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Abstract: Climate change and disproportionate anthropogenic interventions, such as the excess of
phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting
plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress
is represented by the unbalanced redox homeostasis due to the overproduction of reactive oxygen
species (ROS), ultimately leading to a state of oxidative stress (detrimental to grape quality). To
these are added the direct and indirect damages caused by pathogens (biotic stresses). In light of this
scenario, it is inevitable that sustainable techniques and sensitivity approaches for environmental and
human health have to be applied in viticulture. Sustainable viticulture can only be made with the aid
of sustainable products. Biostimulant (PB) applications (including resistance inducers or elicitors)
in the vineyard have become interesting maneuvers for counteracting vine diseases and improving
grape quality. These also represent a partial alternative to soil fertilization by improving nutrient
absorption and avoiding its leaching into the groundwater. Their role as elicitors has important
repercussions in the stimulation of the phenylpropanoid pathway by triggering the activation of
several enzymes, such as polyphenol oxidase, lipoxygenase, phenylalanine ammonia-lyase, and
peroxidase (with the accumulation of phenolic compounds). The present review paper summarizes
the PBs’ implications in viticulture, gathering historical, functional, and applicative information. This
work aims to highlight the innumerable beneficial effects on vines brought by these products. It
also serves to spur the scientific community to a greater contribution in investigating the response
mechanisms of the plant to positive inductions.

Keywords: seaweed extracts; chitosan; humic and fulvic acids; protein hydrolysates; phosphites;
plant-growth-promoting rhizobacteria; Trichoderma spp.

1. Introduction

Intensive food production for animal and human consumption, for which conventional
agricultural systems have been adopted, has led to the haphazard and promiscuous use of
agrochemical products, generating several negative and dangerous effects for the agroe-
cosystem, including the conservation of the biodiversity connected to these agricultural
systems [1–5]. Farmers commonly use fertilizers to sustain crop yield and profitability [6].
These invalidating impacts involve higher soil contamination, which dwindles its fertil-
ity, as well as water pollution [7]; in fact, during the past decades, owing to an excess
of nitrogen (N) and phosphorus (P) coming from anthropogenic activities leaching into
groundwater or moving into waterways via surface runoff, there was a massive increase
in global marine eutrophication [8,9]. Moreover, eutrophication that originates from phy-
topharmaceutical products (critical values 9–25 µg L−1 [10]) leads to the increase in the
frequency of anoxic events and the death of several fish species [11]. Contamination with
organic pollutants and heavy metals, together with erosion and sustained tillage, dimin-
ishes the soil’s quality and signals significant toxicological and environmental threats [12].
In fact, vineyard soils are commonly extremely degraded soils in terms of biochemical
properties and are thus more easily affected by contamination [13].

Plants 2022, 11, 162. https://doi.org/10.3390/plants11020162 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants11020162
https://doi.org/10.3390/plants11020162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0001-6191-2044
https://orcid.org/0000-0002-3826-7304
https://doi.org/10.3390/plants11020162
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants11020162?type=check_update&version=2


Plants 2022, 11, 162 2 of 27

In addition, during the last few decades, some sloping European vineyards were
abandoned, which has led to intensive soil erosion and consequent dispersion of pollutants
into the environment [14,15]. Increased metal concentration in soils negatively influences
the sustainability of agroecosystems [16]. Helling et al. [17] set the critical copper (Cu)
concentration, originating from Cu-oxychloride, in soils (above which the population of
Eisenia fetida earthworm was negatively affected) to 16 mg kg−1, a value easily met in several
European vineyards. The abuse of fungicides in vineyards is currently a cause of public
concern, owing to their resulting presence as residues in water and wine products used for
human consumption [18,19]. Cu-based fungicides, such as Cu(OH)2, copper oxychloride
(3Cu(OH)2·CuCl2), CuSO4, and Cu2O, are authorized and necessary for organic grapevine
cultivation [20] (according to EC regulation 473/2002, 8 kg Cu ha−1, which should be
further decreased to 6 kg Cu ha−1 after four years of vine cultivation [21]). In addition,
synthetic fertilizers and fungicides contain other heavy metals, such as mercury (Hg),
cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), and zinc (Zn), which cause an alarming
combination of environmental and health problems [22]. These metals are persistent, toxic,
cannot be degraded by microorganisms, and can stockpile through the food chain [23,24].
Some of these metals can migrate to below 100 cm in topsoil [25]. Even though grapes
might not be hyperaccumulators of heavy metals [26,27], their uptake and related potential
risks still need to be given more attention [28].

Moreover, to the nightmare picture of ground reservoir impoverishment and pollu-
tion, the context regarding climate change is annexed [3]. This collective matter about
the repercussions of climate change on viticulture is engendered by the well-recognized
intense influence that climate has on grapevine ecophysiology and the quality of wine
produced [29]. Changes in climate patterns connected to abiotic stresses involve the set of
environmental conditions that dwindle growth and yield below optimal standards [30].

One of the main physiological repercussions of abiotic stress is represented by the
unbalanced redox homeostasis due to the overproduction of reactive oxygen species (ROS,
i.e., leakage of electrons from different cellular compartments), ultimately leading to a state
of oxidative stress [31], which modifies the enzymatic activity and the regulation of genes,
compromising plant survival. ROS (radicals: superoxide anion (O2

−), peroxyl (RCOO),
hydroxyl (OH), and alkoxyl (RO), as well as non-radicals) propagate chain reactions and
target biomolecules such as DNA, pigments, lipids, and proteins [32,33]. They can be
produced by enzymes such as xanthine oxidase, NADPH-oxidase, peroxidases, and amine
oxidase [34]. Furthermore, in grapevines, hydrogen peroxide (H2O2) is also considered
a key regulator of heat shock proteins and many genes of the anthocyanin metabolic
pathway [35].

The most common abiotic stresses, which are often interrelated with each other, include
high/low temperatures, salinity, drought (water deficit), soil acidification, and excessive
radiation exposure [36]. In fact, conventionally, the expression “summer stress” illustrates
the combination of several severe abiotic stresses during the summer season, such as
high sunlight, water deficit, and high temperature [37]. The conjunction between cluster
temperature and sunlight exposure is fundamental in detecting vine metabolism because
several biochemical pathways are both temperature- and light-susceptible [38]. More-
over, just think that in the last 10 years, the number of publications on abiotic stresses
in Vitis vinifera L. increased by about 90%, showing the importance of climate change
impacts and abiotic constraints on viticulture, as well as the attempts by researchers to-
wards adapting to these problems [39]. In fact, climate change is exerting a progressively
greater influence on grapevine phenology and grape composition (Figure 1), affecting the
vinification, microbiology, chemistry, and sensory aspects of wine [40,41].
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Figure 1. Main effects of rising temperatures on the bunch [40,42,43].

An upward shift in temperature will dramatically drift the growing season, therewith
altering the normal template of grape development with anticipation of blooming, veraison,
and harvest. The veraison is a time of particular importance because an excessively early
veraison causes shift of the critical ripening period towards the hotter part of the season [42].
The consequences for grape chemistry are considerable, such as an excess of sugar in
the berries (and, consequently, alcohol), reduced malic acid concentrations (malolactic
fermentation problems), and lower extractable anthocyanin (color and stability problems)
and methoxypyrazine levels (lower incidence of herbaceous notes) [44]. In addition, it was
shown that sun-exposed clusters were up to 12.4 ◦C above ambient temperature [45,46],
causing damages throughout the growing cycle, such as drying of the berries, sunburn,
and reduced yield [47].

Grapevines notice abiotic stress signals and use dynamic and elaborate defense responses,
which are either plasticly (irreversible) or elastically (reversible) reliant on the persistence and
intensity of the stress (i.e., acute or chronic), as well as the tissue implied [37].

In an anthropized scenario where the winegrower finds, on the one hand, the environ-
mental repercussions due to the excesses of intensive farming and, on the other, climate
change, which imposes new challenges, a sustainable and respectful approach towards
the vineyard ecosystem becomes necessary in order to obtain healthy and high-quality
products [48].

The present paper reviews the different categories of biostimulants and their important
implications in viticulture by gathering historical, functional, and applicative information.
This work aims to highlight the innumerable beneficial effects on the vine brought by these
products. It also serves to propose a greater contribution of scientists to investigating the
response mechanisms of the plant to positive inductions.

2. History of Biostimulants

The first approach of the “biogenic stimulant” theory started in 1933 in the USSR, and
it may be attributed to the Russian doctor V.P. Filatov [49–51]. He proposed that, after being
stored, biological materials originating from animal or plant organisms accumulate sub-
stances that stimulate metabolic processes. When these that were tissues rich in “biogenic
stimulators” were introduced into a diseased or stressed organism, the regenerative powers
of the treated organism were increased, and the pathological processes were suppressed [49].
During the 1950s, Blagoveshchensky [52,53] defined biogenic stimulants as “organic acids
with stimulating effects due to their dibasic properties which can enhance the enzymatic
activity in plants”. According to Berlyn and Russo [54], these compounds increased plant
growth and vigor by increasing the efficiency of nutrient and water uptake. However,
definitions of biostimulants vary greatly, and there are still some arguments surrounding
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these compounds. Nevertheless, they have been defined as non-fertilized products and
hormone-containing substances that can stimulate growth when exogenously applied [55]
at low concentrations [56]. A general definition was established by Naumov et al. [57] as a
“multi-component balanced system of biologically active substances of metabolic origin on
the basis of plant raw materials with a broad spectrum of biological activity”. Herve [58],
through his work, constituted the first real modern approach to biostimulants, introducing
the concept that the development of new products must be based on characteristics such as
being active at low doses, being ecologically benign, and showing reproducible beneficial
effects on cultivated plants (“bio-rational products”) [59]. In the late 1990s, Zhang and
Schmidt [60] faced the concept of biostimulants as “pre-stress conditioners”, highlighting
their effects on photosynthetic efficiency and reduction of spread and intensity of some dis-
eases in higher yields. Using the term minimum quantities (minute quantities) to describe
biostimulants, Schmidt et al. [61] intended to distinguish biostimulants from nutrients and
soil improvers that also promote growth, but are applied in larger quantities. The action of
biostimulants with both hormonal effects (metabolic enhancers) and the protection against
abiotic stress induced by antioxidants was explained [62].

The complex multicomponent attitude of biostimulants clearly complicated the dis-
covery of their mechanisms of production, action, registration, and use. However, what
is clearly needed is a regulatory mechanism to guarantee that the products are “generally
recognized as safe” and are separated from existing categories of products [63]. In fact, in
the recent past, the European law rules had completely neglected these products. Only in
2006 did the Italian Legislative Decree 29 April N◦ 217 “Review of the discipline in fertilizer
matter” (G.U n. 141 of the 20 June 2006-Suppl. Ord. N◦ 152) finally overcome this lack, as
it also included “Biostimulants” as “Products that bring to other fertilizer and/or to the
soil and/or to the plant, substances that favor or regulate the absorption of the nutrients or
correct some physiological anomalies” [64].

Kauffman [65–67] introduced a possible taxonomy that included humic substances (HSs),
hormone-containing products (HCPs), and amino-acid-containing products (AACPs). Several
authors [68–70] continued to address the issue in a general way, but it was Basak [71] who
pioneered the systematic symposium on biostimulants. In the scientific literature in the
following years, the range of substances and modes of action considered was then expanded.

The European Biostimulant Industry Council (EBIC) established a precise definition of
biostimulants (June 2011) [72]. At the EU level, biostimulants were defined as “substances or
materials (not including nutrients and pesticides) which when applied to the plant, seeds or
growth substrate in specific formulations can modify the physiological processes of plants
by improving growth, development and/or increase the tolerance to abiotic stresses” [73].
In 2013, the EBIC elaborated a further definition of biostimulants: “Biostimulants are
substances and/or microorganisms that applied to the plant or rhizosphere stimulate
natural processes that improve the efficiency of absorption and assimilation of nutrients,
abiotic stress tolerance, and product quality. Biostimulants have no effect on parasites
and pathogens and therefore do not fall under the category of pesticides” [74]. In the
same period, Du Jardin [75] gave the first in-depth interpretation of biostimulant science
with attention to biostimulant systematization and categorization based on biochemical
and physiological function and modes of action. These categorizations and analyses were
influential in informing the development of subsequent legislation in the EU. At a regulatory
level, amending regulations (EC) no. 1069/2009 and (EC) N.1107/2009 and repealing
Regulation (EC) N. 2003/2003, thanks to the introduction of the new European Regulation
(EU Reg. 2019/1009), which established rules relating to the availability of fertilizers on
the EU market, for the first time, at the legislative level, there was the introduction of the
“biostimulants” category, which was previously regulated only by individual countries [76].
According to Du Jardin [75], biostimulants can be classified as follows:

- Humic substances [77]
- Seaweed extracts [78]
- Complex organic materials [79]
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- Amino acids and other nitrogenated compounds [80]
- Antitranspirants [81]
- Beneficial chemical elements [82]
- Inorganic salts including phosphorus [83]
- Chitin and derivatives of chitosan [84]

During these years, the study and development of biostimulants were addressed using
different modus operandi, such as studies on plant growth and yield [85], non-chemical
and chemical composition characterization [86], and application of omics strategies with
variations, including microarrays and physiological analyses [87], genomics [88], transcrip-
tomes [89], proteomics [90], and chemical and metabolomics [91].

In 2015, six non-microbial and three microbial categories of plant biostimulants were
proposed [92] (Figure 2):

(i) Chitosan [93]
(ii) Humic (HA) and fulvic acids (FAs) [94]
(iii) Protein hydrolysates [95]
(iv) Phosphites [96]
(v) Seaweed extracts [97]
(vi) Silicon [98]
(vii) Arbuscular mycorrhizal fungi (AMF) [99]
(viii) Plant-growth-promoting rhizobacteria (PGPR) [100]
(ix) Trichoderma spp. [101].

Plants 2022, 11, 162 5 of 27 
 

 

only by individual countries [76]. According to Du Jardin [75], biostimulants can be clas-

sified as follows: 

- Humic substances [77] 

- Seaweed extracts [78] 

- Complex organic materials [79] 

- Amino acids and other nitrogenated compounds [80] 

- Antitranspirants [81] 

- Beneficial chemical elements [82] 

- Inorganic salts including phosphorus [83] 

- Chitin and derivatives of chitosan [84] 

During these years, the study and development of biostimulants were addressed us-

ing different modus operandi, such as studies on plant growth and yield [85], non-chem-

ical and chemical composition characterization [86], and application of omics strategies 

with variations, including microarrays and physiological analyses [87], genomics [88], 

transcriptomes [89], proteomics [90], and chemical and metabolomics [91]. 

In 2015, six non-microbial and three microbial categories of plant biostimulants were 

proposed [92] (Figure 2): 

(i) Chitosan [93] 

(ii) Humic (HA) and fulvic acids (FAs) [94] 

(iii) Protein hydrolysates [95] 

(iv) Phosphites [96] 

(v) Seaweed extracts [97] 

(vi) Silicon [98] 

(vii) Arbuscular mycorrhizal fungi (AMF) [99] 

(viii)  Plant-growth-promoting rhizobacteria (PGPR) [100] 

(ix) Trichoderma spp. [101]. 

 

Figure 2. Categories of plant biostimulants [94,102–109]. 
Figure 2. Categories of plant biostimulants [94,102–109].

Recently, the definition of biostimulants was the following [110]: “A plant biostimulant
shall be an EU fertilizing product the function of which is to stimulate plant nutrition
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processes independently of the product’s nutrient content with the sole aim of improving
one or more of the following characteristics of the plant or the plant rhizosphere (Figure 3):

(i) nutrient use efficiency
(ii) tolerance to abiotic stress
(iii) quality traits
(iv) availability of confined nutrients in the soil or rhizosphere.”

However, it is believed that this limited definition could be expanded in light of the
countless research described below regarding the resilience of plants to biotic stresses.
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3. Mechanisms of Action

A biostimulant is described as any microorganism (either beneficial or pathogenic)
or substance applied to plants or soil with the aim of increasing nutrient efficiency, abi-
otic/biotic stress tolerance, and crop quality characteristics [118]. The “mechanism of
action” categorizes the biochemical events following application, whereas the “mode of
action” distinguishes the main characteristics of a bioactive molecule and the biochemical
action that determines its effect in treated plants [119]. Biostimulants (PBs) frequently do
not involve a “specific effect on a discrete biochemical or regulatory process”; actually,
there are only a small number of PB products for which a definite biochemical target site
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and known mode of action is recognized [71]. It was suggested that an understanding of
the mode of action of PBs on the molecular level needs the receptor-site identification for
each regulator and the elucidation of the subsequent reactions [120]. However, this level
is often not fulfilled in these products, where these targets cannot be easily achieved [63].
Owing to the heterogeneous nature of the raw materials used for their production, the
mechanisms of several PBs remain largely unknown [121].

However, their benefits may be correlated with enzymatic activity changes and antiox-
idant synthesis. Low concentrations of product enhance the basic biochemical processes in
soil and plants, increasing their resistance to several stresses [122]. It was suggested that
the active molecules contained in PBs can advance nitrogen (N) assimilation by stimulating
Krebs cycle enzymes [123,124]. N2-fixing and phosphate-solubilizing bacteria such as
Bacillus sp. are effectively applied in organic plant cultivation [125]. These bacteria, such as
Azotobacter chroococcum and Azospirillum lipoferum, fix nitrogen and release phytohormones
(gibberellic acid and indole acetic acid), which stimulate the absorption of nutrients and
net photosynthesis [126].

In addition, PBs’ effects could be ascribed to the movability of plant growth regulators
(PGRs) and the power to promote complex regulatory actions that interact among disparate
biochemical reactions [127]. Some amino acids could influence growth through their
connection to gibberellin biosynthesis [128]; PBs can modify a plant’s hormonal status
and employ authority over its growth. For instance, active dry yeast is a natural and safe
biofertilizer (a natural cytokinin source) that increases cell division and enlargement, as
well as the synthesis of nucleic acid and protein [129]. Peptide signaling is also important
during leaf morphogenesis, meristem organization, and defense responses to abiotic or
biotic stress. In fact, signaling peptides contained in a plant-derived protein hydrolysate
affect meristem organization, callus growth, nodule development, root growth, and leaf-
shape regulation [130–132].

Environmental stresses, such as heavy metals, drought, and UV radiation, intensify
ROS, prompting damage in biomolecule-encompassing proteins. The production of heat-
shock proteins (HSPs) is essential for folding and repairing the damaged proteins and
promoting cell survival conditions [133]. A protein hydrolysate obtained from alfalfa
hydrolysate plants was proved to help Zea mays to overcome salinity stress by stimulating
enzymes of N metabolism and increasing phenylalanine ammonia-lyase (PAL) activity and
flavonoid synthesis [134]. PAL is an important enzyme in the secondary metabolism that
changes phenylalanine (C9H11NO2) to trans-cinnamic acid and tyrosine (C9H11NO3) to
p-coumaric acid [135]. In plants treated with PBs, the induction of the metabolic phenyl-
propanoid pathway could represent the reason for why these mixtures can aid plants to
overcome stress situations [136]. During the biostimulant activity of alfalfa hydrolysate,
the presence of indole-3-acetic acid (IAA) and 1-triacontanol was found. In fact, PBs can
motivate the gene expression and activity of several enzymes involved in the tricarboxylic
acid cycle (TCA cycle) [137]. In addition, after an oxidative burst response in Carica pa-
paya L. [138] and Ocimum basilicum L. [139], with hydrogen peroxide (H2O2) synthesis, the
influence of chitosan on the PAL was related to the accumulation of phenolic compounds.

The biosynthesis of phytoalexins (secondary metabolites of low molecular weight
with antimicrobial effects) in stressed plants is a subject of study. These compounds are
induced by induced systemic resistance (ISR) and systemic acquired resistance (SAR)
(Figure 4) [140].
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healthy tissues, distant from the site of infection, and is mediated by SA. ISR is activated in the whole
plant following the establishment of symbiosis with beneficial microorganisms at the rhizosphere
level and is mediated by JA/ET [141–143].

ISR includes a broad metabolic cascade that a plant activates in response to pathogens
for protection. The microbe–plant interaction triggers a salicylate-mediated cascade, leading
to the long-lasting systemic accumulation of a broad spectrum of defense-related proteins
and metabolites, which is called SAR [144].

The application of different biostimulants can trigger the synthesis of these com-
pounds (phytoalexins) through the signal perception for the elicitor signal transduction
cascade [145]. Activation is also followed by increases in Ca2+ concentration in the cytosol,
production of reactive oxygen species (ROS), a localized hypersensitive response (HR), cell
wall reinforcement, and stomatal closure [146]. Results suggest that PBs trigger dynamic
changes in gene expression and modulate metabolic fluxes in a way that allows plants to
perform better.

As regards the penetration of the product into plant tissue, studies on peptide-based
biostimulants using radiolabeled amino acids and mathematical models were carried
out [147,148]. The components of PBs of animal origin, which were labeled with 14C proline
and glycine, were demonstrated to penetrate quickly into treated leaves and disseminate to
other leaves. Penetration of protein hydrolysates into a plant tissue is energy-dependent [70]
and happens by the diffusion of protein through membrane pores [147]. Nevertheless, the
precondition for a sufficient penetration is good solubility in water or other suitable solvents.
Therefore, surfactants and other additives could be necessary to triumph over solubility and
uptake limitations such as active components’ molecular size and lipophilicity [147,148].

However, a wide array of molecular methods is now used to endeavor to distin-
guish the active compounds found in PBs and probe changes in gene expression, such as
metabolomics, microarrays, proteomics and transcriptomic methods.

Nowadays, continuous investments by commercial entities in research and devel-
opment on PBs, which will serve as a driving force for discoveries in this sector, are
considered necessary to lead to the identification of new biological phenomena, pathways,
and processes.
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4. Categories of Biostimulants

This article provides an overview of the topic and focuses on the research of recent
years, exclusively analyzing manuscripts on Vitis vinifera L.

4.1. Seaweed Extracts (SWEs)

The use of seaweeds has a long history originating from Roman and Greek times [149,150].
However, during the last half-century, its cultivation has still developed on an industrial
scale following the rapid expansion of production (18M tonnes) and technological devel-
opments [151]. Worldwide, SWEs represent more than 33% of the total PB market, and in
2022, the market is vaticinated to reach a value of EUR 894 million [105]. Macroalgae, or
seaweeds, include nearly 10,000 species subdivided into three categories based on their
pigmentation—Rhodophyta (Gray, 1865, Red), Phaeophyta (Kjellman, 1891, Brown), and
Chlorophyta (Reichenbach, 1834, Green) [152]—and are an important source of bioactive
peptides, polysaccharides, enzymes, and polyunsaturated fatty acids [153].

Liquid seaweed extracts are produced from seaweed biomass by employing different
manufacturing techniques, such as fermentation, acid or alkaline hydrolysis, or cellular
disruption under pressure [154]. These methodologies are normally based on soft extrac-
tions (low temperature and pressure), with the aim of targeting compounds with low
energy consumption, high yield, an optimized extraction process, and reduced waste
production [87]. Currently, new technologies, such as supercritical fluid extraction (SFU),
ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), enzyme-assisted
extraction (EAE), and microwave-assisted extraction (MAE), extract biological elements
without affecting their efficiency [155]. The seaweed that is most widely employed, which
is a fountainhead for PBs, is the brown one, Ascophyllum nodosum, a rich sink of bioac-
tive phenolic elements such as phlorotannins and unique polysaccharides (i.e., fucoidans,
laminarin, mannitol, and alginic acid) [156]. “Ascophyllum nodosum extracts affect the en-
dogenous balance of plant hormones by modulating the hormonal homeostasis, regulate
the transcription of a few relevant transporters to alter nutrient uptake and assimilation,
stimulate and protect photosynthesis, and dampen stress-induced responses” [157].

SWEs were employed as sustainable tools to improve abiotic stress tolerance, increase
grape quality, and enhance the biosynthesis of secondary metabolites in berry skins. Recent
shreds of evidence suggest that the beneficial effects of A. nodosum treatments on vine
acclimation to stressful conditions involve the activation of antioxidant enzymes and
secondary metabolic pathways (flavonoid biosynthesis) [158].

The cell walls of seaweeds contain a wide range of polysaccharides, such as β-(1→3)-
glucans, which are formed by neutral sugars and acids and can act as elicitors when
applied to plant tissues by inducing immunity through the production of reactive oxygen
species (ROS), strong enzymatic activity of phenylalanine ammonia-lyase, caffeic acid
O-methyltransferase, and lipoxygenase, and the accumulation of salicylic acid and PR
proteins [11]. In fact, it was shown that an extract from Laminaria digitata (Huds.) J.V.Lamour.
applied to grapevine leaves reduced infection by Botrytis cinerea Pers.Ex Nocca and Balb.
and Plasmopara viticola (Berk. and M.A.Curtis) Berl. and De Toni in greenhouse trials by
increasing resveratrol and viniferin [159].

In grapevines, foliar application of this brown SWE heightened root development,
mineral nutrient uptake (nitrogen status) [160], and vegetative growth expressed by length
and leaf area of vine stock [161]. There are also numerous reports on the positive effects of
these extracts on yield and grape quality. In fact, in Australia, soil-treated vines (10 L/ha
dose from woolly bud to veraison) were improved in wine grape yield by 14.7% [162].

Vines treated with A. nodosum extract showed higher flavanol and hydroxycinnamic
acid content in both berry skins and leaves, as well as a diminution in the biosynthesis of
methoxylated anthocyanins, which are usually accumulated in grapes under environmental
limitations [163]. As a consequence of the promotion of the phenylpropanoid metabolism
induced by A. nodosum, treated vines generated a significantly greater pool of secondary
metabolites, including anthocyanin (+0.07 mg/cm2) and phenolics (+0.26 mg/cm2), on
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skins [164]. Moreover, it was reported that foliar treatment (rich in oxylipins, phenylalanine,
and monosaccharides) in table grapes stimulated the expression of genes involved in
anthocyanin biosynthesis [165].

Foliar application of A. nodosum extract helped vines’ acclimation to post-veraison
water stress by improving their physiological and biochemical performance [166]. Be-
taines and mannitol in seaweed extracts help plants to survive under stress conditions
by improving osmotic adaptability [167]. Under progressive water stress conditions, at a
Ψstem value of about −0.65 MPa, foliar treatment positively impacted leaf gas exchange
and water-use efficiency (+35% as compared to untreated vines). Photosynthesis was
improved (+2.7 µmol CO2 m−2 s−1) via preserved photochemical efficiency (Fv/Fm +0.19)
as compared to untreated vines and enhanced leaf anatomical and biochemical traits
(+27.3 mg/g DW of leaf soluble sugars and +8% leaf dry matter) [168]. In addition, its
action on stomata regulation suggested that this SWE could be a valid tool for restricting
leaf damage during extreme temperatures. The treatment increased vines’ transpiration
through a reduction of stomatal sensitivity to the vapor-pressure deficit (VPD) (leaf ther-
moregulation) [169].

The effects of seaweed applications on the volatile composition of white grapes and
wines are currently unknown. On cv. Tempranillo Blanco, Gutiérrez-Gamboa et al. [170]
showed that a high-dosage (0.50%; v/v) treatment tended to increase the concentration
of (Z)-3-hexen-1-ol, 1-hexanol, and (E)-2-hexen-1-ol in grapes in both seasons, whereas
a low-dosage (0.25%; v/v) application tended to the decrease 2-phenylethanol and 2-
phenylethanal content in grapes. In addition, catechin and flavonol (quercetin-3-O-glucoside
and quercetin-3-O-glucuronide) concentrations in berries were increased after the high-
dosage application; the treatment affected the trans-caftaric acid, caffeic acid, and total
hydroxycinnamic acid content [171]. On the one hand, seaweed treatment at a high dose
decreased ρ-cymenene and increased geranyl acetone content in musts. On the contrary, in
the following season, high-dose samples presented the highest content of ρ-cymene (85%),
nerol oxide (75%), and total terpenoids (36%), whereas low-dose samples presented the
lowest content of geraniol (25%) [172]. For these reasons, in order to discern a possible
“vintage effect”, it is considered appropriate to make a greater effort to further investigate
the effect of this extract on the terpenes of white vines.

In the light of these results, it is considered that SWEs represent a highly efficient and
sustainable category of organic non-microbial PBs for improving grapes’ quality and en-
hancing grapevines’ tolerance to biotic and abiotic stressors, such as extreme temperatures
and drought.

4.2. Protein Hydrolysates (PHs)

PHs are “mixtures of polypeptides, oligopeptides and amino acids that are manufac-
tured from protein sources using partial hydrolysis” [95]. They are generally originated
by chemical (alkaline and acid hydrolysis), enzymatic, and thermal hydrolysis of several
animal wastes (i.e., viscera, leather, feathers, blood) and plant biomass (i.e., vegetable
by-products). PHs are accessible as liquid extracts or insoluble powders and in granular
form and can be applied to roots or as foliar sprays [173].

Chemical hydrolysis is normally selected for creating animal-based PHs by attacking
the peptide bonds of proteins and destroying several amino acids, such as tryptophan, cys-
teine, serine, and threonine. Acid hydrolysis is carried out with hydrochloric and sulphuric
acid at >121 ◦C (high temperatures) and >220.6 kPa pressure. Instead, during alkaline hy-
drolysis, proteins are solubilized by heating, followed by the addition of calcium, sodium,
or potassium hydroxide (alkaline agents). Two critical aspects of chemical hydrolysis are
racemization (conversion of free amino acids from the L-form into the D-form) and an
increase in the salinity of PHs. Since, in living organisms, the amino acids are only in the
L-form, plants cannot directly use D-form amino acids in their metabolism, making PHs
potentially toxic for plants [80,95].
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Enzymatic hydrolysis is regularly chosen for the generation of plant-based PHs. The
result of enzymatic hydrolysis is a mixture of peptides and amino acids with low salinity
and a constant composition over time. The hydrolysis is carried out by proteolytic enzymes
(e.g., pancreatin, pepsin, papain, ficin, bromelain, alcalase, and flavourzyme) at a low
temperature (<60 ◦C) [95,173,174].

Grapevine production and fruit composition properties were positively influenced
by the application of PHs. PHs produced through enzymatic hydrolysis of an organic
matrix from lupin (Lup), soybean (Soy), and dairy-mix-based casein (Cas) were tested on
Vitis vinifera L. cv. Corvina. They were sprayed three times from the fruit set until bunch
closure at doses of 1.6–6.4 g L−1. The improvement of grapevine performance and cluster
weight, including yield, depended on either the PHs’ origin or application dose, with
major effects recorded with Lup (1.6 g L−1), Soy (6.4 g L−1), and Cas (6.4 g L−1). As shown
by Parrado et al., [175] Cas (1.6 g L−1) and Lup (6.4 g L−1) showed the ability to increase
secondary metabolites synthesized via phenylpropanoid pathways that were involved in
plant resistance against stress-condition berry content (total anthocyanin). Soy and Cas
significantly decreased the conductance index IG (stress index proportional to stomatal
conductance as follows: IG = (Tdry − Tcanopy)/(Tcanopy − Twet)), showing the ability of
the PHs to reduce stomatal conductance (gs) and transpiration (E), thus ameliorating the
tolerance to water stress through the action of abscisic acid (ABA) production, which causes
an increase in cytosolic Ca2+ concentration [Ca2+]cyt [176].

Other results showed that collagen-derived protein thermal hydrolysate applied to
roots before imposing water deprivation mitigated the consequences of stress by sustaining
vegetative organs’ growth and limiting the extent of cell dehydration [177].

PHs obtained through enzymatic hydrolysis of legume biomass containing 20 g kg−1

of urea and 50 g kg−1 of nitrogen as peptides and amino acids, as well as 10 g kg−1

of soluble potassium (K2O), produced deep modifications in leaf metabolomes and pro-
teomes, which maintained higher acidity, thus delaying physiological maturity. PHs sig-
nificantly modified the concentrations of 69 metabolites compared to those in non-treated
vines. Briefly, dehydrospermidine, indole-3-acetyl-phenylalanine, adenine, adenine-ring,
(S)-2-amino-3-(3-hydroxy-4-oxo-4h-pyridin-1-yl)-propanoate, 1-iO/i-(4-coumaroyl)-beta-d-
glucose, dihydrosterculate, and (5-alpha)-campestan-3-one were upregulated to the system
endpoint in comparison with the control vines. At re-watering, PHs significantly upregu-
lated eight metabolites’ concentrations (stigmasterol 3-O-β-d-glucoside, few amino-acids,
and plastoquinol-9) and downregulated the concentrations of 89 metabolites compared to
those in non-treated vines. So, the clearest reaction to the application was a drop in the
concentrations of compounds related to the flavanols and their precursors or biosynthetic
pathways (downregulation of flavonoids and their precursors in PHs). Moreover, the
treatment upregulated the concentration of 3-hidroxy-β-ionone, a metabolite involved
in lutein and zeaxanthin cleavage, thus dissipating the excess of energy under summer
stress [178].

Soybean and casein hydrolysates induced grapevine immune responses and resistance
against Plasmopara viticola with the production of resveratrol and its dimer metabolites,
δ- and ε-viniferins. They induced a rapid increase in [Ca2+]cyt (calcium signaling acts
upstream of the MAPK pathway in plant defense responses), elicited marker genes of SA
and JA pathways (PR1 and PR6, respectively), and induced the expression of STS (the key
gene in resveratrol biosynthesis) [179].

Keeping in mind the negative effects of warming trends that affect traditional wine
regions, PHs can be considered valuable tools for improving fruit quality and vineyard
sustainability. However, additional work through field trials will be required to further
substantiate these results and to convert this knowledge into specific applications that
grape growers can unequivocally follow.
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4.3. Humic Acid (HA) and Fulvic Acid (FA)

Humus is a self-assembled supramolecular association of minute heterogeneous
molecules held together by weak hydrophobic linkages [180]. Humic substances (HSs)
embody the principal reserve of organic carbon at the Earth’s surface and are formed by
biological and chemical transformations of plant and animal matter, as well as microbial
metabolism. They handle many important environmental and ecological transactions, such
as regulating both soil nitrogen and carbon cycling, plants’ and microorganisms’ growth,
and soil structure stabilization. In solution, HSs are a collection of low-molecular-mass
components arranging dynamic associations that are stabilized by hydrophobic interactions
and hydrogen bonds. HSs, termed hydrophobic acids, can be further operationally divided
into two chemical fractions—humic acid (HA) and fulvic acid (FA), depending on the
solubility [181] (HA is soluble in aqueous alkaline solutions and precipitates with pH 1–2;
in contrast, FA remains in solution after the aqueous alkaline extracts are acidified). A
recent definition redesignated FA as associations of little hydrophilic molecules with acid
functional groups to hold the fulvic clusters scattered in solution at any pH, whereas HA
was redesignated as associations of hydrophobic compounds (fatty acids, polymethylenic
chains, steroids compounds) stabilized at neutral pH by hydrophobic dispersive forces
(CH–π bonds, van der Waals, and π–π) [182]. By altering the pH and redox potential at the
root surface, HSs stimulate root growth and nutrient uptake by promoting secondary trans-
port and overexpression of ion transporters (i.e., cytosolic increase in Ca2+ concentration
and a regulatory H+ efflux activity in the root elongation/differentiation zone) [94].

The environmentally friendly foliar application of HA (derived from vermicompost)
was tested at three concentrations: 30, 40, and 50 mL·L−1, the doses of which induced an
increase in ATPase synthesis and activity in root cells’ soaring growth, yield, and total
soluble solids [183].

Contrary to what Aljabary et al. pointed out [184], organic fertilization with HA
(20 mg·L−1) led to an increase in the percentage of phosphorus, nitrogen, and potassium in
the petiole leaves of grape seedlings, as well as in the concentration of chlorophyll and the
protein percentage in leaves. Adding HA led to an increase in the vine efficiency and its
absorption by the roots, thus amplifying macronutrient concentrations in the leaves [185]
and anthocyanin content in the juice (mg/100 g fresh weight) [186]. As indirect effects on
Superior Seedless grapevines, HA increased soil microbial population, cation exchange
capacity, soil structure, tolerance to salinity stress [187], water-holding capacity, aeration,
aggregation, permeability, micronutrient transport, and availability [188].

The highest weights in berries and clusters were obtained with HA treatments. These
substances also improved the berry detachment and skin rupture forces [189].

The effects of combined foliar application of fulvic acid antitranspirant (FA-AT) were
tested [190]. FA-AT controlled the contents of fructose and glucose (mitigating the prob-
lems of high alcohol contents) and improved the total phenols and flavonoids in Riesling
grapes while it ameliorated the total tannin, individual flavanols, and volatiles in Cabernet
Sauvignon grapes (hexyl acetate, linalool) and wine (1-hexanol, 2-phenylethanol, isoamyl
alcohol). The weakening of photosynthesis explained the reduction in individual antho-
cyanins in the grapes (downregulation of gene expression of phenylalanine-aminolyase) in
Cabernet Sauvignon.

The combined action of FA with microelements (Mg + K or Fe SO4. 7H2O at 0.36 g +
Zn SO4.7H2O at 0.18 g + MnSO4. H2O at 0.18 g) resulted in a significant increase in different
parameters, such as in budburst, fertility, vegetative growth, shoot length, leaf surface area,
total chlorophyll content, yield/vine, total sugars, and total anthocyanin content in berry
skin, while it gave the lowest decrease in acidity [191,192].

Thanks to the induction of resistance to Botrytis cinerea through the activation of the
phenylpropanoid pathway, FA can be used as an activator of plant defense responses to
control postharvest gray mold in table grapes. In fact, FA generated a higher accumulation
of phenolic compounds and the activities of cinnamate-4-hydroxylase (C4H), phenylalanine
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ammonia-lyase (PAL), and 4-coumarate-CoA ligase (4CL) with upregulation of genes
related to phenylpropanoid biosynthesis (4CL, STS, PAL, C4H, ROMT, and CHS) [193].

HA and HF could be used to improve the soil organic matter since these PBs play an
important role in increasing soil fertility and sustainability. These findings could provide a
practical basis for evaluating precision viticulture applications to enhance grapevine devel-
opment, yield, and berry quality under abiotic stress where cold damage and degraded
soil conditions commonly restrict the viticulture.

4.4. Chitosan

Chitosan is the deacetylated form of chitin (a co-polymer of N-acetyl-d-glucosamine
and d-glucosamine). It is a natural biopolymer present in insect exoskeletons, fungal cell
walls, and crustacean shells. Chitosan promotes several defensive genes in plants (e.g.,
pathogenesis-related genes, such as glucanase and chitinase). In addition, it induces several
enzymes in the reactive oxygen species scavenging system (catalase, superoxide dismutase,
and peroxidase). Chitosan was used as a PB to stimulate plant growth, abiotic stress
tolerance, and pathogen resistance [93].

Chitosan’s effect in inducing vine defense mechanisms can be associated with its ability
to widen the intracellular content of a large spectrum of antioxidants (e.g., resveratrol)
mainly by strictly regulating the proteomic expression profile. In chitosan-treated samples,
73 proteins consistently changed. In particular, de-novo synthesis and/or accumulation of
stilbene synthase proteins were promoted by chitosan, which also stimulated endogenous
accumulation of trans-resveratrol. Chitosan treatment strongly increased the expression of
11 proteins of the pathogenesis-related protein-10 family, as well as their mRNA levels [194].

In the Thompson Seedless variety, Clotrimazole-loaded chitosan nanoparticles reached
a significant drug entrapment efficiency of 94.7%, revealing a promising antifungal effect
against Candida albicans and Aspergillus niger with average inhibition zone diameters of
74 and 72 mm. The product can be used as a novel anti-dermatophytic agent with an
elevated wound-healing capacity [195]. In addition, it induced the bio-control efficacy
of Pichia anomala by enhancing the activities of disease-defense-related enzymes, such as
chitinase and ascorbate peroxidase, and decreasing the formation of hydrogen peroxide
and malondialdehyde (responsible for the deterioration of fruits) [196].

Chitosan treatment in berries altered the regulation of reactive oxygen species with
up-accumulation of Cu/Zn superoxide dismutase and glyoxal oxidase, hence promoting
defense and lignification processes in a hypersensitive response. Furthermore, enzymes
involved in anthocyanin, rather than stilbene phytoalexins, accumulated in treated clusters.
By eliciting defense mechanisms, there was an increase in stilbenes, hydroperoxide lyase,
oxylipins, pentacyclic triterpenoids ursolate, oleanoate, and betulinate [197].

The application of chitosan led to increased levels of polyphenols, anthocyanins, and
tannins in Tinto Cão berries, as well as polyphenols and tannins in Touriga Franca berries,
thus increasing the antioxidant potential of the berries. In chitosan-treated berries, the
following ROS pathway genes were found to be upregulated: amine oxidase (AO), iron-
superoxide dismutase (Fe-SOD), catalase (CAT), glutathione reductase (GR), glutaredoxin
(Grx), respiratory burst oxidase (Rboh), copper-zinc-superoxide dismutase (Cu/Zn-SOD),
peroxidase (POD), and polyphenol oxidase (PPO). So, it was shown that chitosan induced
the synthesis of phenolic compounds and also acted as a facilitator for transfer of polyphe-
nols from the leaves to the berries [198].

The impact of pre-harvest foliar spraying with chitosan (2.0% and 3.0%) resulted in a
reduction of the decay index by forming a semi-permeable barrier on the surface of the fruit,
postponing maturity and senescence, and decreasing the activity of cell-wall-degrading
enzymes (pectin methylesterase and polygalacturonase enzymes). In addition, the results
showed anthocyanin accumulation, which was associated with increased sugar accumu-
lation, and an increase in malondialdehyde, polyphenol oxidase, firmness, antioxidant
capacity, peroxidase, and vitamin C [199].
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To understand the effect of chitosan on the levels of phenolic compounds in the berry
skin of red grapes (cv. Tinto Cão) during veraison, grapevines were treated with chitosan
(0.01% in 0.01% acetic acid). The results showed that monomeric anthocyanins, catechin,
rutin, and quercetin-3-O-galactoside significantly increased in berry skins after treatment
with chitosan. In addition, in leaves and berry skins, chitosan treatment upregulated
several target genes (i.e., PAL, UFGT, ABCC1, CHS, F3H, ANR, GST, and MATE1) that
encode key enzymes and transporters involved in secondary metabolic pathways [200]. On
Mouhtaro cv. (a Greek red indigenous variety), chitosan treatment increased the abundance
of the beneficial lactic acid bacteria (Lactobacillus genus) and improved the polyphenolic
picture [201].

Chitosan raised the total acetal (1,1-diethoxyethane) and alcohol levels, thus improving
the volatile profile, flavor, and taste of Groppello wine (chemical fungicide residual levels
may alter yeast metabolism and the biosynthesis of volatile compounds). The reduction
of aldehydes by enhanced alcohol dehydrogenase activity and the increase in elicitors
stimulating glycosidases increased alcohols and odorant compounds, respectively [202].
These results were not confirmed in other work. The application of foliar-chitosan elic-
itor decreased the synthesis of positive grape volatile compounds (C13 norisoprenoids,
benzenoids, and esters) [203].

Chitosan plays a key role as an elicitor against pathogen infestation, giving a sustainable
alternative to chemical pesticides by improving the synthesis of secondary metabolites.
However, its effect on grape volatile compounds has been little investigated. Furthermore,
based on the findings, chitosan treatments could be considered as suitable preferences for
extending the marketable interval of table grapes and downsizing post-harvest deprivations.

4.5. Trichoderma spp.

Trichoderma spp. helps against environmental stresses, such as drought and salinity, by
reinforcing plant growth and reprogramming gene expression in roots and shoots, thus
improving nutrient and water acquisition. It was also used as a beneficial microorgan-
ism due to its capacity to inhibit many fungal plant pathogens [101]. These rhizosphere
microorganisms function by producing large quantities of extracellular enzymes (i.e., 6-
pentyl-2H-pyran-2-one and auxin indole-3-acetic acid) that lead to the death of negative
plant pathogenic fungi and reduce chemical inputs, thus promoting conservation of natural
resources [204].

By behaving as endophytes, Trichoderma strains showed their potential as biological
control agents by reducing the colonization of Phaeoacremonium minimum (Tul. and C.Tul.)
Gramaje, L.Mostert, and Crous [205,206]. Furthermore, the microscopic observation of his-
tochemistry revealed an increased accumulation of callose, lignin, and hydrogen peroxide
and an upregulation of the activities of defense enzymes, such as peroxidase, phenylala-
nine ammonia-lyase, and 1,3-glucanase, highlighting the protection induced by Tricho-
derma harzianum Rifai in response to Plasmopara viticola [207]. Trichoderma Fleming (1822),
which was positively used for biological control of Erysiphe necator Schw. (Uncinula necator
(Schw.) Burr.), tested positive for the production of ammonia, hydrogen cyanide, indole
acetic acid, siderophore, phosphate, chitinase, β-1,3-glucanase, cellulase, amylase, and
protease (plant-growth-promoting bio-chemicals) [208]. Among the symptoms of esca com-
plex, Trichoderma asperellum Samuels, Lieckf., and Nirenberg and Trichoderma gamsii Samuels
and Druzhin. were demonstrated to downsize the impact of light tiger-stripe symptoms
and apoplexy, but no differences were found in the medium-to-severe symptoms [209]. In
addition, in another study, it was shown that Trichoderma asperellum, T. harzianum, and T. atro-
viride Bissett reduced downy mildew (P. viticola) severity on grapevine leaf disks by pro-
ducing volatile organic compounds (VOCs), such as α-farnesene, 2-pentylfuran, cadinene,
1,3-octadiene, 6-pentyl-2H-pyran-2-one, 6-pentyl-2H-pyran-2-one, and 2-pentylfuran [210].

In addition, Trichoderma acts directly as an entomopathogen through parasitism and
the production of insecticidal secondary metabolites, such as repellent metabolites and
antifeedant compounds. It was demonstrated to produce secondary metabolites of a volatile
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nature, such as 6-pentyl-α-pyrone, which caused 100% mortality in Tetranychus urticae Koch
(1836) in 48 h (the red spider mite) [211]. Soil T. harzianum and T. gamsii applications were
considered as control agents against Xylotrechus arvicola (Olivier, 1795) in vineyards to
inhibit egg development, prevent larvae from boring into vines, and kill adults [212].

Trichoderma strains used in biological control products usually exhibit high efficiency
in the control of plant diseases (biotic stress). However, nowadays, since many of the
studies are carried out in vitro, their behavior under field conditions is difficult to predict.

4.6. Plant-Growth-Promoting Rhizobacteria (PGPR)

These beneficial microorganisms, which enhance the resistance to biotic and abiotic
stress factors in plants, are prevalent near plant roots in an area called the rhizosphere and in-
clude the following genera: Alcaligenes, Mesorhizobium, Rhizobium, Rhodococcus, Azospirillum,
Azotobacter, Agrobacterium, Bacillus, Bradyrhizobium, Burkholderia, Caulobacter, Chromobac-
terium, Enterobacter, Herbaspirillum, Klebsiella, Micrococcus, Pseudomonas, Arthrobacter, Erwinia,
Flavobacterium, and Serratia. PGPR can be divided into symbiotic bacteria (living within
plant tissues and exchanging metabolites) and free-living rhizobacteria (living outside of
plant tissues and promoting plant growth) based on their interactions with plants [213].
Owing to their beneficial effects on plant health by suppressing phytopathogens and ac-
celerating nutrient assimilation, among the bacteria investigated for biocontrol, increased
attention was given to actinobacteria. These filamentous bacteria produce a broad range
of bioactive compounds that act as plant-growth-promoting substances (siderophores,
antifungal compounds, hydrolytic enzymes, hydrocyanic acid, and ammonia gas) that are
antagonists of the hosted pathogens, and they synthesize phytohormones, fix atmospheric
nitrogen, solubilize inorganic phosphate, and inhibit stress-induced ethylene by producing
the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase [214,215]. In addi-
tion, they can indirectly intensify plant growth by weakening the deleterious effects of
phytopathogens by engendering systemic resistance (ISR) and production of antimicrobial
compounds (i.e., fengycin, chitinase, bacteriocin, zwittermicin, and cell-wall-degrading
enzymes) [216].

Grapevine trunk diseases (GTDs) are unfortunately a serious threat to the sustain-
ability of vineyards. Esca complex (Phaeomoniella chlamydospora, Phaeoacremonium mini-
mum, and Fomitoporia mediterranea), Eutypa dieback (Eutypa lata, but also Eutypa sp. and
Eutypella sp.), and Botryosphaeria dieback (Botryosphaeria dothidea, Diplodia seriata, and
Neofusicoccum parvum) are the three main GTDs [217].

Screening based on antagonistic and plant-growth-promotion abilities of certain strains—
Streptomyces, Saccharothrix, Nocardia, Nocardiopsis, Actinoplanes, Lentzea, Promicromonospora,
Nonomuraea, Saccharopolyspora, and Streptosporangium—showed an appreciable antagonistic
activity against both Paeomoniella chlamydospora and Phaeoacremonium minimum. These
strains were able to produce siderophores, ammonia, indole acetic acid, ACC deaminase,
cellulase, and amylase, as well as to fix N2 [218].

A new chemical control strategy for GTDs is to develop site-targeted fungicides to
protect grapevine vascular tissues in combined use with biological agents. The effects of
a phloem-mobile derivative of the fungicide Fenpiclonil with plant-growth-promoting
rhizobacteria (Paraburkholderia phytofirmans in the Neofusicoccum parvum strain Bourgogne)
were evaluated. The combined treatment (systemic fenpiclonil derivative + Paraburkholde-
ria phytofirmans) evidenced a strong activation of host immune responses, especially for
defense-related genes and phenylpropanoid pathways, giving the highest control efficiency
against the GTD pathogen (N. parvum strain Bourgogne) [219].

A recent study also confirmed the beneficial effects of this interaction. Grapevines were
inoculated with the plant-growth-promoting rhizobacterium Ensifer meliloti TSA4. E. meliloti
inoculation increased the growth parameters of the vine plants, improved phosphorus
absorption, and facilitated P uptake from the soil, suggesting a successful PGPR–plant
association [220].
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During a standard process of grapevine nursery propagation, epiphytic and rhi-
zospheric inoculation by the PGPR strain Pseudomonas protegens MP12 was effective in
controlling an artificially induced Botrytis cinerea infection in detached leaves. The success
of rhizospheric and leaf colonization in vine plants suggests a potential for the future
exploitation of P. protegens MP12 as a biofertilizer and biopesticide [221].

However, it is believed that further investigations are needed to improve our under-
standing of the mechanisms of interaction between the PGPRs that occur in plants and, in
particular, with systemic fungicides. We suggest a greater commitment by researchers in
multi-year field trials and in different viticultural areas to appreciate any benefits, including
those for bunches by, for example, adopting epiphytic inoculations in the pre-harvest period
to prevent infections by Botrytis cinerea or Plasmopara viticola in the berries. The effectiveness
of this possible treatment could reduce or eliminate the use of synthetic organic fungicides
(e.g., dithiocarbamates).

4.7. Arbuscular Mycorrhizal Fungi (AMF)

AMF are an important group of soil microorganisms that can establish symbiotic
interrelationships with vine roots, and they represent an integral component of the vineyard
ecosystem with applications for sustainable viticulture. Vineyard-living microbiota and
mutualistic plant–microbe interactions affect the biological quality of soils, adaptation of
grapevines to changing environments, and the response to abiotic stresses by determining
wine quality [222].

A recent study showed that the AMF from grapevine vineyard root samples were
dominated by Glomus sp., followed by Claroideoglomus sp. [223].

Leaves of grapevine plants inoculated with Funneliformis mosseae showed an increase
in volatile organic compounds (VOCs) related to plant defense under pathogen attack
or linked to water stress, such as geraniol, (E)–2–hexenal, 3–hexenal, benzaldehyde, and
methyl salicylate. On the contrary, C13–norisoprenoids decreased strongly in mycorrhizal
vines [224].

Grapevines in different soil conditions showed a positive response to AMF inocula-
tion, which alleviated the toxic effects of metals and increased photosynthesis and plant
growth [225]. In particular, the Glomeraceae family can moderate high concentrations of
copper in soil [226].

Inoculation of vineyard soil with AMF can be a convenient strategy for reestablish-
ing land mycorrhizal potential, helping vines to better withstand heatwaves [227], and
improving water-use efficiency [228].

A particular interaction was discussed by Landi et al. [229]. Their study suggested a
relationship between esca disease and native AMF in grapevine roots. The AMF coloniza-
tion intensity showed a higher value in esca-symptomatic vines (from 24.6% to 61.3%) than
in neighboring asymptomatic vines (from 17.4% to 57.6%).

Although the interest in arbuscular mycorrhizal fungal associations has increased in
recent years as the demands for sustainable cropping systems have become more pressing,
these associations with specific crops (especially vineyards) have received little attention,
and nowadays, knowledge is limited.

4.8. Silicon (Si)

Silicon constitutes a notable portion of soil as silicate or aluminum silicate, but most
cannot be directly absorbed by plants despite its abundance. At concentrations between 0.1
and 2.0 mM (pH < 9), H4SiO4 (silicic acid) is willingly absorbed into the root system. Its con-
centration in plants’ aboveground parts ranges between 0.1% and 10.0% dry weight [230].
It is regarded as a beneficial element that increases plant resistance against various abiotic
and biotic stresses [231].

Si boosts plant vigor by improving root mass and density. It improves plant cell wall
strength, structural integrity, and drought and frost resistance, and it strengthens plants’
natural pest- and disease-fighting systems [232].
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Soil application of colloidal silicon (544 kg Si/ha) increased plant-available Si, while
the foliar application (428 kg Si/ha) augmented the total silicon concentrations in leaves,
yield, and cluster weight (Grüner Veltliner cv.) [233].

Another study positively tested the application of calcite–silicon-mediated particle
film (3% v/v) at veraison as a reliever for a drought-induced increase in leaf temperature,
thus contributing to improved leaf functionality, yield, and grape composition traits [234].

Foliar application of Si (1000 mg/L) increased the potassium percentage in leaves,
antioxidant enzyme activities, yield per vine, percentage of soluble solids, total anthocyanin,
and total phenols, while it reduced the percentage of total acidity. In addition, Si reduced
downy mildew disease severity as compared with that in untreated control vines by acting
as a physical barrier in cell walls and preventing the penetration of fungal hyphae into
host tissues. Concerning the photosynthetic pigments, they were increased in grapevines
sprayed with silicon (chlorophyll a (0.815 mg/g FW), chlorophyll b (616 mg/g FW), total
chlorophyll (1.431 mg/g FW), and total carotenoid (0.103 mg/g FW)) [235].

Furthermore, a recent experimental design that included three irrigation water regimes
(40, 70, 100% of drip irrigation water requirement), as well as chitosan + silicon applica-
tions (125 mg L−1 Si, 250 mg L−1 Chi, and 125 mg L−1 Si+250 mg L−1 Chi), showed that
the Chi + Si treatment under severe drought had an ameliorative effect on cell ultrastruc-
ture compared with drought-affected plants (well-developed chloroplasts and increased
plastoglobules) [236].

Moreover, Si was reported to reduce the effects of freezing on vines (foliar and soil
applications). This may be attributed to the enhancement of non-photochemical quenching
and more protection of PSII from photodamage following the foliar spray. In addition, Si
application significantly decreased the membrane damage because of efficient scavenging
by peroxidase [237]. Under salt stress, the addition of Si also improved all growth param-
eters and increased the pigments and photosynthetic rates by increasing the maximum
yield and potential photochemical efficiency of the photochemical reactions in photosystem
II [238].

Therefore, it is believed that the integration of silicon is an excellent corroborant for
mitigating any dysfunctions in photosynthesis caused by abiotic or biotic stress.

4.9. Phosphite

Phosphite (H2PO3
−; Phi) and its conjugate, phosphorous acid (H3PO3), have more

progressively been adopted as supplemental biostimulants, fertilizers, and pesticides. As a
PB, Phi improves nutrient uptake and assimilation, abiotic stress tolerance, and grape qual-
ity [96]. Several studies showed the efficiency of Phi in controlling plant diseases caused
by oomycetes (i.e., Plasmopara viticola, Phytophthora, and Pythium), bacteria (i.e., Strepto-
myces scabies, Erwinia carotovora, and E. amylovora), and fungi (Fusarium, Armillaria mellea,
Phakopsora euvitis, and Elsinoe ampelina) [104,239–243].

In a recent study, the effects on molecular-defense-related genes and polyphenol con-
tent (stilbenes and flavanols) were revealed. Phi tended to modulate the defense responses.
In fact, in response to a downy mildew inoculation, the pre-treated leaves overproduced
pterostilbene, piceids, and ε-viniferin. The elicitor triggered the overexpression of two PR
protein genes: VvPR5 (thaumatin-like protein) and VvPR4 (chitinase). In addition, Phi
induced the genes VvPR5 and VvPR6 (serine protease inhibitor). The treatment led to the
overexpression of several genes that are directly involved in the biosynthesis of callose
(VvCAL) and the modification of the cell wall with pectin methylesterase (VvPECT) and
cinnamoyl-CoA reductase (VvCAD) (genes involved in cell wall reinforcement) [244].

Since the reduction of antimicrobial treatments and the application of environmentally
friendly treatments, such as Phi, are impelling challenges, to undertake more sustainable
agriculture, a constant and assiduous commitment on the part of research is needed to
disseminate more and more results in this area.
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5. Conclusions

Meeting one’s own needs without harming the needs of future generations is a cardinal
principle of society and is also the basis of the current new convention of viticulture:
conservativeness and sustainability. Preserving viticultural ecosystems, conserving water
resources, enhancing soil elements, assisting plants against abiotic and biotic stresses, and
preventing erosive events and contamination by pesticides are fundamental agricultural
concepts and practices for ensuring the healthiness of the products and avoiding irreversible
damage. With the aid of these substances, environmental health, vines, and humans are
more protected by minimizing costs in terms of agricultural inputs. The use of seaweed
extracts, humic substances, chitosan, exudates, and other extracts preserves, defends,
and strengthens vines without harming the ecology or human health. A sustainable
approach will boost the growth of grapes’ marketability, giving a higher value to the
product (for example, with an organic label). In fact, these findings provide evidence for
the potential of at least partially replacing conventional fungicides, rendering viticulture
more sustainable in terms of soil protection and biodiversity. The improvement of the soil
elements thanks to the help of phosphite, the lower exposure to pesticides mitigated by
Trichoderma and plant-growth-promoting rhizobacteria, and the better resistance to drought
and high temperatures promoted by seaweed extracts represent sustainable approaches
to preserving the viticulture ecosystem from irreversible consequences. However, some
limitations in the research are highlighted, such as the scarcity of multi-year field tests in
different viticultural areas (PGPR), the clarification of the relationship between esca disease
and arbuscular mycorrhizal fungi, and the scarcity of studies concerning grape quality due
to anthocyanin fractionation and flavor detection (AMF, Si, Phi) Finally, this review would
like to put an emphasis on spurring the scientific community to a greater contribution to
the investigation of the response mechanisms of plants to positive inductions.
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as new approach to improve the biological responses of medicinal plants-A critical review. Med. Plant Res. 2016, 15, 6.
123. Schiavon, M.; Ertani, A.; Nardi, S. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the

tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. J. Agric. Food Chem. 2008, 56, 11800–11808. [CrossRef]
124. Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein

hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant. Nutr. Soil Sci. 2009, 172, 237–244. [CrossRef]
125. Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [CrossRef]
126. Mahfouz, S.A.; Sharaf-Eldin, M.A. Effect of mineral vs. biofertilizer on growth, yield, and essential oil content of fennel [Foeniculum

vulgare Mill.]. Int. Agrophys. 2007, 21, 361–366.
127. Machado, V.P.D.O.; Pacheco, A.C.; Carvalho, M.E.A. Effect of biostimulant application on production and flavonoid content of

marigold (Calendula officinalis L.). Rev. Ceres 2014, 61, 983–988. [CrossRef]

http://doi.org/10.1016/j.scienta.2015.08.042
http://doi.org/10.1016/j.scienta.2015.08.043
http://doi.org/10.1016/j.heliyon.2019.e01684
http://doi.org/10.1016/j.pmpp.2018.12.001
http://doi.org/10.3390/plants9030359
http://www.ncbi.nlm.nih.gov/pubmed/32178418
http://doi.org/10.1007/s12892-020-00058-1
http://doi.org/10.3390/agronomy10010106
http://doi.org/10.21273/HORTSCI13006-18
http://doi.org/10.3389/fpls.2020.00040
http://doi.org/10.1186/s40538-017-0089-5
http://doi.org/10.1016/j.plaphy.2019.07.020
http://www.ncbi.nlm.nih.gov/pubmed/31351320
http://doi.org/10.1002/jsfa.9353
http://doi.org/10.1080/01448765.2014.964649
http://doi.org/10.3389/fpls.2018.01473
http://doi.org/10.3390/agronomy9100616
http://doi.org/10.1016/j.cofs.2021.05.001
http://doi.org/10.1016/j.pestbp.2011.03.004
http://doi.org/10.1016/j.sajb.2008.10.009
http://doi.org/10.1021/jf802362g
http://doi.org/10.1002/jpln.200800174
http://doi.org/10.1146/annurev.micro.62.081307.162918
http://doi.org/10.1590/0034-737X201461060014


Plants 2022, 11, 162 23 of 27

128. Van Overbeek, J. Plant Hormones and Regulators: Gibberellins, cytokinins, and auxins may regulate plant growth via nucleic
acid and enzyme synthesis. Science 1966, 152, 721–731. [CrossRef] [PubMed]

129. Mady, M.A. Effect of foliar application with yeast extract and zinc on fruit setting and yield of faba bean (Vicia faba L.). J. Biol.
Chem. Environ. Sci. 2009, 4, 109–127.

130. Colla, G.; Svecova, E.; Rouphael, Y.; Cardarelli, M.; Reynaud, H.; Canaguier, R.; Planques, B. Effectiveness of a plant-derived
protein Hydrolysate to improve crop performances under different growing conditions. Acta Hortic. 2013, 1009, 175–180.
[CrossRef]

131. Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Moreno, M.B.M.; Reynaud, H.; Canaguier, R.; Trtílek, M.
A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate
on tomato grown under limited water availability. Front. Plant Sci. 2019, 10, 493. [CrossRef]

132. Ceccarelli, A.V.; Miras-Moreno, B.; Buffagni, V.; Senizza, B.; Pii, Y.; Cardarelli, M.; Rouphael, Y.; Colla, G.; Lucini, L. Foliar
application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism.
Plants 2021, 10, 326. [CrossRef]

133. Calabrese, V.; Giordano, J.; Ruggieri, M.; Berritta, D.; Trovato, A.; Ontario, M.L.; Bianchini, R.; Calabrese, E.J. Hormesis, cellular
stress response, and redox homeostasis in autism spectrum disorders. J. Neurosci. Res. 2016, 94, 1488–1498. [CrossRef]

134. Ertani, A.; Schiavon, M.; Altissimo, A.; Franceschi, C.; Nardi, S. Phenol-Containing organic substances stimulate phenylpropanoid
metabolism in Zea mays. J. Plant. Nutr. Soil Sci. 2011, 174, 496–503. [CrossRef]

135. Nishiyama, Y.; Yun, C.S.; Matsuda, F.; Sasaki, T.; Saito, K.; Tozawa, Y. Expression of bacterial tyrosine ammonia-lyase creates a
novel p-coumaric acid pathway in the biosynthesis of phenylpropanoids in Arabidopsis. Planta 2010, 232, 209–218. [CrossRef]

136. Xu, L.; Trinh, H.K.; Geelen, D. Biostimulant mode of action: Impact of PBs on molecular level. In The Chemical Biology of Plant
Biostimulants; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 245–259.

137. Ertani, A.; Sambo, P.; Nicoletto, C.; Santagata, S.; Schiavon, M.; Nardi, S. The use of organic biostimulants in hot pepper plants to
help low input sustainable agriculture. Chem. Biol. Technol. Agric. 2015, 2, 1–10. [CrossRef]

138. Ali, A.; Mohamed, M.T.M.; Siddiqui, Y. Control of anthracnose by chitosan through stimulation of defence-related enzymes in
Eksotika II papaya (Carica papaya L.) fruit. J. Biol. Life Sci. 2012, 3, 114–126. [CrossRef]

139. Kim, H.J.; Chen, F.; Wang, X.; Rajapakse, N.C. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.).
J. Agric. Food Chem. 2005, 53, 3696–3701. [CrossRef]

140. Pretali, L.; Bernardo, L.; Butterfield, T.S.; Trevisan, M.; Lucini, L. Botanical and biological pesticides elicit a similar induced
systemic response in tomato (Solanum lycopersicum) secondary metabolism. Phytochemistry 2016, 130, 56–63. [CrossRef]

141. Pieterse, C.M.; Leon-Reyes, A.; Van der Ent, S.; Van Wees, S.C. Networking by small-molecule hormones in plant immunity. Nat.
Chem. Biol. 2009, 5, 308–316. [CrossRef] [PubMed]

142. Lim, G.H.; Shine, M.B.; de Lorenzo, L.; Yu, K.; Cui, W.; Navarre, D.; Hunt, A.G.; Lee, J.Y.; Kachroo, A.; Kachroo, P. Plasmodesmata
localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 2016, 19,
541–549. [CrossRef]

143. Luo, J.; Xia, W.; Cao, P.; Xiao, Z.A.; Zhang, Y.; Liu, M.; Zhan, C.; Wang, N. Integrated transcriptome analysis reveals plant
hormones jasmonic acid and salicylic acid coordinate growth and defense responses upon fungal infection in poplar. Biomolecules
2019, 9, 12. [CrossRef] [PubMed]

144. Kamle, M.; Borah, R.; Bora, H.; Jaiswal, A.K.; Singh, R.K.; Kumar, P. Systemic Acquired Resistance (SAR) and Induced Systemic
Resistance (ISR): Role and mechanism of action against phytopathogens. In Fungal Biotechnology and Bioengineering; Springer:
Cham, Switzerland, 2020; pp. 457–470.

145. Vargas-Hernandez, M.; Macias-Bobadilla, I.; Guevara-Gonzalez, R.G.; Romero-Gomez, S.D.J.; Rico-Garcia, E.; Ocampo-Velazquez,
R.V.; Alvarez-Arquieta, L.L.; Torres-Pacheco, I. Plant hormesis management with biostimulants of biotic origin in agriculture.
Front. Plant Sci. 2017, 8, 1762. [CrossRef]

146. Han, X.; Xi, Y.; Zhang, Z.; Mohammadi, M.A.; Joshi, J.; Borza, T.; Wang-Pruski, G. Effects of phosphite as a plant biostimulant on
metabolism and stress response for better plant performance in Solanum tuberosum. Ecotoxicol. Environ. Saf. 2021, 210, 111873.
[CrossRef]
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