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Abstract Developing new and natural sources of plant growth
promotors is essential to ensure the safe and sustainable pro-
duction of vegetables for human consumption. In recent years,
the potential of microalgae as plant biostimulants has been in-
vestigated. Arthrospira platensis (Spirulina platensis) biomass
is a recognized protein source and its enzymatic hydrolysis
contains molecules such as polyamines with potential to pro-
mote plant growth. Therefore, the aim of the present study was
to investigate the biostimulant properties of hydrolyzed bio-
mass of A. platensis. Bioassays were performed to determine
auxin-like and cytokinin-like bioactivity of the hydrolysates. In
addition, its effect on lettuce seedling growth was investigated
and an organic system field trail performedwhere yield and free
polyamine levels in leaves quantified. The hydrolysates had a
cytokinin-like effect in the bioassay. Foliar applications promot-
ed the growth of lettuce seedlings with the 4-h reaction hydro-
lysate (Sph4) being the most effective at promoting growth and
increasing the spermine content by 64% in the lettuce leaves.
The polyamine concentration was also compared in non-
hydrolyzed A. platensis and Sph4. Hydrolysis resulted in a
34% increase in spermine content. It was concluded that Sph4
is a natural plant growth promoter that can be used as a raw
material for biostimulants, and spermine could be an active
compound and a metabolic indicator of Sph4 bioactivity.

Keywords Cyanobacteria . Arthrospira platensis . Lactuca
sativa . Biostimulant . Organic production

Introduction

One of the greatest challenges facing humanity is to balance
technological development with environmental conservation.
The growing demand for food puts agriculture at the center of
this dilemma, especially related to environmental costs of high
synthetic agrochemical inputs. In addition, the risk of agro-
chemical contamination is a concern for consumers, especially
with regard to fresh vegetable consumption. Alternative tech-
nologies such as the use of natural products with plant growth-
promoting effects need to be prioritized as a way to increase
productivity in sustainable agricultural systems. Organic veg-
etable production addresses these environmental issues.

Macroalgae are a well-known source of natural plant-
promoting compounds (Arioli et al. 2015). In general, the
effect of macroalgae was related to their content of plant hor-
mones (i.e., cytokinins and auxin). However, recent studies
suggest that the growth promotion effect of Ascophyllum
nodosum, a widely reported macroalga used in agriculture, is
not related to the hormone content of the liquid extract but to
the capacity of the extract to stimulate endogenous hormone
synthesis in the treated plants (Wally et al. 2013). Some bio-
active compounds such as polysaccharides (Stadnik and
Freitas 2014) and polyamines (Papenfus et al. 2012) identified
in the extracts have plant signaling abilities.

The major forms of polyamines (PAs) are putrescine (Put),
spermine (Spm), and spermidine (Spd). They are aliphatic
amines that are present in every plant cell with their levels
changing with certain developmental transitions (Vera-Sirera
et al. 2010). Polyamines participate in many metabolic pro-
cesses such as cell proliferation and differentiation and
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modulate plant growth (Srivastava et al. 2013), with Spm and
Spd associated with plant ontogeny and growth promotion and
Putwith plant senescence (Kusano et al. 2008; Xie et al. 2014).

In recent years, the biotechnological potential of microalgae
has aroused interest due to the identification of various sub-
stances synthesized by these organisms (Singh et al. 2016),
including polyamines (Hosoya et al. 2005; Incharoensakdi
et al. 2010). The use of microalgae biomass as biofertilizers
or biostimulants has been the subject of recent studies. For
example, Acutodesmus dimorphus cellular extract and dry bio-
mass were able to trigger faster germination and enhance plant
growth and floral emission on tomato (Garcia-Gonzalez and
Sommerfeld 2016; addition of Chlorella vulgaris biomass to
the soil improved lettuce seedlings growth (Faheed andAbd-El
Fattah 2008; cyanobacteria species elicited positive effects on
seed germination and plant growth parameters in wheat and
pea, respectively (Hussain and Hasnain 2011; Osman et al.
2010); and Spirulina sp. biomass had a positive effect as a
biofertilizer (Aly et al. 2008; Yee et al. 2012).

The cyanobacterium Arthrospira platensis (Spirulina
platensis) has a protein-rich biomass with values of approxi-
mately 60% protein. This biomass can be used to obtain pro-
tein hydrolysates with valuable biocompounds including L-
amino acids (Zhang and Zhang 2013; Lisboa et al. 2016) such
as L-arginine and L-ornithine. The decarboxylation of these
amino acids is part of the biosynthesis of polyamines (Lima
et al. 2008). The presence of PAs in cyanobacteria, allied to
the potential improvement on release of bioactive compounds
by hydrolysis (Kim et al. 2014, Zhang and Zhang 2013), sug-
gests that A. platensis hydrolysate is capable of promoting
plant growth. Thus, the aim of this work was to evaluate the
plant growth-promoting properties of A. platensis hydroly-
sates. Considering the absence of previous reports on the use
of A. platensis hydrolysate, a step-by-step approach was
adopted (Povero et al. 2016). Bioassays were initially used
to determine auxin-like and/or cytokinin-like bioactivity in
the hydrolysate. Its effect on the growth of lettuce (Lactuca
sativa L.) seedlings was quantified and a field trial under an
organic system was conducted where lettuce yield was mea-
sured and free polyamines in lettuce leaves determined. In
addition, the A. platensis biomass before and after hydrolysis
was analyzedwith regard to the polyamine content to establish
if PAs are possible active compounds and can be used as
biochemical indicators of hydrolysate bioactivity.

Material and methods

Arthrospira platensis production and biomass hydrolysis

The cyanobacterium strain was provided by Microalgae
Collection BElizabeth Aidar^ at Fluminense Federal
University, Niteroi, Rio de Janeiro—Brazil. The autotrophic

axenic cultivation of Arthrospira platensiswas performed in a
semi-continuous cultivation system in a photobioreactor
(Reichert et al. 2006) using culture medium described by
Zarrouk (1966) at the Plant Science and Crop Protection
Department of the Federal University of Paraná, Paraná—
Brazil.

After 45-day cultivation, the biomass was separated from
the culture medium by centrifugation, attaining 0.75 g L−1

DW and was lyophilized. A portion was reserved for use as
a positive control. Another portion was subjected to enzymatic
hydrolysis using protease (EC 3.4.22.2, Merck) according
Wang and Zhang (2012) and Zhang and Zhang (2013) with
reaction times of 2, 4, and 6 h.

Bioassays

As a first step to identify possible plant growth promoter
properties of A. platensis hydrolysates, bioassays were con-
ducted. The bioassay for cytokinin-like effect was conducted
using cucumber cotyledons (Cucumis sativus L.) and their
expansion was compared to that obtained with 0.3 mg L−1

kinetin (KIN) (Zhao et al. 1992; Stirk et al. 2002). The bioas-
say for auxin-like effect was performed with root emission
bioassays (Tripepi and George 1991) using mung bean
(Vigna radiata L.) and C. sativus (Zhao et al. 1992). Rooting
was compared to 0.3 mg L−1 indole-3-acetic acid (IAA). The
assays were performed with lyophilized A. platensis biomass
at concentration of 2 g L−1; hydrolyzed A. platensis biomasses
hydrolyzed for 2- (Sph2), 4- (Sph4), and 6-hour reaction
(Sph6) at a concentration of 2 mL L−1; either 0.3 mg L−1

KIN or IAA and a control with distilled deionized water.
The number of roots of V. radiata and C. sativus was counted
and the fresh weight of C. sativus cotyledons was measured.
All bioassays were done with four replicates in a completely
randomized design in the Plant Physiology Laboratory at the
Széchenyi István University, Győr—Mosonmagyaróvár,
Hungary.

Lettuce (Lactuca sativa L.) seedlings growth

The second step was to evaluate the potential of the hydroly-
sates as a raw material for biostimulants. The experiment was
conducted under a protected environment (polyethylene film-
covered nursery) at the organic vegetables production research
area of the Federal University of Paraná, Brazil. The lettuce
cultivar BVera^ (Sakata Seed Sudamerica) was sown on poly-
styrene trays with 200 cells filled with a commercial substrate
(Bioplant).

Foliar applications of aqueous suspensions containing the
following: (I) lyophilized biomass of A. platensis (2 g L−1);
(II) biomass subjected to hydrolysis for 2 h, (III) 4 h, and (IV)
6 h applied at 2 mL L−1 in aqueous suspension; and (V) the
control (deionized water) were performed at 10 and 20 days
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after sowing (DAS). Half trays (100 cells) for each experimen-
tal treatment were used, with four replications distributed in a
completely randomized design. The foliar sprays were done
using a CO2-pressurized sprayer with constant pressure
(45 psi) at 50 mL per replication.

The seedlings were collected at 30 DAS where they had
five leaves and healthy root growth. Fifteen seedlings of each
replication were randomly selected and the following vari-
ables were analyzed: fresh and dry weight of leaves and roots,
leaf area, and root volume. The leaf area and root volume,
after carefully washing over a sieve to avoid losing root parts,
were analyzed using the software WinRhizo (Regent
Instruments Inc. 2013, Canada) coupled to a LA1600 3D
scanner. To obtain the dry weight, both leaves and roots were
placed in paper bags and oven-dried at 65 ± 5 °C and forced
air circulation. The fresh and dry weight was determined with
an analytical balance.

Organically grown lettuce (L. sativa)

Considering that Sph4 could be a natural biostimulant source
for sustainable agriculture and that the biostimulant effect is not
related to nutrient supply to the plants but rather to the bioac-
tivity of a range of molecules (du Jardin 2015), the effect of the
hydrolysate was evaluated under high soil fertility that is char-
acteristic of long-term organic soil management. The experi-
ment was conducted at the organic vegetables production re-
search area, where an organic systemwas implemented 10 years
ago, at the Federal University of Paraná, under the geographical
coordinates 25° 25 S and 49° 06′Wat an altitude of 920m. The
climate, according to Köppen classification, is temperate type
Cfb. Chemical analysis of the 0–15-cm layer of soil in the field
indicated the average values: pH (CaCl2) = 5.75; pH = 6.0;
A l 3 + = 0 ; H + + A l 3 + = 5 . 5 0 c m o l d m − 3 ;
Ca2+ = 9.85 cmol dm−3; Mg2+ = 9.8 cmol dm−3;
K+ = 0.54 cmol dm−3; P = 42.6 mg dm−3; C = 32.5 g dm−3;
soil base saturation = 78.59; CEC = 25.54 cmol dm−3. Fifteen
days prior to planting, the soil was prepared with the incorpo-
ration of 4 t ha−1 organic compost with the following average
values: C = 30.3 g kg−1; N = 30.3 g kg−1; P = 8.5 g kg−1;
K = 6.6 g kg−1; Ca = 8.1 g kg−1; Mg = 4.1 g kg−1. The soil
fertilization was done according to the Brazilian regulation for
organic agriculture.

The lettuce seedlings obtained as described above, with-
out application of the experimental treatments, were
planted spaced at 0.30 × 0.30 m, arranged in 1.20 m wide
and 36 m long planting bed (April 2014). At the seventh
day after planting, foliar applications of aqueous suspen-
sions with A. platensis biomass subjected to hydrolysis re-
action for 4 h (Sph4) at concentrations of 1.0, 2.0, 4.0, and
8.0 mL L−1 and a control (deionized water) were initiated.
There were four replications distributed in a completely
randomized design in plots with 24 plants. The foliar

applications were performed using a CO2-pressurized
sprayer with constant pressure (45 psi) and volume of
280 L ha−1. The treatments were repeated weekly to give
a total of six applications that ended at 42 DAP, 1 week
before the harvest (June 2014).

The four central plants of each plot were collected for the
determination of the number of leaves and whole plant
fresh and dry weight as described earlier. Four 25-mm fo-
liar discs were collected after the fresh weight determina-
tion and immediately frozen with liquid nitrogen for the
analysis of free polyamines in completely expanded young
leaves.

Free polyamines determination

To justify the observed growth promotion property of Sph4,
the free PAs content of lettuce was determined to take into
account its role in plant development. Free PAs in lyophilized
biomass of A. platensis, in biomass subjected to 4-h hydroly-
sis reaction and in fresh lettuce leaves were determined (three
replicates per sample) at the Department of Chemistry and
Biochemistry, Biosciences Institute, Universidade Estadual
Paulista (UNESP), Botucatu, São Paulo—Brazil, according
Flores and Galston (1982) with modifications (Lima et al.
2008) as follows. The material was homogenized for 1 min
in 5% cold perchloric acid (v⁄v) (Merck, USA) using a homog-
enizer. After centrifugation for 20 min at 4 °C and 3500 rpm,
dansyl chloride [Sigma-Aldrich, Brazil 95%] and saturated
sodium carbonate were added to the supernatant. Proline
(Sigma, min. 99%) was added after 1 h at 60 °C and the
mixture was maintained in the dark for 30 min at room tem-
perature. Toluene was used for the extraction of the dansylated
polyamines and aliquots were applied onto thin-layer chroma-
tography plates [glass plates coated with 60G silica Gel—
Merck (20 × 20 cm)] and were separated in laboratory bowls
containing chloroform:triethylamine (Merck) (10:1).
Putrescine (Sigma, min. 98%), spermidine (Sigma, min.
98%), and spermine (Sigma, min. 95%) standards were sub-
mitted to the same process.

The entire procedure was monitored under ultraviolet light
(254 nm). The polyamines were quantified by comparison
against the standards which were also applied onto the plates,
by fluorescence emission spectroscopy (excitation at 350 nm
and emission measurement at 495 nm) in a video documenta-
tion system using Image Master version 2.0 software program
(Amersham Pharmacia Biotech, Sweden). The free polyamine
was expressed as μg g−1 fresh matter.

Data analysis

The data were tested for homogeneity of variances by
Bartlett’s test and then analyzed by ANOVA. When
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significant, the averages were compared by Tukey’s test. The
statistical software Assistat 7.7 Beta was used.

Results

Bioassays

Arthrospira platensis lyophilized biomass (Sp) and its hy-
drolysates (Sph2, 4, and 6) did not promote root emission in V.
radiata (Fig. 1a). Related to the time of the hydrolysis reac-
tion, 2 h (Sph2) had a root number similar to that of the control
and with increasing hydrolysis reaction time, and root emis-
sion was reduced with V. radiata showing no roots at 4 (Sph4)
and 6 (Sph6) h reaction. The lyophilized biomass (Sp) in-
creased the root number in the cucumber cotyledon bioassay
but the hydrolysates had no effect. However, when compared
to KIN, the Sph4 and Sph6 hydrolysates increased the fresh
weight of cucumber cotyledons compared to the control and
Sp. The bioassays indicated that the hydrolysates with

increased reaction time (Sph4 and Sph6) showed lower auxin
and higher cytokinin effects (Fig. 1b).

Lettuce (L. sativa) seedlings growth

At 30 DAS (seedlings growth period at harvest), seedlings
treated with Sph4 and Sph6 had increased leaf area (Fig. 2),
and increased fresh and dry weight of leaves (Fig. 3a, b) and
roots (Fig. 3c, d). On the other hand, Sp (2 g L−1) did not
promote growth. Similar to the bioassay results (Fig. 1b), lon-
ger reaction times of the hydrolysis (Sph4 and Sph6) had a
significant effect on promoting growth of lettuce seedlings
while the effect of the Sph2 treatment was similar to that of
the control. Although there were no statistical differences be-
tween the effects of Sph4 and Sph6, Sph4 was selected for the
field trial on organically grown lettuce.

Organically grown lettuce

The effect of six foliar applications of Sph4 at different con-
centrations on organically grown lettuce resulted in increased
fresh weight, leaf number, and dry weight of plants at harvest
(Fig. 4), corroborating the growth-promoting effect of the cy-
anobacterium hydrolysate as found in the C. sativus bioassay
and the lettuce seedling experiment. Increases ranging from
30 to 39% with 1–8 mL L−1 Sph4 of lettuce fresh weight were
recorded (Fig. 4a) along with a 15% increase in leaf number
compared to the control (Fig. 4b). As a consequence of the
growth promotion, there was almost a doubling of dry weight
of lettuce plants treated with Sph4 foliar sprays (Fig. 4c).

Changes of free polyamines in lettuce

The determination of free polyamines in fresh lettuce leaves
revealed no significant differences for Put and Spdwith values
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of 1.060–1.777 and 1.792–2.212 μg g−1, respectively. In con-
trast, the Spm content showed relevant differences. Compared
to the control, the Spm concentration increased 63.94% in
plants treated with Sph4 at 2 mL L−1 (Fig. 5). Therefore, it
could be presumed that Sph4 triggered the biosynthesis of
Spm in lettuce plants and is involved in hydrolysate bioactivity

that promoted changes on plant ontogeny by improvement of
leaf emission (Fig. 4b) and on plant growth by increments of
biomass accumulation (Fig. 4a, c).

Changes of free polyamines in A. platensis hydrolysate

The hydrolysis of A. platensis biomass, a recognized protein
source with values around 60%, could release a range of
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bioactive compounds including PAs. The determination of
free PA content in A. platensis biomass after 4-h hydrolysis
reaction (Sph4) showed a 41% reduction in Put, a PA related
to senescence and a 34% increase in Spm, and a PA related to
cell division, ontogeny, and growth, in comparison to non-
hydrolyzed biomass (Fig. 6). These changes in reducing Put

and improving Spm reinforce the probable role of Spm on field
results with Sph4 applications.

Discussion

The first step of this study to investigate the growth-promoting
properties of A. platensis hydrolysates verified that Sph4 and
Sph6 were capable of increasing fresh weight of cucumber
cotyledons in bioassays with activity higher than 0.3 mg L−1

KIN (Fig. 1b). These types of bioassays are well reported in
studies investigating hormone-like activities in humic sub-
stances (Ron’zhina 2003; Scaglia et al. 2016) and algae
(Stirk et al. 2002). Algal extracts can stimulate the hormone
synthesis in plants and have a signaling action as a role in
plant growth promotion (Wally et al. 2013). In addition, other
bioactive compounds in algae extracts such as amino acids
and polyamines can promote plant growth in a similar way
to hormones (Kusano et al. 2008). Therefore, despite the use
of KIN as a cytokinin source for comparison, the effect on
cucumber cotyledons could have been triggered by various
other bioactive compounds.

The use of seedling growth to evaluate the effects of sea-
weeds and microalgae has been reported previously
(Hernández-Herrera et al. 2013; Garcia-Gonzalez and
Sommerfeld 2016) and was used in this study as a part of a
step-by-step approach (Povero et al. 2016). Improvement of
lettuce seedling growth (Figs. 2 and 3) corroborated the bio-
assay results relating to the growth promotion to the hydroly-
sis with Sph4 and Sph6 being the most effective. These results

highlighted the growth promotion property of the hydroly-
sates at early stages of lettuce plant development. Similar re-
sults were reported for lettuce seedling growth promotion
using C. vulgaris biomass, but at lower rates than those found
with Sph4 (Faheed and Abd-El Fattah 2008).

In the field trial with high-fertility soils that have been
under organic cultivation for a long period, foliar applications
of Sph4 confirmed bioassay and seedling results with Sph4
increasing fresh weight, leaf number, and dry weight in lettuce
plants (Fig. 4). In order to elucidate the possible mechanisms
of growth promotion of the hydrolysates even under adequate
fertility conditions, The PA content was analyzed as these
amines are present in all plant tissues and have similar effects
as plant hormones, such as stimulating cell division and
growth (Mattoo et al. 2010). PAs can modulate gene expres-
sion related to the action of CK and are thus capable of show-
ing CK-like activity (Rakova and Romanov 2005), as found in
the bioassays performed in the current study.

The free PA determination on field-grown lettuce leaves at
harvest showed no differences for Put and Spd. However, Spm
content increased by 64% in plants treated with Sph4 (Fig. 5).
Polyamines have a role in plant development and act in sec-
ondary metabolic pathways. They accumulate in high concen-
trations in actively proliferating cells and are involved in a
variety of fundamental cellular processes, including protein
synthesis and modulation of enzyme activities, being effectors
of plant growth (Takahashi and Kakehi 2010). Therefore, it is
possible to assume that the CK-like effect of Sph4 found in the
bioassays and their growth promotion effect on lettuce seed-
lings could be linked to PA metabolism. Sph4 contains
4.218 μg g−1 free PAs (Fig. 6) which is similar to that found
in the macrolga Ecklonia maxima, a species widely used as a
biostimulant (Papenfus et al. 2012).

The change on proportion of PAs after hydrolysis could
also explain, at least in part, the Sph4 bioactivity, due to a
40% reduction in Put and a 34% increase in Spm compared
to the non-hydrolyzed biomass. Put is a senescence induction
factor (Xie et al. 2014) while Spm is an anti-senescence-
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inducing factor (Pandey et al. 2000) that increases metabolic
activity and cell division (Kusano et al. 2008; Mattoo et al.
2010). Those referred roles of Spm on plant metabolism, and
their increase in lettuce plants treated with Sph4, link this PA
to the growth promotion effect of the hydrolysate.

The pathway of PAs is closely related to amino acid me-
tabolism in plants with Put synthesized by decarboxylation of
L-ornithine and L-arginine. Subsequently, the Put is converted
into Spd by the enzyme spermidine-synthase, which in turn is
converted to Spm by spermine-synthase (Mehta et al. 2002).
Thus, taking into account that A. platensis is a recognized
protein source (Lisboa et al. 2016) and whose enzymatic hy-
drolysis of biomass can result in L-amino acids (Zhang and
Zhang 2013), these probably are a part of the range of bioac-
tive compounds in Sph4 related to plant growth and PAs.

This study on the hydrolyzed biomass of A. platensis re-
vealed bioactivity in bioassays which corresponded to positive
effects on lettuce seedling growth and in an organic field trial
with lettuce. In addition, its effect on improvement of Spm
concentrations in the leaves supports the conclusion that Sph4
is a natural plant growth promoter source for sustainable agri-
culture and its effect, at least in part, is related to PAmetabolism
in that Spm could be a metabolic indicator and also a bioactive
compound. The role of Sph4 on triggering the increase of Spm
content and promoting plant growth and the presence of other
bioactive compounds of hydrolyzed A. platensis biomass, such
L-amino acids, must be further investigated.
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