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Introduction: In recent years, the use of cost-effective, multifunctional, environmentally

friendly and simple prepared nanomaterials/nanoparticles have been emerged considerably.

In this manner, different synthesizing methods were reported and optimized, but there is still

lack of a comprehensive method with multifunctional properties.

Materials and Methods: In this study, we aim to synthesis the copper oxide nanoparticles

using Achillea millefolium leaf extracts for the first time. Catalytic activity was investigated by in

situ azide alkyne cycloaddition click and also A3 coupling reaction, and optimized in terms of

temperature, solvent, and time of the reaction. Furthermore, the photocatalytic activity of the

synthesized nanoparticles was screened in terms of degradation methylene blue dye. Biological

activity of the synthesized nanoparticles was evaluated in terms of antibacterial and anti-fungal

assessments against Staphylococcus aureus, M. tuberculosis, E. coli, K. pneumoniae, P. mirabili,

C. diphtheriae and S. pyogenes bacteria’s and G. albicans, A. flavus, M. canis and G. glabrata

fungus. In the next step, the biosynthesized CuO-NPs were screened by MTT and NTU assays.

Results: Based on our knowledge, this is a comprehensive study on the catalytic and

biological activity of copper oxide nanoparticles synthesizing from Achillea millefolium,

which presents great and significant results (in both catalytic and biological activities) based

on a simple and green procedure.

Conclusion: Comprehensive biomedical and catalytic investigation of the biosynthesized

CuO-NPs showed the mentioned method leads to synthesis of more eco-friendly nanoparticles.

The in vitro studies showed promising and considerable results, and due to the great stability of

these nanoparticles in a green media, effective biological activity considered as an advantageous.

Keywords: copper oxide nanoparticles, green synthesis, catalytic activity, antibacterial

activity, antifungal activity

Introduction
Nanotechnology, which is considered as a scientific revolution in the present

century, is developing rapidly in several subjects including chemistry, physics,

engineering and medicine. Nanotechnology plays a very important role in

modern research; its high ability in many fields, such as pharmacy, electronics,

health, food, biomedical sciences, pharmaceuticals, chemistry and chemical

industry, energy sciences, cosmetics, environmental health, mechanics and

space industry. Among these wide applications, using metal nanoparticles have

found considerable results in several applications including nanochemistry. In

the last years, there were a wide interest between scientists in utilizing the

principles of green chemistry to synthesize metal nanoparticles for several

applications. In this case, gold and silver nanoparticles synthesized from
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vegetable oil can be used as anti-bacterial agents, and

recent reports revealed that copper nanoparticles (with

the band gap of about 2.43 eV) show considerable anti-

bacterial, anti-fungal and related effects in comparison

with bulk CuO (with the bang dap of about 1.85 eV)

which have been considered in this study. Green chem-

istry is the design, development and implementation of

chemical products and processes to reduce or eliminate

the use and generation of substances hazardous to

human health and the environment. It should be noted

that, strategies should be addressed environmental issues

and related subjects, which in this case we have been

pointed the use of biodegradable polymers, environmen-

tally benign solvents and non-toxic chemicals.1–8

There are several steps that can be able to tune or

optimize via green chemistry, however, in the synthesis

of metal nanoparticles through preparing from correspond-

ing metal ion salt by a reduction processes, three factors

have been considered as an opportunity to implement

green chemistry in this field. The first one is solvent,

second is reducing agent and the last one is capping

agent or dispersing agent. In this matter, green chemistry

area focused on optimizing one of these factors via finding

green alternatives for them, or using multicomponent as in

situ alternatives for these three factors simultaneously.9–15

The use of metal nanoparticles has different applications

in different industries, but in general, these nanoparticles play

a very important role as catalysts for different reactions

including Mizoroki-Heck, Sonogashira, A3 and carbon-cou-

pling reactions. One of the important factors that can increase

the efficiency of different industries is the use of nanoparti-

cles, or better to say, different catalysts with multiple func-

tions, as well as low cost along with high life-time and high

efficiency. Using synthetic methods of green chemistry can

help to achieve these important parameters.16–20

In the present study, we have been focused on synthesizing

and characterizing copper oxide nanoparticles from Achillea

millefolium, and investigating potential biological and catalytic

activities of these nanoparticles. Full investigation in terms of

biological activities from antibacterial and antifungal towards

cellular toxicity assessments were accomplished with details.

Materials and Methods

Chemicals, Reagents and Plant Source
All of the materials and reagents were of analytical

grade and obtained from Sigma-Aldrich, Germany.

Achillea millefolium leaves were collected from

Kurdistan, Iran. The plant, Achillea millefolium, was

previously identified in the literature by GC-MS techni-

que, therefore, we use the fact that have been published

for the concept of this study.21–23

Preparation of Plant Extract for Synthesis

of Nanoparticles
Preparation of the plant extract for the synthesis of nano-

particles were performed based on the literature.24 Briefly,

the plant, Achillea millefolium, collected from the nature,

and washed for several times with deionized water, and

after that prepared for drying at room temperature. The

dried ones were poured into mortar and turn into the fine

powder. The fine powders were dispersed in deionized

water (150 mL) and heated up to 70°C for about 30

minutes. The resulted suspension, or in some cases fine

solution, were filtered through a filter paper and the

obtained extract was stored at 4°C for further procedures.

Based on the literature, the extraction yield is not an

important parameter for this type of studies,25,26 but by

using spectroscopy techniques, the extraction yield was

determined and calculated about 60% which is appropriate

for our study.

Synthesizing of Copper Oxide

Nanoparticles
To achieve these nanoparticles from the Achillea millefo-

lium leaf broth, 40 mL of Achillea millefolium was poured

into 100 mL of the cupric sulfate solution (1 mM) and the

suspension was stirred for a day at room temperature.

After that, the synthesized nanoparticles were filtered and

centrifuged at 10,000 rpm for about 30 minutes. In this

method, the leaf extract was act as both reducing agent and

stabilizing agent, which help the growth of the nanoparti-

cles and also reduce and minimize the aggregation process

of the nanoparticles by capping them with aldehyde and

ketone groups.

As purification of the synthesized nanoparticles is an

important procedure in nanoparticle synthesis, the exact

procedure for nanoparticle separations explained there.

Briefly, to approach this goal, separation of the unreacted

components from the synthesized CuO-NPs, the mixture

was centrifuged at 15,000 rpm for 15 minutes and washed

several times using deionized water. Freeze-drying was

applied to obtain dried powder of the CuO-NPs. In addi-

tion, the separations based on chromatographic techni-

ques including ion-exchange chromatography and was
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also used. The yield of synthesis of the CuO-NPs was

calculated 88%, which is appropriate for this type of

studies and is above the chemical and physical synthesis

methods.27–29

Characterization of Synthesized

Nanoparticles
Characterization techniques were applied same as our

previous publication.30 UV–vis spectrometer (Perkin

Elmer Lambda 25) was applied to record absorbance of

CuO-NPs in the range of 200–800 nm. Fourier trans-

formed infrared spectroscopy (FT-IR) spectrum was

applied using JASCO FT-IR-460 spectrometer in the

range of 400–4000 cm−1). Powdered X-ray diffraction

(PXRD) spectra were obtained by an automated Philips

X’Pert X-ray diffractometer with Cu Ka radiation (40 kV

and 30 mA) for 2θ values over the range of 10–80. The

morphology of synthesized CuO-NPs was observed by

field emission scanning electron microscope (FESEM,

TESCAN MIRA-3) under an acceleration voltage of

30–250 kV.

General Catalytic Procedure
In this step, which have been adopted from our recent

publication,31 CuO nanoparticles (as a catalyst) were

added to the reactor containing 0.5 mmol alkyne,

0.55 mmol NaN3, 0.55 mmol the organic halide and 2

mL of water. This mixture was stirred at 70°C for 10

hours and the reaction monitored by thin-layer chroma-

tography (TLC). After that, 5 mL of water was added

dropwise to the final solution and the final product was

extracted from the aqueous phase with ethyl acetate.

The organic layer was dried with anhydrous CaCl2 and

the solvent was removed under reduced pressure to give

the corresponding 1,2,3-triazoles. After extraction with

ethyl acetate, the reaction mixture was filtered and the

residue was subjected to column chromatography (elu-

ent, 40% EtOAc in n-hexane).

Based on the literature,32–34 there is a typical procedure

for the synthesis of propargylamine derivatives via A3

coupling reaction, briefly, 0.5 mmol of secondary amine

and 0.5 mmol of aldehyde along with 0.55 mmol alkyne

were reacted in the presence of suitable solvent and the

catalyst, in this case CuO-NPs, at the precision tempera-

ture and time. It should be mentioned that the progress of

the reaction was screened by TLC.

Photocatalytic Activity
In this step, the photocatalytic activities of the CuO-NPs

were evaluated based on the literature35 by calculating

the MB degradation in an aqueous solution (a visible

light irradiation with the wavelength of λ>420 nm was

applied). For this purpose, a lamp (mercury one, with

the precision power (A 250-W)) as the source of light

was used. To determine the photocatalytic activity of the

CuO-NPs, an optical glass with around 400 to 800 nm

cutoff filter was applied. For each experiment, the pro-

cess (photocatalytic experiment) was conducted with a

photoreactor (usually 100 mL one) at ambient tempera-

ture. To conduct each analysis, a precise amount of the

CuO-NPs as the photocatalyst (0.2 g L−1) was dispersed

(with the aims of the ultrasonic) in a precision concen-

tration of aqueous solution of MB (8 mg L−1) and the

solution was exposed to the irradiation under mild stir-

ring. After the exact time interval (with the regular

steps), 5 mL of the exposed solution was separated

and was screened at the absorbance wavelength of 660

nm to calculate the concentration of MB.

Antibacterial Activity
To investigate the potential antibacterial activity, disc dif-

fusion technique was applied based on the literature.36–38

These strains of bacteria are stable in nutrient broth for a

day at 37°C. In the following, they were streaked over

surface of the Muller Hinton Agar using the sterile cotton

swabs.

The obtained were used extract against the broth inocu-

lums (czapek Dox) with the age of about a day that have been

cultured on the agar plate for different gram-positive and

gram-negative spores. In the following, the synthesized nano-

particles and also the standard solution were dissolved in

DMSO, and four well plates on the Hinton agar were used

for the procedure. Then 15 μL of compound was injected on

the paper disc (in sterile form), after that the extract was kept

for several minutes to dry meanwhile and the disc kept on the

plate surface. In the next step, the plates are incubated for at

37°C for a day and the antibacterial activities were calculated

as diameter zone of inhibitive.

Anti-Fungal Activity
In this stage, the CuO-NPs were investigated for the

potential antifungal activity against different kind of

fungi’s. For this purpose, a culture including sabouraud

dextrose agar (Sigma-Aldrich GmbH, Germany) (106
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cfu/mL) transferred to a plates and the prepared discs

were exposed to the exact concentration of the synthe-

sized nanoparticles and finally were stabilized on the

surface of the agar. After that, the plates were incubated

for a week at 32°C. To acquire the results, inhibition

zones were recorded in mm in comparison with the

standard drugs, amphotericin B and miconazole.

Cell Culture
In this study, HepG2 (ATCC HB-8065TM) cells were

applied in all of the following experiments. HepG2

cells were grown in DMEM (Gibco, Invitrogen,

Norway), which have been supplemented with 1 mM

amino acids (non-essential one’s), 1.5 g/L sodium bicar-

bonate and fetal bovine serum (10%) (FBS) and 5%

CO2 at 37°C. In the next step, at about 85% confluence,

0.25% of trypsin was applied for harvesting the cells

and also were cultured into a flask. The cells with the

nanoparticles were diluted with exact amounts, and

sonicated for about 15 minutes to avoid the aggrega-

tions. It should be mentioned that the concentrations

were achieved by dose-response study (data not

shown), and in some circumstances, the HepG2 cells

were exposed to N-acetyl-cysteine (10 mM) for about

1.5 hours before treatment by the CuO-NPs. For this

study, the synthesized nanoparticles and the leaf extract

solutions were dispersed in the culture medium (final

volume should be 0.2% in maximum), the treatment was

performed for 12 hours, and after that, the cells were

washed by PBS.

Colorimetric Cell Viability Assay
To investigate the cytotoxicity of the prepared synthesized

nanoparticles and also the cellular proliferation of them,

HepG2 cell line was applied based on the protocol was

mentioned in the literature.39–42 Briefly, the mentioned

cells were seeded in a 96-well plate tissue culture at a

standard density (104 cells per well) and incubated in 100

µL of DMEM/F12 which have been supplemented with

10% FBS for a day. Afterward, the culture media were

replaced with the fresh one containing several dilutions of

the synthesized material, and the prepared cells were incu-

bated for 5 hours. In the following, the resulted media

were replaced with 100 µL of the fresh one for additional

24 hours. Finally, the medium was replaced with 100 µL

of the fresh one including MTT, and were also incubated

again at 37°C for 4 hours. After successful incubation for

4 hours, the resulted medium was aspirated and the MTT

formazan which have been generated in this step was

dissolved in the next 100 µL of DMSO and the absorbance

of each well was recorded utilizing a microplate reader

(570 nm). The resulted data are presented as average ±

SD (n=3).

Neutral Red Uptake Assay
In this step, the neutral red uptake (NRU) assay was

investigated based on the literature with some modifica-

tions. Briefly, about 104 cells/well were cultured in a

96-well plates and after that, exposed to the different

CuO-NPs concentration solutions for a day. After 24

hours, the solutions were aspirated carefully and the

obtained cells were washed for several times with PBS

and incubated for about 4 hours at the medium (including

60 µg/mL of neutral red). The final medium was washed

carefully with a solution of calcium chloride (1%) and

formaldehyde (0.5%), and the cells were incubated again

for 30 minutes at the same condition, in a mixture of

ethanol (50%) and acetic acid (1%). In the final step, 100

µL of the supernatant was transferred to a plate and the

absorbance measured at 540 nm by microplate reader.

The resulted data are presented as average ± SD (n=3).

Statistical Analysis
All of the statistical analysis related to MTT assays and

other experiments were performed by one-way analysis of

variance (ANOVA) followed by OriginPro 9.1 software

compatible tests of Bonferroni post-hoc. In addition, all

data represent means of ±SD of at least n=3 independent

sets of experiments.

Results and Discussion

FTIR Results
Based on the FTIR spectrum in Figure 1, the semi-broad band

observed at around 3408 cm−1 illustrate the stretching fre-

quency of hydroxyl group, which is an indicator of the surface

morphology of the synthesized nanoparticles. Furthermore, a

peak at 1056 cm−1 corresponds to the ester bonds between

copper species and also hydroxyl groups. Finally, the obtained

spectrum was compared to the prestigious papers in the litera-

ture and confirmed successful biosynthesis of the CuO-

NPs.43–45

UV-Vis Spectra Analysis
The absorption spectra (Figure 2) represented a peak at

around 250 nm that is an index of Cu2O phases.46 And
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another peak at around 365 nm represent correct bio-

synthesized of copper oxide nanoparticles.47–49 It should

be mentioned that, the broadness of the absorption peak

is because of wide size distribution of these

nanoparticles.

FESEM Analysis
To evaluate the morphology of synthesized nanoparti-

cles, FESEM analysis was used. FESEM images of the

synthesized copper oxide nanoparticles using Achillea

millefolium is shown in Figure 3. The biosynthesized

CuO-NPs by this method reveals a monodispersed dis-

tribution with also homogenous size range. The average

particle size of the CuO nanoparticles is around 28 nm.

The shape and morphology of the nanoparticles are

dependent on the reducing agent as well as stabilizing

agent, which in this case, both of them are the plant

extract, therefore, the semi-spherical morphology of

them are because of the good candidate that is chosen

in this study. These data are in full agreement with

recent prestigious studies around biosynthesizing CuO-

NPs.50–52

Figure 1 The FT-IR spectra of synthesized CuO-NPs.

Figure 2 UV/Vis spectrum of the synthesized CuO-NPs.
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XRD Analysis
PXRD was used to assess the exact structural chemistry

of CuO-NPs (Figure 4). There are three main character-

istic diffraction peaks for Cu are at around 2θ = 43°, 50°,

74° which correspond to the (111), (200), (220) crystal-

lographic planes of face-centered cubic (fcc) Cu phase

(JCPDS card No. 04–0784). And a diffraction peak

around 29° indicates the (110) crystallographic plane of

Cu2O. In addition, diffraction peak at around 2θ = 38°

correspond to the (111) crystallographic plane of Cu2O.

These diffraction peaks are in good agreement with the

literature.53–55

Catalytic Activity
To investigate the catalytic activity of the synthesized

nanoparticles, a typical reaction between sodium azide,

benzyl chloride and phenyl acetylene were carried out. In

order to obtain an optimized condition, this reaction opti-

mized in terms of reaction time, amount of catalyst, sol-

vent and reaction temperature and these results shown in

Figure 3 FESEM images of the synthesized CuO-NPs with different magnifications: (A) 2µm and (B) 500 nm.

Figure 4 XRD of the synthesized CuO-NPs.
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Table 1. In the first step, no catalyst was used, and no

product observed (entries 1, Table 1), however, in the

presence of catalyst, a considerable increase in yield was

monitored, to be exact, by loading of the 0.27 to 1.35 mol

% (entries 2 and 6, Table 1, respectively) of the catalyst,

the yield increased sharply from 79% to 98%, and further

increase in the amount of the loaded catalyst (entry 7,

Table 1) showed no further increase in the isolated yield.

From another perspective, different solvents were used to

optimize the condition. Interestingly, for this cycloaddition

reaction, organic solvents (acetone, chloroform, toluene

and ethanol) showed poor yield and by using water as

the solvent, the best results were obtained (Figure 5). In

addition, an acceptable reactivity was screened when the

reaction mixture was heated to 70°C (entries 9, 10 and 11,

Table 1). Another interesting results were of optimizing

the time of the reaction, which in this case by increasing

the time of the reaction two folds from 2 to 4 hours,

isolated yield gradually increased (entries 12 and 13,

Table 1). In addition, different substituted groups were

investigated as well. In this regard, different substituted

phenyl acetylenes and benzyl halides were used with the

optimized condition to produce the isolated product

(Table 2). Generally, the results showed that by using

electron donating or electron-withdrawing groups on the

phenyl acetylenes and benzyl halides, no significant

changes in isolated yield were screened, however, steric

hindrance has effect on the isolated yield, to be exact,

p-methyl benzyl chloride is more reactive than o-methyl

benzyl chloride because of the less steric hindrance.56 The

results showed that benzyl chloride is more reactive than

benzyl bromide, and it was predicted.31 For further inves-

tigation, 2-methyl-3-butyn-2-ol and propargyl alcohol

were used as a terminal alkyne and the reaction accom-

plished smoothly to the final product in the moderated

yields.

In the final step, a logical comparison based on the

optimized condition as well as isolated yield were made

between this work and the literature (Table 3). The

present work revealed an acceptable and promising

Table 1 The Effect of Time, Temperature and the Amount of

Catalyst on the Cycloaddition of Benzyl Chloride with Phenyl

Acetylene in the Presence of Sodium Azide.a

Entry Cat (mol %) Temp (°C) Time (h) Yield (%)b

1 – 70 12 0

2 0.27 70 6 79

3 0.54 70 6 81

4 0.81 70 6 88

5 1.08 70 6 92

6 1.35 70 6 98

7 1.62 70 6 98

9 1.35 40 6 68

10 1.35 50 6 79

11 1.35 60 6 89

12 1.35 70 4 66

13 1.35 70 2 55

Notes: aReaction conditions: 0.5 mmol of phenylacetylene, 0.55 mmol of benzyl

chloride, 0.55 mmol of sodium azide, 2 mL of H2O. bIsolated yields.

Figure 5 Effect of solvent on the cycloaddition of benzyl chloride with phenyl acetylene and sodium azide. Reaction condition: 0.5 mmol of phenylacetylene, 0.55 mmol of

benzyl chloride, 0.55 mmol of sodium azide, solvent 2 mL, 70°C, 6h. Isolated yields.
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Table 2 Cycloaddition of Alkyl Halides with Terminal Alkynes in the Presence of CuO Catalysts and NaN3 Under the Optimized

Reaction Conditions.a

Entry Aliphatic halide Alkyne Yield(%)b

1

Cl

98

2

Cl

89

3

Cl

95

4

Cl

O
2
N

94

5

Cl

MeO

97

6

Cl

95

(Continued)
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Table 2 (Continued).

Entry Aliphatic halide Alkyne Yield(%)b

7

Cl

HO

68

8

Cl

HO

61

9

Br

81

10

Br

MeO

91

11

Br

88

12

Br

HO

62

(Continued)
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results without using inert atmosphere and sodium

ascorbate, however, the other publications showed that

they are necessary. In addition, in the present work, the

crucial factors such as temperature, reaction time and

amount of the catalyst were optimized and based on the

recent publications, the present catalyst accomplished

the reaction in lower temperature, less reaction time

and less amount of the catalyst in comparison with the

other studies. It should be mentioned that, in situ gen-

eration of organic azides by a simple procedure and

green catalyst can be considered as one of the advanta-

geous of this work.

To investigate the catalytic activity of the synthe-

sized nanoparticles, a typical reaction between an alde-

hyde, amine and alkyne was carried out. To obtain the

optimum conditions, initially the solvent was optimized

(Table 4), and based on the results, chloroform was

found to be the optimum solvent for this typical reac-

tion (mechanism Figure 6). Furthermore, the time of

the reaction was optimized in the absence of catalyst

and also in the presence of the precision amount of the

catalyst (Table 5), and 20 hours found to be the opti-

mized time reaction in the chloroform as the solvent. In

the next step, the amount of the catalyst was optimized

(Table 6) and 0.01 g was found to be the optimum

amount of catalyst in this typical reaction. And in the

final step of the investigation based on the A3 coupling

Table 2 (Continued).

Entry Aliphatic halide Alkyne Yield(%)b

13

Br

HO

58

Notes: aReaction conditions: 0.5 mmol of terminal alkyne, 0.55 mmol of alkyl halide, 0.55 mmol of sodium azide, 2 mL of H2O, 70°C and 6 h. bIsolated yields.

Table 3 Recently Reported Catalytic Systems for AAC in the Presence of CuO Nanoparticle

Entry Catalyst Conditions Yield (%) Ref.

1 Cu(NO3)2 3H2O Catalyst (20 mol%)/H2O/20 h/r.t. 13 57

2 Cu(OAc)2 H2O Catalyst (20 mol%)/H2O/20 h/r.t. 77 57

3 Cu NPs/silica coated maghemite Catalyst (4.3 mol%)/H2O/2h/70 °C 83 58

4 CuO nanowires Catalyst (5.0 mol%)/H2O: t-BuOH/12h/r. t. 99 59

5 Cu@Cu2O core-shell nanocatalyst Catalyst (2.3 mol%)/H2O: t-BuOH/5h/50 °C 99 60

6 Cu(II)-MOF Catalyst (2.3 mol%)/H2O: t-BuOH/5h/50 °C 12 60

7 CuO nanoparticle Catalyst (1.3 mol%)/H2O/6h/70 °C 98 Present work

Table 4 The Effect of Solvent, on the A3 Coupling Reaction on

the Reflux Temperature Zone

Entry Cat (mol %) Solvent Time (h) Yield (%)

1 – Water 24 8

2 0.003 Water 24 15

3 – Toluene 24 54

4 0.003 Toluene 24 66

5 – Chloroform 24 69

6 0.003 Chloroform 24 77

7 – Acetonitrile 24 Trace

9 0.003 Acetonitrile 24 Trace
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reaction, different derivatives of the precursors were

screened based on the optimum condition (Table 7).

Antibacterial Activity
The synthesizes copper oxide nanoparticle from Achillea

millefolium screened in vitro antibacterial activity

against seven different bacteria’s, Staphylococcus aur-

eus, M. tuberculosis, E. coli, K. pneumoniae, P. mirabili,

C. diphtheriae and S. pyogenes according to the litera-

ture and result that compared to the Imipenem standard

drug shown in Table 8. Based on the results, the bio-

synthesized CuO-NPs with low concentrations are really

competitive in terms of their antibacterial activity with

the mentioned standard drug, but, there is a interesting

results in different concentration of the biosynthesized

nanoparticles, to be exact, by increasing the concentra-

tion of the nanoparticles, the potential antibacterial

activity of the biosynthesized CuO-NPs against six

different bacterial increased significantly, but against

another bacteria increase in a gradual step. The mechan-

ism of the antibacterial properties of the biosynthesized

metal oxide nanoparticles have been proved in several

prestigious papers, that is based on the strong interaction

between the bacteria’s cell wall and the metal ions,

which resulted in rupturing the cell walls.61–67

Anti-Fungal Activity
The synthesizes copper oxide nanoparticle from Achillea

millefolium screened in vitro anti-fungal activity against

four different fungus, G. Albicans, A. flavus, M. canis and

G. glabrata according to the literature and result that

compared to the Amphotericin B and Miconazole stan-

dard drugs shown in Table 9. Based on the results, the

biosynthesized CuO-NPs have effective antifungal activ-

ity against different fungus, which could be because of

entering the CuO-NPs to the cell membranes and in the

following leads to cease the cells divisions via strong

interaction on the respiratory chains, however, to date,

this is the first report of the potential antifungal activity

of CuO-NPs like this, and this report is really important

to show the effect of the biosynthesis method to enhance

and improve the potential antibacterial as well as anti-

fungal activity in metal oxide nanoparticles.68–71

Photocatalytic Activity
To investigate the photocatalytic activity of the synthe-

sized CuO-NPs, MB was choosed in the dye degradation

process, and the UV-Vis spectrum with the maximum

absorption of 660 nm was applied. The solution contain-

ing the dye with both NPs were irradiated by visible

light and degradation of the dye was screened by UV-

Vis spectrum and the spectra taken at different times of

irradiation are represented in Figure 7. Based on the

results, there is considerable decrease in the maximum

absorbance in the presence of the irradiation and MB

was nearly degraded after about 100 minutes and in the

following the full degradation of the MB was observed

after 120 minutes in the presence of CuO-NPs which it

Figure 6 Catalytic mechanism of the A3 coupling reaction.

Table 5 The Effect of Time, on the A3 Coupling Reaction on the

Chloroform as the Solvent

Entry Cat (mol %) Temperature Time (h) Yield (%)

1 – Reflux 18 68

2 0.003 Reflux 18 77

3 – Reflux 20 81

4 0.003 Reflux 20 88.5

5 – Reflux 24 86

6 0.003 Reflux 24 91

Table 6 The Effect of Catalyst Amount, on the A3 Coupling

Reaction on the Chloroform as the Solvent

Entry Cat (mol %) Temperature Time (h) Yield (%)

1 0.003 Reflux 20 79

2 0.005 Reflux 20 82

3 0.01 Reflux 20 94
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Table 7 The Performance of the CuO-NPs as the Catalyst in the Typical A3 Coupling Reaction in the Presence of Different

Derivatives of the Precursors

Entry Amine Alkyne Aldehyde Yield (%)

1
H
N O

94

2

O

NH O
100

3
H
N O

82

4
H
N

HO

O
61

5
H
N

HO

O
74

(Continued)
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shows that CuO-NPs degraded a certain amount of color

in acceptable time. The dye degradation mechanism

based on the synthesized nanoparticles is based on pro-

ducing the electron and holes after exposure to the

irradiation, and by the reaction of electron with hydro-

xyl radicals, to be exact oxygen radicals, superoxide

radicals were produced, and the oxygen radicals could

be able to degrade the MB.

Cell Viability Assays
For this purpose, the synthesized nanoparticles with the

exact concentration were treated with HepG2 cells for

about 24 hours and the cytotoxicity of them were

examined by both NRU and MTT assays (Figure 8).

Based on the results, the green synthesized CuO-NPs

considerable decreased the relative cell viability (in dose-

dependent manner), and the decreasing trend is almost

same in both MTT and NRU assays. It should be men-

tioned that, based on the prestigious papers in the litera-

ture, is the studies like that there is no evidence of

effecting Cu2+ release in the toxicity of the synthesized

nanoparticles on HepG2 cells.39,72-74

Conclusion
The present study deals with biosynthesis of CuO-NPs

from Achillea millefolium leaves extracts, for the first

Table 7 (Continued).

Entry Amine Alkyne Aldehyde Yield (%)

6

N

O
14

7
O

H3CO

85

Table 8 Antibacterial Activity of Copper Oxide Nanoparticles

Concentration of NPs Staphylococcus aureus M. tuberculosis E. coli K. pneumoniae P. mirabili C. diphtheriae S. pyogenes

Based on zone of inhibition (mm)a

10 µg/mL 12.8 ± 0.5 29.1 ± 1.2 23.3 ± 0.9 18.5 ± 0.8 19.4 ± 0.6 27.1 ± 1.0 11.6 ± 0.4

50 µg/mL 26.1 ± 1.1 37.1 ± 1.5 28.3 1.1 29.3 ± 1.6 25.2 ± 1.1 24.7 ± 1.0 17.2 ± 0.8

100 µg/mL 30.3 ± 1.3 54 ± 1.9 36.2 ± 1.7 30.5 ± 1.5 34.7 ± 1.8 35.8 ± 2.0 22.5 ± 1.1

Imipenem Standard Drug 29 ± 1.2 30 ± 1.2 30 ± 1.2 25 ± 1.1 30 ± 1.2 30 ± 1.2 32 ± 1.2

Notes: aThe data indicate the zone of inhibition of bacteria colonization for 24 hours and is presented as the mean (±SD) from three independent experiments, each

comprising three microcultures per concentration level.
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time, and conducting a comprehensive study about both

potential biological and catalytic activities. The results

of catalytic activity of in situ azide-alkyne

cycloaddition click reaction, were of great importance

and the best results were found in a green media

(water) without any additional reagents, which make

Table 9 Antifungal Activity of Copper Oxide Nanoparticles

Concentration of NPs G. albicans A. flavus M. canis G. glabrata

Based on zone of inhibition (mm)a

10 µg/mL 11.6 ± 0.5 12.1 ± 0.6 17.4 ± 0.9 15.2 ± 1.4

50 µg/mL 19.5 ± 0.6 20.3 ± 1.1 21.6 ± 1.5 18.6 ± 1.2

100 µg/mL 34.2 ± 1.4 31.8 ± 1.7 37.6 ± 2.1 23.7 ± 1.5

Miconazole 20 ± 0.9 25 ± 1.7 25 ± 1.9 25 ± 1.1

Amphotericin B 25 ± 1.1 30 ± 1.6 25 ± 1.9 30 ± 2.2

Notes: aThe data indicate the zone of inhibition of bacteria colonization for 24 hours and is presented as the mean (±SD) from three independent experiments, each

comprising three microcultures per concentration level.

Figure 8 The results of MTTand NRU assays. The data value indicates the MTTand NRU assays that results for each concentration is presented as a mean (±SD) from three

independent experiments. * p< 0.05, ** p < 0.01 and *** p < 0.001 indicates the meaningful values.

Figure 7 The absorbance spectra of the MB dye in the presence of CuO-NPs in a typical photocatalytic degradation process. The results indicate the MB dye degradation in

the presence of different light exposure is presented as a mean (±SD) from three independent experiments.
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an emphasis on the potential of using these nanoparti-

cles and this procedure in the industrial phase. In

addition, the results of A3 coupling reaction and also

photocatalytic activities against MB dye was found to

be very interesting. From another perspective, potential

antibacterial and antifungal activity of these biosynthe-

sized nanoparticles were screened against

Staphylococcus aureus, M. tuberculosis, E. coli, K.

pneumoniae, P. mirabili, C. diphtheriae and S. pyo-

genes bacteria’s and G. albicans, A. flavus, M. canis

and G. glabrata fungus and the results are considered

as the synthesis method dependent of the metal oxide

nanoparticles and also the first CuO-NPs with these

considerable potential. In addition, comprehensive cel-

lular investigation of the toxicity of the biosynthesized

CuO-NPs showed the mentioned method leads to

synthesis of more eco-friendly nanoparticles. The in

vitro studies showed promising and considerable

results, and due to the great stability of these nanopar-

ticles in a green media, effective biological activity

considered as an advantageous.
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