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Abstract

Biosynthesis for the preparation of antimicrobial silver nanoparticles (Ag NPs) is a green method without the use of
cytotoxic reducing and surfactant agents. Herein, shape-controlled and well-dispersed Ag NPs were biosynthesized
using yeast extract as reducing and capping agents. The synthesized Ag NPs exhibited a uniform spherical shape and
fine size, with an average size of 13.8 nm. The biomolecules of reductive amino acids, alpha-linolenic acid, and
carbohydrates in yeast extract have a significant role in the formation of Ag NPs, which was proved by the Fourier
transform infrared spectroscopy analysis. In addition, amino acids on the surface of Ag NPs carry net negative charges
which maximize the electrostatic repulsion interactions in alkaline solution, providing favorable stability for more than a
year without precipitation. The Ag NPs in combination treatment with ampicillin reversed the resistance in ampicillin-
resistant E. coli cells. These monodispersed Ag NPs could be a promising alternative for the disinfection of multidrug-
resistant bacterial strains, and they showed negligible cytotoxicity and good biocompatibility toward Cos-7 cells.
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Introduction
Drug-resistant infections are a major cause of death and

have resulted in a serious risk to public health. Addition-

ally, increasing resistance to antimicrobial drugs is emer-

ging as an urgent problem in medicine [1]. A number of

strains of Staphylococcus aureus are resistant to methi-

cillin and are the major cause of acquired infections in

hospitals. Furthermore, other antibiotic-resistant bacteria

include penicillin-resistant Neisseria gonorrhoeae and

multidrug-resistant Escherichia coli (E. coli) [2, 3]. The

major mechanisms of resistance are increased efflux and

the reduced absorption of antibiotics [4]. Another mech-

anism of drug resistance is the expression of enzymes

that modify the molecular structure of antibiotics [5].

Although much effort has been focused on developing

the next generation of antimicrobial agents, there is an

increased need for superior disinfection methods.

Silver nanoparticles (Ag NPs) have been used in many

applications, such as protein carriers, radiosensitizers, solar

fuel cell efficiency improvement, and antibacterial agents

[6–8]. Nanoparticles, including metal-containing nanopar-

ticles, Ag NPs are the most widely used as antimicrobial

agents [9]. In reality, silver nanoparticles have shown sig-

nificant antimicrobial activity against bacterial strains but

negligible cytotoxicity to animal cells [10, 11]. Moreover,

Ag NPs have exhibited antimicrobial activity against fungi,

certain viruses, and antibiotic-resistant bacterial strains.

With regard to their mechanism of action, suppression of

DNA replication, blockage of the electrical potential dif-

ference needed in cytoplasmic membranes, and suppres-

sion of the respiratory chain are the main mechanisms of

action of Ag NPs. Thus, the size, surface structure, and

controlled shapes of Ag NPs play crucial roles in their

antimicrobial activity and other applications. The general

method for the preparation of Ag NPs involves the reduc-

tion of silver ions in the presence of an appropriate surfac-

tant to achieve the controlled growth of Ag NPs [12]. The
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majority of reducing and surfactant agents show cytotox-

icity to human tissue cells and potentially cause environ-

mental contamination. Therefore, more effort in

developing green methods for the preparation of shape-

controlled Ag NPs is essential.

In this work, we present a novel route for the biosyn-

thesis of Ag NPs by utilizing yeast extract. During the

process, yeast extract supplies reducing and capping

agents, including amino acids, vitamins, and carbohydrates,

whereas silver ions serve as an electron acceptor. As a re-

sult, the favorable stability provided by the organic capping

agents on the surface, the monodispersed Ag NPs, can be

preserved for more than a year without precipitation. It

was found that Ag NPs displayed a superior antibacterial

activity compared to ampicillin against ampicillin-resistant

E. coli cells. Compared to conventional synthetic methods,

the biosynthesis approach presented herein is biocompat-

ible, cost-effective, and environmentally benign. Further-

more, the shape-controlled and well-dispersed Ag NPs

displayed good antibacterial effects toward E. coli.

Methods
Materials

Silver nitrate (AgNO3), sucrose (C12H22O11), sodium chlor-

ide (NaCl), and sodium hydroxide (NaOH) were purchased

from Sinopharm Co., Ltd. Dry baker’s yeast was obtained

from AB/MAURI Co., Ltd. E. coli was purchased from

TransGen Biotech Co., Ltd. The CellTiter 96® Aqueous

One Solution Cell Proliferation Assay kit (MTS) was pur-

chased from Promega Biotech Co., Ltd. pcDNA3.4 plas-

mid, 1 × NuPAGE® LDS sample buffer, Dulbecco’s

modified Eagle medium (DMEM) and fetal bovine serum

(FBS) were purchased from Thermo Fisher Scientific Inc.

Ampicillin and Luria-Bertani (LB) medium were purchased

from Sangon Biotech Co., Ltd. All chemicals were analyt-

ical reagents and used without further purification. Deion-

ized ultrapure water (18.2MΩ.cm) was used throughout

the experiments.

Synthesis of Ag NPs

The stocked yeast cells were inoculated into Luria-Bertani

(LB) medium and shaken at approximately 150 rpm over-

night at 25 °C for activation. Then, the activated yeast cells

were washed with 0.9% saline solution and dispersed in 2%

sucrose solution with shaking at approximately 150 rpm for

6 h at 25 °C. Finally, the cell-free yeast extract was collected

for the biosynthesis of Ag NPs by centrifugation at 2000

rpm for 5min. During the biosynthetic process, the pH

value of yeast extract was adjusted to 10 with a NaOH solu-

tion, and then, the AgNO3 solution was gradually added to

the above solution under vigorously magnetic stirring. At

last, the obtained Ag NPs were dialyzed with 1 kDa dialysis

membranes for 5 days and freeze-dried for further

characterization.

Characterizations

Transmission electron microscopy (TEM) images of Ag NPs

were observed on JEM-2100 microscope with an accelerating

voltage of 200 kV (JEOL, Japan). Scanning electron micros-

copy (SEM) images were obtained on a Carl Zeiss ULTRA

plus scanning electron microscope (Carl Zeiss, Germany)

equipped with an energy dispersive spectrometer (EDS) op-

erated at 20 kV. Ultraviolet-visible (UV-Vis) absorption spec-

tra were recorded on a Lambda 950 UV/Vis/NIR

spectrophotometer (Perkin-Elmer, USA). X-ray powder dif-

fraction (XRD) patterns were obtained using a D8 Advance

instrument (Bruker, Germany). Fourier transform infrared

spectroscopy (FTIR) was recorded from 4000-500 cm−1 with

samples prepared as KBr pellets on a Vertex 70 FTIR spec-

trometer (Bruker, Germany). The zeta-potential of Ag NPs

was measured with a Malvern Zeta Nano ZS-90 (Malvern,

United Kingdom) at 25 °C. The surface elements on Ag NPs

were identified by X-ray photoelectron spectroscopy (XPS)

using a Kratos AXIS Ultra DLD instrument with a mono-

chromatic Al Kα source (1486.6 eV) (Shimadzu, Japan). The

amino acid components were analyzed with an L-8900 high-

speed amino acid analyzer (Hitachi, Japan).

Cell Cytotoxicity Assay

To explore the biocompatibility of the prepared Ag NPs,

an MTS assay was employed to evaluate the cell cytotox-

icity of the Ag NPs [13]. Cos-7 cells were cultured in

DMEM supplemented with 10% FBS complete medium in

a humidified atmosphere incubator containing 5% CO2 at

37 °C. The cells were plated into 96-well flat-bottomed

plates at a density of 10000 cells per well and cultured for

24 h. Then, the growth medium was replaced with fresh

DMEM medium containing different concentrations of

Ag NPs. After incubation for another 24 h, the relatively

viable cells were determined by MTS. The absorbance was

measured at 490 nm using a SpectraMax® M5 microplate

reader (Molecular Devices, USA). Nontreated cells in

DMEM medium were used as a control.

SDS-PAGE Assay

Standard SDS-PAGE was performed with a 10% (w/v) separ-

ating gel and a 4% stacking gel. The samples were boiled for

5min with 1 × NuPAGE® LDS Sample Buffer and centri-

fuged at 12000 rpm for 5min before application to the gels.

The standard protein marker was used as a reference con-

trol. The gels were stained with 0.5% Coomassie Blue. Im-

ages of gels were recorded with GelDoc XR+ gel imaging

systems (Bio-Rad, USA).

Antimicrobial Activity Studies

To determine the antimicrobial activity, the synthesized Ag

NPs were tested for bactericidal activity against E. coli [14].

A single colony of E. coli was grown overnight at 37 °C in LB

medium on an orbital shaker at 150 rpm. Colonies were
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adjusted to an OD of 0.01–0.02 at 600 nm with fresh LB

medium. Then, 100 μL of serial dilutions of Ag NPs were

filled onto 96-well microplates. The microplates were then

inoculated with 100 μL of diluted E. coli solution and incu-

bated for 16 h at 37 °C. The viability of E. coli was deter-

mined by the measurement of the absorbance at 600 nm

with a SpectraMax® M5 microplate reader (Molecular De-

vices, USA). A time-course analysis was performed to evalu-

ate the antibacterial sensitivity against E. coli over time.

Finally, 100 μL of E. coli solution was added to sterile tubes

containing 10 and 20 μg/mL Ag NPs, respectively. The ab-

sorbance at 600 nm was measured with a SpectraMax® M5

microplate reader (Molecular Devices, USA) after 1, 2, 4, and

6 h.

Colony-forming unit assay was introduced to investigate

the Ag NPs against the antibiotic-resistant bacterial cells. E.

coli stably expresses pcDNA3.4 plasmid containing the β-

lactamase gene which confers resistance to ampicillin as a

model. When the ampicillin-resistant E. coli (E. coli-Amp+)

cells reached log phase growth, the E. coli-Amp+ cells were

grown in the LB agar plate in the treatment with ampicillin

alone or in the combinational treatment with Ag NPs and

incubated at 37 °C for 18 h. The number of E. coli-Amp+ col-

onies formed on LB plates was calculated. All assays were

performed at least three times.

Results and Discussion
Synthesis of Ag NPs

As schematically illustrated in Scheme 1, the preparation

of Ag NPs started with the self-assembly of biomolecules

in the yeast extract to form yeast micelles. Then, Ag+ was

reduced in situ by the reducing agents in the yeast extract,

including amino acids, vitamins, and carbohydrates. The

formed Ag nanoparticles were stabilized by the biomole-

cules. The surface coating on Ag NPs enhanced the affin-

ity towards the bacterial membrane, increasing the

permeability of the cell wall. The interaction between Ag

NPs and peptidoglycan changed the configuration of pep-

tidoglycan, finally leading to the apoptosis process to

damage the bacteria.

Structural Characterization of Ag NPs

As shown in Fig. 1a, the typical SEM image showed that

the synthesized Ag NPs have a spherical shape and fine

size. The EDX confirmed the formation of Ag NPs (Fig.

1b). A strong optical absorption peak was observed at ap-

proximately 3 keV, which is a typical optical absorption

peak of silver nanocrystallites for surface plasmon reson-

ance. The minor amounts of oxygen and carbon could be

attributed to the thin layer of organic capping on the syn-

thesized Ag NPs. The reaction of AgNO3 solution with

NaOH leads to the formation of a small amount of Ag2O.

Therefore, a small amount of O can also be attributed to

the presence of Ag2O. The morphology and size of the Ag

NPs were further characterized by high-resolution TEM

(HRTEM). The Ag NPs ranged in diameter from 10.3 to

18.9 nm (Fig. 1c), with an average size of 13.8 nm (Fig. 1d).

The size, shape, and surface chemistry of Ag NPs showed

an important effect on the antimicrobial activity. The

smaller size and higher surface area allowed the Ag NPs to

Scheme 1 Proposed schematic illustration of the biosynthesis of Ag NPs
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better interact with the bacterial membrane for further en-

hanced antimicrobial activity [15–17]. The clear lattice

fringes in the HRTEM image showed a fringe spacing

of 0.15 nm (Fig. 2a), which corresponds to the (220)

planes of silver. As shown in Fig. 2b, the crystalline

nature of the Ag NPs was demonstrated by the typ-

ical selected-area diffraction (SAED) patterns, where

the bright circular rings correspond to the (311),

(220), (200), and (111) planes [18, 19].

The UV-Vis spectrum of Ag NPs exhibited a strong peak

at 418 nm, which was due to surface plasmon resonance

(Fig. 3a). A yellow solution of synthesized Ag NPs is shown

in Fig. 3b, which indicates the formation of Ag NPs. The

XRD pattern analysis of the synthesized Ag NPs showed

four intense peaks at 77.36°, 64.30°, 43.52°, and 38.16°, cor-

responding to the (311), (220), (200), and (111) planes for

silver, respectively (Fig. 3c). The data was confirmed by

standard silver data from JCPDS card No. 04-0783 [20].

Fig. 1 a Field emission SEM image of Ag NPs, b EDX spectrum of Ag NPs, c TEM image of Ag NPs, and d size distribution of Ag NPs

Fig. 2 a Lattice fringes of Ag NPs in the HR-TEM image, b circular rings of Ag NPs from the typical selected-area diffraction (SAED) patterns
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The XRD pattern demonstrated the crystalline nature of

the synthesized Ag NPs, in agreement with a previous re-

port [21]. FTIR analysis was employed to characterize

and identify the potential biomolecules on the synthe-

sized Ag NPs (Fig. 3d). The broad band at 3405 cm−1

corresponds to −OH stretching [22]. The weaker peak

at 2915 cm−1 is assigned to the −CH2 stretching vi-

bration. The band at 1655 cm−1 in the yeast extract is

due to the C=O stretching vibration of carboxyl moi-

eties, and this band shifts to 1573 cm−1 in Ag NPs,

due to the interaction between carboxyl moieties and

Ag NPs [23]. The sharp peak at 1375 cm−1 is attributed

to the C–N stretching vibration. The bands at 1048 cm−1

and 1083 cm−1 are assigned to the stretching vibrations of

C–O–C and C–OH, respectively [24, 25]. These results

demonstrated that biomolecules of the yeast extract were

responsible for the biosynthesis of Ag NPs. The surface

coating on Ag NPs affected the affinity towards the bacter-

ial membrane [26, 27]. The states of Ag NPs were further

characterized by XPS. As shown in Fig. 4a, the full scan of

the XPS spectrum with clear peaks was attributed to C 1s,

Ag 3d, Ag 3p, Ag 3s, and O 1s. The Ag 3d (5/2) and Ag

3d (3/2) peaks were observed at binding energies of ap-

proximately 368.5 and 374.5 eV, respectively (Fig. 4b).

Fig. 3 a UV-Vis spectrum of Ag NPs, b photo of synthesized Ag NPs, c XRD pattern of Ag NPs, and d FTIR spectrum of Ag NPs and yeast extract

Fig. 4 a The full scan of XPS spectrum of Ag NPs and b the Ag 3d XPS spectrum
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This energy splitting value of 6.0 eV demonstrated the for-

mation of Ag NPs [28, 29].

The surface charge of Ag NPs was determined by Malvern

Zeta Nano ZS-90 instrument, which is an important param-

eter of stability and dispersion of the colloidal solutions. The

zeta potential is the surface electrostatic potential at the

boundary between the diffuse layer and compact layer of

nanoparticles, and which is an indicator for applications of

biomedical polymers [30]. As shown in Additional file 1: Fig.

S1, at a lower pH value of 3, the zeta potential of Ag NPs re-

vealed a slightly negative charge (− 3.2mV). The zeta poten-

tial of Ag NPs decreased monotonically from − 12.1mV at

pH 7.0 to − 24.4mV at pH11.0, which confirmed the nega-

tively charged groups on the surface of Ag NPs. Gao et al.

reported that the dispersion and stability of Ag NPs mainly

attribute to the surface charge [31]. The presence of nega-

tively charged groups improves the stability and dispersion

of Ag NPs in aqueous solutions [32].

Cytotoxicity of Ag NPs and Analysis of Biomolecules

The biocompatibility of the synthesized Ag NPs is import-

ant for their further biomedical application. To investigate

the cytotoxicity of the Ag NPs, the cell viability of Cos-7

cells was detected by the MTS assay. The Cos-7 cells were

incubated with Ag NPs at different concentrations for 24

h. As shown in Fig. 5a, no significant cytotoxicity was re-

vealed when cells were treated with the Ag NPs at concen-

trations as high as 200 μg/mL. It can be concluded that

the Ag NPs showed negligible cytotoxicity and good bio-

compatibility towards Cos-7 cells.

To explore the synthetic mechanisms of the synthe-

sized Ag NPs, we analyzed biomolecules on the surface

of Ag NPs and yeast extract. As shown in Fig. 5b, the

SDS-PAGE analysis showed no detectable or marginal

protein on the surface of the synthesized Ag NPs or in

the yeast extract. We further determined the biomole-

cules in the yeast extract with a high-speed amino acid

analyzer. As summarized in Additional file 1: Table S1

of supporting information, there are approximately 22

kinds of amino acids in the yeast extract that are rich in

glutamic acid, γ-aminobutyric acid, ornament, and

alpha-linolenic acid. The isoelectric point of these amino

acids is approximately 6, except those of lysine and ar-

ginine are approximately 10~11. In addition, a variety of

components containing −NH2, such as urea, ammonia,

asparagine, and glutamine, could be found. The biomol-

ecules of reductive amino acids, alpha-linolenic acid, and

carbohydrates in the yeast extract have a significant role

in the formation of Ag NPs. It was reported that

NADH-dependent reductase [33, 34] or the nitrate re-

ductase enzyme is involved in the reduction process

[35–37] in the biosynthesis of Ag NPs via the micro-

organism extract.

Biomolecules of the yeast extract play a decisive part in

the formation of Ag NPs by protecting them from aggrega-

tion. Stabilizers of biomolecules help to prevent redundant

reactions between Ag NPs [38]. The amphoteric molecules

of amino acids contain both basic and acidic groups. The

net charge of these amino acid compounds can be negative

or positive depending on the pH changes of the yeast ex-

tract solution, which further affects the binding ability dur-

ing the synthesis of Ag NPs [39]. In the alkaline solution,

amino acids on the surface of Ag NPs carry net negative

charges which maximize the electrostatic repulsion interac-

tions [40–42]. The biomolecules from the yeast extract act

as a capping agent and play a key role in controlling the size

distribution, shape, and morphology in the formation of Ag

NPs. The value of pH is an important factor with an effect

on the controlled synthesis of Ag NPs in the study. When

the pH value is below 7, nucleation occurs at a low rate. Ag

NPs can be formed in a few minutes at higher pH values,

and the particle size decreases with the increasing pH

values of the solution. The optimal balance was demon-

strated between the growth processes and nucleation [43].

Fig. 5 a Cytotoxicity of Ag NPs in Cos-7 cells and, b SDS-PAGE analysis. Lane 1: loading buffer control. Lanes 2–4: synthesized Ag NPs. Lane 5:
yeast extract centrifuged with 8000 rpm
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The unstable and agglomerated Ag NPs always presented

in the reduction process of solutions with extreme pH

values (> 11) [44].

Antibacterial Activity

E. coli has been extensively evaluated for the antimicrobial

activity of Ag NPs. The growth of E. coli in the presence

or absence of Ag NPs proves the antimicrobial ability. As

shown in Fig. 6a, the synthesized Ag NPs exhibited signifi-

cant antibacterial activity in a concentration-dependent

manner against E. coli. The growth inhibition assay dem-

onstrated a complete reduction in E. coli at Ag NP con-

centrations above 20.0 μg/mL compared to the negative

control. The half inhibitory concentration (EC50) of Ag

NPs was 13.4 μg/mL. The dose of 20.0 μg/mL Ag NPs ex-

hibited a significant antibacterial effect against E. coli

throughout the tested time, while the 10.0 μg/mL Ag NPs

showed a partial inhibitory effect (Fig. 6b).

In order to investigate if the Ag NPs really affects the

antibiotic-resistant bacterial cells, we evaluated the anti-

bacterial activity of Ag NPs against ampicillin-resistant

E. coli by colony-forming unit assay. E. coli-Amp+ stably

expresses a high copy number of pcDNA3.4 plasmid

containing the β-lactamase gene which confers

ampicillin-resistance to E. coli [45]. The E. coli-Amp+

cells were grown in the LB agar plate in the treatment

Fig. 6 a The growth inhibition of E. coli and b time course analysis of the antibacterial effect

Fig. 7 The growth of E. coli-Amp+ in treatment with ampicillin alone (50 μg/mL) or in combination with Ag NPs (25 μg/mL). a High density and b

low density of E. coli-Amp+ cells
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with ampicillin alone or in the combinational treatment

with Ag NPs. The inhibitory activity of the prepared Ag

NPs is presented in Fig. 7. It was noted that the Ag NPs

in combination treatment with ampicillin displayed su-

perior antibacterial activity compared to ampicillin

alone. In contrast, the treatment of ampicillin alone has

no inhibitory activity on E. coli-Amp+. Combination

therapy of antibiotics and Ag NPs provides a comple-

mentary strategy to overcome antibiotic-resistant bacter-

ial cells, which further improves the current therapeutic

approaches. The overall results presented in this study

contribute to the development of alternative antibacter-

ial inhibitors to treat bacterial infections caused by

multidrug-resistant bacterial strains.

There is a great need for novel drugs with different

mechanisms to combat bacterial resistance. Due to their

potent antimicrobial activity, Ag NPs have been used in

medical products, personal care products and textiles.

There are multiple mechanisms by which Ag NP combat

microbial resistance [46]. Ag NPs accumulated on the

bacterial membrane surface, increasing the permeability of

the cell wall. The interaction between Ag NPs and pep-

tidoglycan changed the configuration of peptidoglycan

and thus damaged the bacterial membrane [47]. The char-

acteristics of shape, surface structure, morphology, disper-

sity, and biocompatibility of Ag NPs have a significant role

in their antimicrobial activity.

Conclusions
Herein, we report a novel biosynthetic method for the

preparation of Ag NPs using the yeast extract. The yeast

micelles formed when the Ag+ solution was mixed with

the yeast extract. Bioreducing biomolecules play a major

role in the reduction of Ag+. In addition, the biomolecules

provide favorable stability, monodispersity, and controllable

size distribution for the synthesized Ag NPs, exhibiting good

stability for more than a year without precipitation. The

high-speed amino acid analysis revealed that the yeast ex-

tract is rich in biomolecules, including amino acids, alpha-

linolenic acid, and aminobutyric acid. The Ag NPs exhibited

significant antibacterial activity in a concentration-

dependent manner against E. coli. The growth inhibition

assay demonstrated a complete reduction in E. coli at con-

centrations of Ag NPs above 20.0 μg/mL. The Ag NPs in

combination treatment with ampicillin exhibit superior anti-

bacterial activity compared to ampicillin alone against

ampicillin-resistant E. coli (E. coli-Amp+) cells. The surface

coatings on Ag NPs enhanced the affinity towards the bac-

terial membrane and increased the permeability of the cell

wall. The interaction between Ag NPs and peptidoglycan

changed the configuration of peptidoglycan and finally led

to the apoptosis of bacteria. Furthermore, these Ag NPs sta-

bilized by the biomolecules exhibited low cytotoxicity and

good biocompatibility toward Cos-7 cells.
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