and EEG signals. In order to detect stress

and fatigue, an algorithm based on the selective features was

designed, namely the HRV and HR features from the ECG

signals and ERP (P300) features from the EEG signals. The

obtained results depicted that stress generated P300 patterns

in the EEG, which varied for different situations and age

groups.

Researchers are interested in employing signals with less

complexity compared to the EEG, such as ECG, EMG,

BR, Photoplethysmography (PPG), and GSR [56], [83],

[85]. Biosignals such as PPG, GSR, BR, and BP contain

complementary information, which means that they are not

enough to be employed individually in the identification

algorithms [85]. Among the less complex signals, the ECG

signal is known as the most informative for stress detection

and health monitoring [57], [86]. A short list of obtained

effective ECG features for health monitoring in heavy

equipment applications includes HRV, HR, QRS peaks, BR,

amplitude, and power in different task situations.

Environmental parameters play an important role in op-

erator’s stress in driving a vehicle or a heavy machine.

Recent studies on detecting stress, fatigue, and concentra-

tion lapses are based on a combination of biosignals and

extra sensors, such as the camera [65], vehicle parameters

(steering wheel, gas and brake angles, and speed) [50],

weather sensors (rain, fog, light and sun direction) [50], GPS

position [61], and traffic information by eCell [58]. Some

of the above-mentioned extra sensors have been employed

in semi-autonomous vehicle design for predicting hazardous

or stressful situations and for generating an automatic break

in real experiments [53], [54], [65], [77].

In the latest studies, Rahman et al. [59] designed an

algorithm to improve the stress identification accuracy of

drivers using vehicle parameters (gas, break, steering wheel

and road information) and video processing. In the study,

a combination of the external sensor’s data (road and

weather conditions) with the HRV, IBI and facial images

were used for developing an Artificial Intelligence (AI)-

based algorithm to assist drivers in stressful (dangerous)

situations.

The presented environmental parameters and additional

sources of information play a critical role in stress detection.

Therefore, accounting for the above-mentioned parameters

can improve the results of HEOs’ health monitoring and

stress detection. The next section is explainsing the devel-

opment of methods for identifying stress for vehicle drivers

and HEOs over time.

B. DEVELOPMENT OF STRESS IDENTIFICATION
ALGORITHMS FOR VEHICLE DRIVERS AND HEOS
Working with heavy machines causes health problems over

time. This paper reviews the methods that can be applied

to HEO health monitoring. Vehicle driving resembles heavy

machine operation, which is why we also consider studies

related to vehicle drivers. The challenging point in heavy

machines is measuring the biosignals in the presence of

high-level vibration, sound, and electromagnetic noises. In

the discussion part, the development of AI algorithms is also

considered in detail.

Identification of stress by the use of only one biosignal

does not achieve promising results. Therefore, most of the

studies employed hybrid methods [61], [76], [84], [86].

For example, Ahmed et al. [86], employed only an ECG

signal to identify stress. The strength of the study was

employing a combination of feature selection algorithms

named PCA, mutual information (MI), and random subset

feature selection (RSFS). Predefined classifiers are then

classified as the selected features, namely SVM, random

forest (RF), and NN. SVM was reported to be the best

classifier (Table 2). The weakness points of the study were

the following: (1) Although several parts of the human body

are affected during stress, one type of sensor is used for

identifying stress; (2) computing a low number of features

is one reason for low precision; (3) traditional classifiers

were used to identify stress, although it was applicable

to optimizing the traditional classifiers; (4) the algorithm

response time (delay) was not presented; (5) the variation in

accuracies was not presented; (6) employing a low number

of subjects, which is important in training a classifier. The

limitation of the study was employing a binary classifier

to consider the presence of stress instead of using a multi-

classifier to classify different levels of stress.

In another similar study, Soman et al. [83] used the ECG

and respiration signals to detect stress. The features used

were the power of PQRS and BR, which were not reported

by the results as a significant achievement. The Soman

et al. study has the same weaknesses and limitations as

Ahmed et al. [86]. Therefore, samon et al. [56] developed

their previous study by using ECG and EMG signals and

employing five features to detect stress. The precision of the

identified result was a hallmark. In fact, the study reached a

high precision of 100%, even though they did not solve the

weaknesses of previous studies, which were the low number

of features and subjects, the denial of employing feature

selection, and using the traditional binary SVM classifier.

Soman et al. did not explain the SVM details about the

portion of data used for validation, training, and testing.

The next study added the EEG to the previous studies

to identify stress. Brookhuis et al. [76] investigated drivers’
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mental workload in driving simulators using the ECG and

EEG signals for drivers. In order to detect stress and fatigue,

an algorithm was designed based on selective features,

namely HRV and HR from the ECG and ERP (P300)

patterns from the EEG signals. The obtained results depicted

that stress generated the P300 patterns in the EEG, which

varied in different situations and for different age groups.

The claimed pattern variation did not let the algorithm

achieve a precise result.

Afterwards, several studies were performed to cover the

above-mentioned weaknesses. Therefore, a large number of

new features were computed [51]–[55]. Rigas et al. [51],

[52] developed algorithms that covered some parts of above-

mentioned weaknesses by using different types of wearable

sensors (ECG, EDA, and RSP) and non-wearable sensors

(external sensors, GPS, and camera) for identifying stress.

Therefore, a large number of features were extracted for

detecting three levels of stress. The algorithm was based on

different predefined classifiers that the Bayesian Network

known selected as the best classifier. Rigas et al. covered

well the weaknesses of the previous study [76] and achieved

significant results.

Later, Singh et al. [84], [85] used other combinations of

biosignals such as PPG, GSR, and respiration for stress

detection, and different features were extracted from the

GSR. The strength of the study was in extracting new

features not included in previous studies and in achieving

results that were not higher than in the previously considered

studies. The weakness of the study was in not extracting

efficient features and not employing a feature selection

algorithm, and the low number of subjects participating in

the experiment.

Thereafter, studies focused on producing effective fea-

tures. Wang et al. [57] implemented an algorithm based

on the ECG to identify stress. The strength of the study

was in extracting 24 features from the ECG. The rest

of the algorithm was using kernel-based class (LDA, and

PCA) feature selection algorithms and the predefined KNN

classifier. The advantage of the LDA as a feature selection

is reducing the number of features by maximizing between-

group scattering over within-group scattering. The maxi-

mization of between-group scattering enables the algorithm

to seek projections that reduce the inter-class variance while

increasing the distance between classes [87]. The limitation

of the algorithm is the LDA as suitable for binary-based

classifiers. By experience, feature selection is based on

choosing classifiers, of which LDA/PCA feature selections

with K-NN cause significant results compared to the Rigas

et al. study [52].

In order to develop the Wang et al. study, Lanata et

al. [53] designed an algorithm to detect stress. In the ex-

periment, participants accomplished three driving scenarios

for applying stress on three levels. In the algorithm, a

total of 42 features were extracted from the ECG, EDA,

respiration, and external signals (vehicle parameters) that

achieved significant results. The weakness of the method

was the absence of the feature selection algorithm and the

greater number of subjects. The strengths of the Lanata et

al. study were in extracting a large number of features and

using vehicle parameters such as speed, which is a factor of

stress in driving.

The papers explained above showed that the results were

based on different features and traditional classifiers. Some

of the next publications [58], [61] used repetitive features

and classifiers in different combinations and compared their

results with the previously explained studies. The most

of employed features are time-based algorithms such as

average, power, and difference of GSR values.

In a series of studies, time and frequency features were

considered in a different study. Lee et al. [54] used a

combination of frequency- and time-based algorithms. Lee

et al. considered the Lanata et al. study [53] weaknesses and

extracted 46 features from biosignals and vehicle sensors,

and then 22 informative features were selected by a stepwise

feature selection algorithm. The SVM classifier was then

used for predicting the stress level. The stepwise algorithm

is a step-by-step iterative algorithm that constructs a regres-

sion model based on independent variables. In the model,

the strength is that the variables are can be updated in each

iteration, and the precision of each iteration is evaluated,

since it reaches a fixed model. From another point of

view, the advantage of the method is the feature-by-feature

evaluation in each iteration that generates the coefficients

for constructing the optimum model. The study focused on

extracting a large number of features and selecting the best

features by a different feature selection compared to other

studies. The results showed that the importance of extracting

appropriate features and feature selection algorithm. The

results might be increased if a larger number of subjects

were employed. The weakness of the frequency domain

features is lost time in the time series computations. In short,

some informative values are lost.

As an effective idea, Chen et al. [55] used the advantages

of the previous effective methods, and they cover the fre-

quency domain features by using time-frequency features

(“wavelets”) that preserve the location of a frequency at

a specific time. Chen et al. computed wavelet components

and extracted 15 features from the ECG, GSR, and RSP

signals. The previous studies [52], [53], [56], [57] achieved

higher results in comparison with the Chen et al. study

[55], Table 2. The main advantage of wavelets is the

employment of a specific wave (the “mother wavelet”) that

enables the algorithm to search for a specific pattern on

different scales and time-shifts. The weakness of the wavelet

is its unsuitability for real-time applications due to time-

consuming computations, depending on the application, of

how much delay is acceptable. El et al. [60] planed to

develop Cheng et. al.’s [55] study concept by computing a

feature pool of 26 features from a wavelet. The feature space

dimension is the reduced using recursive feature elimination

algorithm, which the results did not report as significant

improvements.
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Based on the achievements, it is confirmed that the

external sensors (vehicle parameters and environmental con-

ditions) play an important role in stress detection. The

external sensors are categorized into three groups: (1) ve-

hicle parameters are the values extracted from a vehicle in

each experimental task, such as speed, acceleration (which

may alter the driver’s concentration), excitation, and stress;

(2) environmental features which are the road conditions

(possibly dangerous) that may cause stress; (3) weather

information, such as a rainy, snowy, slippery, and foggy

road; and day and night affecting the visibility of the driver;

(4) GPS, which is useful for considering the vehicle position

on the road; and (5) video camera, which is useful for

extracting facial features, such as drowsiness or awareness

of a driver.

Recently, Dobbins et al. [65] computed a feature pool of

26 types of features from the ECG, PPG, external sensors,

and camera. Then, the RELIEFF algorithm were used to

select features. In the implemented approach, four classi-

fiers were used, namely LDA, KNN, decision trees (DT),

and ensemble classifiers, of which the ensemble algorithm

achieved the most accurate result. The strengths of the study

were in using different external sensors, computing a large

number of features, using the effective RELIEFF feature

selection method, and employing different classifiers that

include the ensemble classifier. Using the ensemble classifier

was an advantage because it reduces bias, variance, and

overfitting, which leads to a better match with the RELIEFF

feature selection algorithm. Dobbins et al. covered most of

the weaknesses of the previous studies. The limitation of

the study was in using a binary classifier, a low number of

subjects, not presenting the time response, and the variation

in accuracy for the average values.

Afterwards, Noh et al. [77] used a combination of sensors

to record biosignals, vehicle parameters, and environmental

condition data. In the algorithm, the focus is on using

the EEG and using unsupervised fuzzy c-means clustering

for three levels of stress. The advantages of the study is

computing new features from the EEG and employing the

fuzzy-based clustering algorithm for categorizing features.

One challenging point in unsupervised algorithms such as

RELIEFF is lower precision due to no label being used

during training the classifier. The weakness of the method is

the higher error rate due to the use of a clustering algorithm

with an inadequate number of features.

In recent studies, Rastgoo et al. [50] focused on two parts

of the identification algorithm: (1) extracting features from

the vehicle parameters and environment, such as steering

wheel, gas and brake angles, speed, light, darkness, and fog,

and (2) employing the DL classifier. The DL is based on

a combination of convolutional neural network (CNN) and

long short-term memory (LSTM) algorithms, followed by

the identification of the stress level using the DL classifier.

The strengths the study are in extracting different features

that help the AI to detect the reaction of the driver in

different conditions and using the DL algorithm, which is a

powerful classifier. From another point of view, the DL can

be the weakness of the method when an inadequate number

of features are used. The DL needs a large feature pool to

be well-trained in identifying algorithms.

The next recent study is Rahman et al. [59] in which non-

biosignal features were extracted from video and vehicle

parameters. The extracted features from the video were

head movement and facial features such as the mean level

of eye opening. The binary LR classifier were employed

to diagnose the presence of stress. The study achieved

significant results with some weaknesses, as follows: the

low number of subjects, feature selection was not used,

no reported reaction time, and biosignals were not used.

In another recent study, Halim et al. [69] used only the

EEG and extracted a combination of frequency-based and

time-based (STD) features. The features were categorized

by SVM and reached a significant result. The weakness of

the study is similar to [59] and [86]. Although development

of stress identification for drivers has improved in the last

10 years, recent studies [59], [69] did not take advantage of

the previous improvements.

VI. DISCUSSION
Heavy equipment operation has several features that distin-

guish it from other types of work, such as vehicle driving

and manufacturing plant operation. These features should be

taken into account when the decision is made to use a par-

ticular biosignal or data processing method. This part gives

an overview of aspects of heavy equipment operation and

discusses the effect they can have on HEO stress-estimation.

Heavy equipment operates in diverse environments, ranging

from urban area to fields, forests, mines, and quarries. Such

conditions as external temperature variations, sunlight, dust,

and noise are usual when operating heavy equipment. As a

consequence, environmental factors not only influence the

stress level of the operator, they also change the operator’s

physiological parameters, which can affect the applicability

of methods developed for other types of work, for example,

driving a car. The current trend toward hybridization of

heavy equipment increases the number of powerful electric

components in a machine.

Electromagnetic noise generated by these components

affects low power biosignals such as EEG. This introduces

an additional obstacle to the application of existing methods

of stress estimation to the HEOs and requires future re-

search. The physiological impact of heavy equipment on the

operator includes whole-body vibration combined with static

and sometimes awkward postures. These factors produce

both physiological and mental stress. At the same time, they

are usually eliminated in the case of car drivers.

The number of movements needed to be performed by

an operator to control a heavy machine is higher than in

car driving. In addition to controlling the movement of

the machine itself, the operator must control the machine

parts, such as booms and the bucket. It makes the operation

more complicated and produces a higher mental load than
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with car driving. The situation gets worse with the increase

in machine complexity, which introduces additional visual

indicators and controls in the cabin.

Another important factor is that heavy equipment opera-

tion assumes the presence of stress induced by the task being

performed. An operator who is focused on the task is often

responsible to perform on a tight schedule in collaboration

with other workers and machines, which causes some stress.

This distinguishes an HEO from the typical car driver,

making the driver more similar to a race car driver. The

difference is that a race car driver usually performs the

driver’s task during the relatively short period of the race,

while an HEO works under similar conditions for a long

shift. The presence of stress as an integral part of work

requires a special approach to stress estimation. All of these

factors present stress estimation of HEOs as an actual topic

for human factors research in the near future.

The development of wearable sensors capable of wireless

transmission of biosignals fosters the move of the measure-

ment process from the laboratory environment to the real

field. This transition is facilitated by the use of real-time

simulators, which provide a convenient way to eliminate

unwanted external factors while preserving important pa-

rameters that must be considered in real conditions.

Two directions can be identified in the development of

methods for stress detection in HEOs. The first one is

accounting for stress at the machine-design phase. Using

a real-time simulator that reproduces behavior of the future

machine, different design parameters can be evaluated for

usability. Estimating the stress level of the operator as a

function of design parameters, optimal parameters can be

found before creating the first prototype of the new machine.

The application scenario presented here does not require

high performance of the methods being developed. In con-

trast, stress estimation in real machine operation (which is

another interesting direction for future research) involves

the development of methods that can operate in real time.

Such methods will provide accident prevention and help

to increase productivity by adjusting machine parameters

according to the state of the operator.

VII. CONCLUSION
The consequences of heavy equipment operation under

physical and mental stress, combined with a heavy workload

that causes fatigue and loss of concentration, can be dan-

gerous by causing collisions and injury. The development

of efficient AI algorithms for stress detection is necessary

to avoid injuries and make heavy equipment operators

more productive. Some of the health monitoring algorithms

applied to vehicle drivers could potentially be used for

HEOs. The most informative biosignal features are extracted

from ECG (HRV and HR) and GSR data, and the best

external features are extracted from vehicle parameters and

a camera. An advantage of the ECG and GSR signals

in comparison with the EEG signal is that they are less

sensitive to noise. Handling noise is a challenge for the

EEG in HEO applications. Combining biosignals and ex-

ternal signals is advantageous for predicting stress in heavy

machine operation, but the vibration the electromagnetic and

sound noise decrease the accuracy of the results.

The data provided in Table 1 and Table 2 show that

classification algorithm performance depends on the feature

set and on the experimental task for which the stress

is analyzed. The most informative features were obtained

using different combinations of ECG, GSR, EEG, and

EMG signals and external data about the vehicle parameters

and environment. The most effective recognized feature

selection was LDA and then stepwise algorithms. In binary

conditions, SVM and then the ensemble classifier demon-

strated superior performance in several studies. Real-time

simulators allow keeping environmental parameters under

control and provide a convenient tool for stress detection

algorithm development for HEOs. Transferring biosignal

measurements from the laboratory to a real working environ-

ment—developing sensors, algorithms, and heavy machine

parts such as a cabin that can operate in real time and in

the presence of noise—opens up opportunities for future

research.
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TABLE 1. First part of reviewed studies on HEO’s and driver’s stress identification.
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TABLE 2. second part of reviewed studies on HEO’s and driver’s stress Identification.
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note: Some studies reported the results for individual subjects that we compute the average of accuracies over subjects in tables 1 and 2
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We present the nomenclature in the manuscript in the

appendix.

Nomenclature
AI Artificial Intelligence

BCI Brain-Computer Interface

BP Blood Pressure

BR Breath Rate

CNN Convolutional Neural Network

DFA Detrended Fluctuations Analysis

DL Deep Learning

DT Decision Trees

ECG Electrocardiography

EDA Electrodermal Activity

EEG Electroencephalogram

EMG Electromyography

ERP Event-Related Potential

FAD First Absolute Deviation

GSR Galvanic Skin Response

HEO Heavy Equipment Operator

HF High Frequency

HR heart rate

HRV Heart Hate Hariability

IBI Inter-Beat Interval

KNN K-nearest neighbor

LDA Linear Discriminant Analysis

LF Low Frequency

LR Logistic regression

LRNN Layer Recurrent Neural Networks

LSTM Long Short-Term Memory

MLP-NN Multi-Layer Perceptron Neural Network Back

Propagation

NMC Nearest Mean Classifier

NN Neural Network

OWAS Ovako Working Posture Assessment System

PCA Principal Component Analysis

PPG Photoplethysmography

QRS Q wave, R wave and S wave

REBA Rapid Entire Body Assessment

RULA Rapid Upper Limb Assessment

SVM Support Vector Machine
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