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cause the area of the Antarctic “ozone hole”
to spread beyond those measured in the
1990s. Thus, the effect of denitrification on
ozone recovery in both hemispheres cannot
be ignored and must be included quantitative-
ly in assessment models for better predictions
of future springtime polar ozone trends.
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Biospheric Primary Production
During an ENSO Transition
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The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides global monthly
measurements of both oceanic phytoplankton chlorophyll biomass and light
harvesting by land plants. These measurements allowed the comparison of
simultaneous ocean and land net primary production (NPP) responses to a
major El Niño to La Niña transition. Between September 1997 and August 2000,
biospheric NPP varied by 6 petagrams of carbon per year (from 111 to 117
petagrams of carbon per year). Increases in ocean NPP were pronounced in
tropical regions where El Niño–Southern Oscillation (ENSO) impacts on up-
welling and nutrient availability were greatest. Globally, land NPP did not
exhibit a clear ENSO response, although regional changes were substantial.

Temporal changes in the physical environ-
ment are manifested in the light-harvesting
capacity of plant communities throughout the
biosphere and can be monitored remotely by
changes in surface chlorophyll concentration
(Csat) in the oceans and the Normalized Dif-
ference Vegetation Index (NDVI) on land. A

continuous, 20-year global record of satellite
NDVI has permitted characterization of inter-
annual, climate-driven changes in terrestrial
photosynthesis (1–5). Coincident changes in
ocean productivity have not been assessed
because an analogous long-term global Csat

record does not exist. The first Csat measure-
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ments were made with the Coastal Zone Col-
or Scanner (CZCS: 1978–86), but this proof-
of-concept sensor collected data on a highly
irregular basis that yielded incomplete global
coverage even after integration over the en-
tire 8-year mission. Eleven years later, Sea-
WiFS was launched, marking the beginning
of the first multiyear satellite measurements
of phytoplankton biomass since CZCS. Sea-
WiFS now provides greater global coverage
of Csat each month than was achieved
throughout the lifetime of CZCS. In addition,
SeaWiFS is the first satellite instrument with
the spectral coverage and dynamic range nec-
essary to derive both Csat and NDVI. Here we
report spatial and temporal changes in the
photosynthetic biosphere for an El Niño to La
Niña transition period, as recorded during the
first 3 years of the SeaWiFS mission.

We analyzed global, 4-km resolution,
monthly SeaWiFS Csat and NDVI data col-
lected between September 1997 and August
2000. Stability of the sensor was character-
ized from monthly lunar-based calibrations
and derived products verified by comparison
with field measurements (6–8). Biospheric
net primary production (NPP) was estimated
following the approach of Field et al. (9),
which integrates the Vertically Generalized
Production Model (VGPM) for the oceans
(10) with the Carnegie-Ames-Stanford Ap-
proach (CASA) for land (11, 12). Variations
in NPP for the CASA-VGPM model arise
from changes in three factors: (i) incident
photosynthetically active radiation (PAR),
(ii) the fraction of radiation absorbed by
plants (related to Csat and NDVI), and (iii)
light use efficiency (ε). Coincident changes in
these factors collectively control NPP. Unlike
previous calculations that used Csat, NDVI,
and climate data from different periods (9),
all data used in the current NPP estimates
were collected during the SeaWiFS period
(13). The CASA-VGPM model was operated
on a monthly time step.

SeaWiFS measurements began near the
peak of the 1997–98 El Niño event (by some
measures, one of the strongest on record)

(14) and then continued through an equally
strong La Niña period. A pronounced season-
al cycle dominated temporal variability in
global mean Csat throughout the SeaWiFS
record (Fig. 1A). Summer phytoplankton
blooms in the Northern Hemisphere exceeded
those in the Southern Hemisphere, causing
minima in global mean Csat between Novem-
ber and March and maxima between May and
September. Superimposed on this prominent
seasonal cycle was a clear El Niño–Southern
Oscillation (ENSO)–related change in ocean
productivity, as illustrated by the monthly
Csat anomaly record (Fig. 1A) (15). The El
Niño to La Niña transition altered ocean nu-
trient distributions, causing nearly a 10% in-
crease in global mean Csat between Septem-
ber 1997 and December 1998. Changes in
Csat during this period were not restricted to
the equatorial belt but rather were global in
extent. During the subsequent La Niña period
of January 1999 to August 2000, Csat contin-
ued to increase at the reduced rate of 2.2%
per year, primarily reflecting increased phy-
toplankton biomass in the Pacific Ocean.

Temporal changes in ocean NPP exhibited
seasonal and interannual patterns similar to
Csat, increasing from 54 to 59 Pg C year21

(Pg 5 1015 g) over the 3-year SeaWiFS
period. Regionally, NPP was highest near
equatorial and eastern margin upwelling cen-
ters, at high latitudes in the Northern Hemi-
sphere, and within the southern subtropical
convergence zone (Fig. 2, A and B). Seasonal
changes in Southern Hemisphere NPP mir-
rored those of the Northern Hemisphere, ex-
cept between 40° and 75°S latitude from
October to April (Fig. 3). At .40°N, phyto-
plankton growth is restricted by deep mixing

and low PAR during winter months and then
increases markedly in the summer when sur-
face waters rich in nutrients become stratified
and PAR is high. Consequently, NPP was
strongly seasonal in this region, varying from
0 to 49 g C m22 month21 (Fig. 3). In con-
trast, seasonality in NPP was greatly damp-
ened poleward of 40°S, with summer values
decreasing from 27 to 7 g C m22 month21

between 40° and 70°S (Fig. 3). This absence
of a high-latitude, Southern Hemisphere
bloom results from weak seasonality in fac-
tors limiting phytoplankton growth, particu-
larly iron and vertical mixing (16–19). We
calculated that a 9 Pg C year21 increase in
NPP would result if seasonal changes in phy-
toplankton biomass between 40° and 75°S
paralleled those in the Northern Hemisphere
(20).

On land, temporal changes in global mean
NDVI were dominated by strong seasonal
fluctuations, with minima of 0.44 6 0.01
(dimensionless) between December and Feb-
ruary and maxima of 0.55 6 0.01 between
June and September (Fig. 1B). Land NPP
peaked between 15°S and 10°N, reaching
87 g C m22 month21, and varied seasonally
at .35°N from 0 to 75 g C m22 month21

(Fig. 2, A and B). Despite the strong El Niño
and La Niña, monthly anomalies indicated
little systematic impact on global mean
NDVI for the 3-year SeaWiFS record (Fig.
1B) (15). Land NPP was nearly constant for
both climate regimes, ranging from 57 to 58
Pg of C year21 between September 1997 and
August 2000. Substantial ENSO-related re-
gional changes, however, are hidden in these
global integrals.

Biospheric distributions of NPP register
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Fig. 1. Global monthly means
and anomalies in (A) surface
ocean chlorophyll (Csat: mgChl
m23) and (B) land NDVI (dimen-
sionless) for SeaWiFS measure-
ments between September 1997
and August 2000. Anomalies
were calculated as the difference
between Csat or NDVI for a given
month and the average value for
that month during the 3-year
time series. (A) ●, monthly
mean Csat (left axis); L, monthly
anomaly (right axis). (B) ●,
monthly mean NDVI (left axis);
L, monthly anomaly (right axis).
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spatiotemporal variations in light, soil
moisture, nutrient availability, and temper-
ature. Interannual variability in NPP is thus
linked to regional changes in physical forc-
ings that regulate these resources and envi-
ronmental conditions. Particularly striking
examples of this relation during the 1997–
98 El Niño to La Niña transition included
an increase in equatorial Pacific NPP re-
sulting from enhanced upwelling (21) and
reduced terrestrial NPP in eastern Africa
related to decreased precipitation (Fig. 2C).

Additional features of the transition includ-
ed (i) a change in Indian Ocean circulation
that increased NPP in the northeast while
decreasing productivity west of Indonesia
(22), (ii) precipitation-related changes in
NPP over Amazonia and Argentina, and
(iii) nutrient-driven increases in ocean NPP
east of Argentina and in the Mauritanian
upwelling plume off western Africa (Fig.
2C). Persistent La Niña conditions between
the Boreal summers of 1998 and 1999 led
to spatially heterogeneous changes in NPP,

including a large equatorial decrease and
off-equatorial increase in the Pacific Ocean
that likely reflected broad-scale shoaling of
the thermocline (23) (Fig. 2D).

The CASA-VGPM model gave biospheric
NPP estimates of 111 to 117 Pg C year21 for
the September 1997 to August 2000 period
(24). Using the same model and remote sens-
ing data collected between 1978 and 1990,
Field et al. (9) estimated biospheric NPP at
105 Pg C year21. Their estimate for the land
component (56 Pg C year21) was about the
same as that reported here. However, their
estimate of ocean NPP (49 Pg C year21) was
considerably lower than our results, largely
because of higher Csat values from SeaWiFS
(1997–2000) than from CZCS (1978–86)
(9, 25).

Since September 1997, SeaWiFS has pro-
vided the first multiyear measurements of
ocean plant biomass in over a decade, as well
as the first single-sensor global observations
of the photosynthetic biosphere. SeaWiFS
NDVI and Csat data provide a basis for quan-
tifying temporal changes in NPP, which is a
critical component of global carbon and nu-
trient cycles. Land and ocean productivity
responds to changes in the physical environ-

Fig. 2. Seasonal average and interannual differences in biospheric NPP
(g C m22 month21) estimated with SeaWiFS data and the integrated
CASA-VGPM model (9). Average NPP for (A) the La Niña Austral
summer of December 1998 to February 1999 and (B) the La Niña
Boreal summer of June to August 1999. (A and B) White, ice cover
during (A) January and (B) July; tan, near-zero NPP for terrestrial
regions not permanently covered by ice. (C) Transition from El Niño

to La Niña conditions resulted in substantial regional changes in NPP,
as illustrated by interannual differences in Austral summer NPP (i.e.,
average NPP for December 1998 to February 1999 minus average NPP
for December 1997 to February 1998). (D) Changes in NPP between
two La Niña Boreal summers (1999 minus 1998). (C and D) Red,
increase in NPP; blue, decrease in NPP; white, no substantial interan-
nual change in NPP.

Fig. 3. Seasonal changes in the
latitudinal distribution of ocean
NPP (g C m22 month21) for the
3-year SeaWiFS record. Solid
line, average Austral summer
(December through February)
NPP; dashed line, average Boreal
summer ( June through August)
NPP. The vertical dotted line
marks the equator.
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ment across the temporal continuum of cli-
mate variability, with seasonal cycles domi-
nating over interannual changes (Fig. 1). Our
initial analysis of the first 3 years of SeaWiFS
data suggests that this sensor will have the
capacity to detect longer time scale, lower
amplitude responses of the photosynthetic
biosphere to climate change. Achieving this
goal will require a long-term commitment to
intercalibrated global observations and im-
proved ε models (26) and remote sensing
algorithms (27). As these developments are
realized, the SeaWiFS record will provide a
basis against which future estimates of Earth
system elemental cycling can be compared.
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