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Abstract: Biphasic calcium phosphate (BCP) serves as one of the substitutes for bone as it consists of
an intimate mixture of beta-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) in different
ratios. BCP, because of its inbuilt properties such as osteoconductivity, biocompatibility, and biosta-
bility in several clinical models serves as a bone substituent for orthopedic applications. Therefore,
the present study aimed to assess the effectiveness of silver (Ag) nanoparticles (NPs) combined with
BCP composites for the orthopedic sector of bone tissue regeneration and growth. In this regard, we
first synthesized Ag-BCP microclusters by the double-emulsion method and then characterized the
composite for various physicochemical properties, including the crystallinity and crystal structure,
bonding and functionality, porosity, morphology, surface charges, topography, and thermal stability.
In addition, the antibacterial activity of Ag-BCP was tested against gram-positive and gram-negative
microorganisms such as Staphylococcus aureus, Candida albicans, and Escherichia coli. Finally, the
cytocompatibility of Ag-BCP was confirmed against the fibroblast cells in vitro.

Keywords: biphasic calcium phosphate; Ag nanoparticles; antibacterial activity; hydroxyapatite;
β-tricalcium phosphate; MTT assay

1. Introduction

In recent years, research relating to stem cells and tissue engineering has produced
efficacious therapeutic strategies for the treatment of damaged bones and their cells through
the regeneration/remodeling pathways [1]. For such applications, the composite scaffolds
containing the ingredients such as polymers [2,3], ceramics [4], metal nanoparticles (NPs),
and their composites [5] are highly suitable because of their inbuilt properties such as
porosity, conductivity, resistance, and biocompatibility. These synthetic composites with
their porous and biocompatible nature provide a suitable environment for regeneration
with complete functionality and effective proliferation of cells that eventually replace the
diseased bone cells. Furthermore, the synthetic bone scaffolds made up of said ingredients
have the capacity to encapsulate the therapeutic drug molecules that are useful for the
treatment of commonly attacking orthopedic diseases like bone and bone marrow tumors,
osteoporosis, and to avert an infection [6]. Of the various ingredients, the bioceramic
material, biphasic calcium phosphate (BCP) has several interesting properties and the most
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important is its mineral portion which is relatively easy to process and has an excellent cell–
cell attachment capacity. All these properties support its incorporation as a bone substituent,
biocement, surface coating, drug-delivery platform, and tissue engineering scaffold [7–9].
Additional advantages of BCP material are the low cost, unlimited availability, biocom-
patibility, predictability, biosafety, and lower morbidity to the patient over autografts and
allografts. Hence, this material serves as an attractive option for bone tissue engineering,
dental replacements, craniofacial surgeries, spinal surgery, and neurosurgeries [10].

The properties of BCP materials (similar to many different composites) can be strongly
influenced by altering the production parameters such as the solution pH, sintering temper-
ature, and purification processes. The calcium phosphates (Ca3PO4) thus formed consist
of unique physicochemical characteristics like an altered surface area, porosity, surface
energy, charges, and roughness [11–13]. In this direction, to control the pore sizes of bioce-
ramic compounds, one approach involves the incorporation of porogens and pore-formers.
An alternative method to this approach is the application of heat treatment to generate
macropores (diameter >100 µm) and micropores (with <10 µm diameter) [14]. Therefore,
taking advantage of this heat-induced method for the formation of high-surface bioceramics
having a macroporous and microporous nature to suit osteoconductivity, many researchers
have demonstrated the role of BCP as a bone substituent [15,16]. Moreover, the adjacent
concavities and nearby walls of the macropores serve as a salient point and favor the for-
mation of geometric-dependent of bone [17,18]. Furthermore, the surface dissolution leads
to the supersaturation of calcium (Ca) and phosphate (PO4

3−) ions, causing reprecipitation
and the generation of a biocompatible surface layer that permits an easy bonding of bone
with the synthetic bioceramic. This process has an impact on the potential of osteoinduc-
tion [19,20]. Of various kinds of Ca3PO4, the BCP kind is made up of stable and soluble
phases of ions with varying concentrations. Furthermore, the other form, hydroxyapatite
(HAP; chemical formula Ca10(PO4)6(OH)2), would be advantageous on top of other calcium
phosphates because of the guided bioactivity in linking the resorption/solubilization and
biomaterial stability towards the promotion of bone growth [21,22].

Silver (Ag) nanoparticles (NPs) are widely used in the treatment of bacterial infections
associated with injuries, wounds, tissue engineering and in the water treatment sector [23].
Ag NPs have high surface charges, surface area, surface-to-volume ratio, and surface
oxygen defects that promote antibacterial activity in contrast to the other Ag-salts and
organometallics [24,25]. Nevertheless, the stability and dispersion of Ag NPs curb their
biological efficiency by aggregation that leads to the formation of larger-sized crystals and
decreases the cumulative surface area. In some instances, this aggregation is overcome
to stabilize the NPs on substrates, leading to stability enhancement and an associated
antibacterial effect.

By considering the potential advantages of BCP to serve as a bone substituent and
Ag NPs for the impending antibacterial activity, the present work aimed to develop
a nanocomposite that has multiple functions to suit bone tissue engineering applications.
For that, we fabricated a hybrid composite consisting of a BCP matrix decorated in situ
with that of Ag NPs and for the formation of the composite, we employed a facile double-
emulsion method. The nanocomposite was analyzed for its physicochemical properties by
making use of various instrumental techniques like FTIR, powder XRD, SEM, zeta potential,
surface topology and TGA-DTG. Further, we tested the controlled drug release, antibacterial
activity, and in vitro cell viability capacity of as-synthesized Ag-BCP nanocomposite.

2. Materials and Methods
2.1. Formation of Ag NPs

About 50 mL of 0.01 mM AgNO3 in an aqueous solution was mixed with 50 mL of
0.1 mM glucose solution and the reaction was maintained at a pH of 11 using ammonia.
The reaction was kept for aging for 6 h and until the solution color changed from colorless to
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yellow, confirming the formation of Ag NPs. The Ag NPs were separated by centrifugation,
washed with ethanol 2–3 times, dried, and stored for loading onto BCP.

C6H12O6 + 2AgNO3
2NH4OH−−−−−→ Gluconic acid + 2Ag + 2NH4NO3 + H2O (1)

2.2. Synthesis of Ag-Decorated BCP

For the fabrication of the Ag-BCP nanocomposite, we first formed BCP by the combi-
nation of hydroxyapatite (HAP) and β-tricalcium phosphate (β-TCP). Both were prepared
individually. HAP was first prepared by mixing 50 mL of 1 M Calcium Nitrate as Ca
precursor solution (adjusted to a pH of 11 using NH4OH) with 50 mL of 0.66 M phosphate
solution in a dropwise manner. After the complete addition, the milky-white-colored
solution was stirred constantly for another 2 h to generate a white precipitate which was
kept for 24 h. Then, the precipitate was separated by filtration and washed with a solvent
mixture containing a 1:2 ratio of ethanol to water. The precipitate was kept in an oven
furnace for sintering at 800 ◦C overnight to finally generate a white powder of HAP.

For the formation of β-TCP, a simple co-precipitation method was used. To this end,
50 mL of an aqueous solution of calcium nitrate (0.9 M) was added dropwise to 50 mL of
ammonium dihydrogen phosphate (0.6 M) at a pH of 8 maintained by using concentrated
ammonia. Here, the Ca/P ratio of 1.5 was retained manually and the magnetic stirring
(set in the range of 200–250 rpm) was continued for 2 h even after the complete addition.
After that, the precipitate was separated, washed with an ethanol-water mixture, dried in
an oven, crushed, and sintered at 900 ◦C in a muffle furnace for 1 h. The final product was
stored in an airtight container.

For the synthesis of BCP implants [26], HAP and β-TCP powders in a 60:40 ratio
were grounded homogeneously using a mortar and pestle. The finely powdered mixture
was initially dried at 55 ◦C overnight and further subjected to 100 ◦C for 5 h. The fully
dried powder was collected and sealed with a polythene cover until its use. Finally, for the
loading of Ag NPs onto BCP, individual aqueous solutions containing equal amounts of
Ag NPs (25 mL) and BCP (25 mL slurry) were added together. The mixture was subjected
to ultrasonication to undergo homogenous mixing for a period of 15 min. This resulted
in the formation of a light-yellow-colored viscous solution that was kept in an oven at
110 ◦C for drying. The dried powder of the Ag-BCP composite was collected and used for
further analysis.

2.3. Instrumentation

Powdered X-ray diffraction (XRD) analysis was carried out to understand the crystal
structure and crystallinity. The powder samples were run in the 2θ range of 20–80◦ (Model:
Smart Lab se X-ray, Rigaku, Japan; k = 1.5418 Å). The morphology of the samples was
investigated using a field emission scanning electron microscopy (FESEM) connected with
an energy-dispersive X-ray diffractometer (Model: JOEL JFM 6390 Scientific, Peabody, MA,
USA). The functionality and bonding of samples were studied using Fourier transform
infrared spectroscopy (FTIR) in the wavenumber range of 4000–400 cm−1 (Spectrum 2,
PerkinElmer, Waltham, MA, USA) and confocal Raman spectroscopy (Alpha 300r, Witech,
Braunschweig, Germany). Furthermore, atomic force microscopy (AFM) studies were
employed to investigate the surface nature of the samples (Park xe7, Park system, Suwon,
Republic of Korea). The elemental composition of the samples was analyzed using X-ray
photoelectron spectroscopy (XPS, ULVAC-PHI, Inc; Model: PHI5000 Version Probe III).
For the thermal stability and phase changes, thermogravimetric analysis (TGA) and dif-
ferential thermal analysis (DTA) were performed (Netzsch sta 2500 was measured under
N2 environment between 30–800 ◦C). The zeta potential and dynamic light scattering
analysis were used to determine the particle size and surface charges (Horiba Scientific
Sz-100 instrument).
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2.4. Measurement of Porosity

To investigate the porosity of pelletized BCP and Ag-BCP samples, the liquid displace-
ment technique was used. The pelletized samples of BCP and Ag-BCP are not soluble
in ethanol. Thus, the penetrating ability of ethanol into the sample pores restricts the
occurrence of any swelling or shrinkage. For the testing, the sample pellet with a known
weight (W) was first immersed in a graduated cylinder that already had a known volume
(V1) of ethanol. The emigration (of ethanol) followed by depressurization for the undis-
turbed samples can be seen. This diffusion of ethanol into the pores can be continued
until we see the halting of air bubbles and at this stage, the volume of ethanol (i.e., sample
pellet soaked in ethanol) was noted as V2 and we measured the difference in two volumes
(V2–V1). Further, the sample pellet was removed from the cylinder containing ethanol and
we measured the residual volume (V3) of ethanol. By making use of W, V1, V2, and V3 in
the following formula, the porosity was calculated.

Porosity, ε =
(V1− V3)
(V2− V3)

(2)

2.5. In-Vitro Bioactivity and Biodegradation Studies

To investigate the extent of bioactivity for our materials in stimulated fluid (SBF)
in vitro, we first prepared a solution consisting of NaCl (7.9 g), NaHCO3 (0.3 g), KCl
(0.2 g), K2HPO4.3H2O (0.2 g), MgCl2.6H2O (0.3 g), CaCl2 (0.2 g), Na2SO4 (0.07 g) and
(CH2OH)3CNH2 (6.0 g) in double-distilled water (added one after the other). The formed
solution mixture pH was set to 7.4 with the help of HCl and maintained at 37 ◦C. For the
testing, the pelletized samples of BCP and Ag-BCP were soaked in SBF for 21 days and
after that, removed, rinsed with de-ionized water, and further subjected to SEM analysis to
investigate the extent of biomineralization (formation of any mass) at the surface.

The in vitro biodegradation/biodissolution studies were performed by investigating
the amount of Ag and Ca ions that were released into the buffer solution and by recording
the morphological changes linked to the release. The pellet (with a weight of 0.5 g as W0)
made from the granules was first immersed in a 20 mL tris-buffer solution maintained at
a pH of 7.4 at 37 ◦C. At the end of 3 weeks of incubation, we rinsed the sample pellets with
ethanol, dried, and measured its final mass (Wt). The weight loss can be calculated using
the equation:

Weight decrease = (Wt/W0) × 100% (3)

2.6. Studies of Drug Loading and Release

The drug loading capacity and release efficiency from the BCP and Ag-BCP matrices
were evaluated using the typical drug, Ciprofloxacin (CIP). Typically, 10 mg of CIP was
dispersed in 100 mL of double-distilled water containing 90 mg either of BCP or Ag-BCP.
The mixture was allowed to stir for 24 h at room temperature. Then, the precipitate was
separated by centrifugation, rinsed with distilled water, and dried. The drug-loaded sample
in the form of a pellet was collected. Further, for the drug release studies, a known weight
of bioceramic pellet loaded with CIP was placed in phosphate-buffered saline (PBS; pH 7.4)
and subjected to horizontal agitation on a shaking water bath set at 37 ◦C. After each
specified interval of time, about 5 mL of the sample (containing the released CIP) was
collected and replaced with an equal amount of fresh medium. UV–Vis spectrometry
was used for the qualitative and quantitative investigation of released CIP at various
time intervals.

2.7. Antibacterial and Antifungal Activity

The antibacterial activity of our bioceramic samples was measured by the agar disc
diffusion method involving Muller Hinton Agar (MHA) medium. The stock cultures were
maintained at 4 ◦C on the slant of the nutrient agar. The active cultures were prepared
by transferring a loop full of bacterial cells from the cultured stocks to nutrient broth-
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loaded test tubes and subjected to incubation at 37 ◦C for 24 h. The strains were used
for their antibacterial activity against the Gram-positive S. aureus, Gram-negative E. coli,
and antifungal activity against C. albicans. The discs were prepared with 20 µL of each
of the samples (Ag-BCP, HAP, β-TCP, and BCP), a negative control of dimethylsulfoxide
(DMSO), and a Standard 1 mg/mL of Streptomycin as positive control). The plates were
incubated for another 24 h at 37 ◦C and, finally, the growth of microbes was investigated by
measuring the diameter of the zone of inhibition (ZoI).

For the antifungal activity, the assay procedure is almost the same. We used the agar
disc diffusion method, where the stock cultures were maintained at 4 ◦C on the slant of
potato dextrose agar (PDA). Briefly, 4.4 g of PDA was weighed and dissolved in 100 mL of
distilled water followed by the addition of 1 g of agar. Then, we subjected the media to
sterilization, solidified the media for 1 h, and spread the inoculums on solid plates with
a sterile swab moistened with the fungal suspension. The discs contained 20 µL of each
of the testing samples (Ag-BCP, HAP, β-TCP, and BCP), a negative control (DMSO), and
a positive control (1 mg/mL of Ketoconazole). The extent of antifungal activity was
measured by incubating the sample-treated plates at 37 ◦C for 24 h and finally recording
the diameter of ZoI in mm.

2.8. In Vitro Cell Viability Assay

To investigate the cytocompatibility performance of as-synthesized bioceramic com-
posites, in vitro cell viability studies were carried out on the L929 mouse fibroblast cell line
over a 24 h period. Briefly, 1 × 105 cells per well were added to a 96-well plate containing
Dulbeccos Modified Eagle Medium (DMEM) and 10% fetal bovine serum (FBS). The cells
were allowed to grow until reaching their confluency level. Then, they were washed with
a fresh serum-free medium 2–3 times, followed by starvation for 1 h at 37◦ C. Subsequently,
the cells were treated with different concentrations (31.2–1000 mg/mL) of bioceramics, BCP,
and Ag-BCP over a 24-h period. Then, the old medium was replaced with a fresh serum-
free medium comprising 0.5 mg/mL of MTT (3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl
tetrazolium bromide) and incubated for another 4 h at 37 ◦C in a CO2 incubator. The
medium containing MTT was removed and the cells were washed with PBS to eliminate
any unreacted reagent. Then, we added DMSO while thoroughly mixing by pipetting
up and down to dissolve the formed formazan crystals. Finally, the purple-blue-colored
formazan crystals were analyzed spectrophotometrically by recording the absorbance at
570 nm (Biorad 680). Using these readings, the cytotoxicity was determined using the
Graph pad prism 5 software. Furthermore, the viable L929 cells were observed using
inverted phase-contrast microscopy.

Percentage (%) of cell viability = (Sample’s OD/Control’s OD) × 100 (4)

2.9. Statistical Analysis

All the statistical analyses were performed using a one-way analysis of variance (ANOVA)
and the data presented are the mean ± standard deviation of at least three individual experi-
ments with the value of p < 0.05 as statistically significant.

3. Results and Discussion
3.1. Physicochemical Analysis

Figure 1 shows the FTIR spectral analysis of (a) HAP, (b) β-TCP, (c) BCP, and
(d) Ag-BCP samples. All spectra indicate the presence of characteristic bands at 1032,
1098, and 1133 cm−1 due to the triply degenerated (υ3) asymmetric stretching vibrations
of P-O bonds. Furthermore, the observation of bands at 602 and 560 cm−1 signifies the υ4
vibration of -PO4 group and the band at 926 cm−1 indicates the υ1 vibration of phosphate
bond. The bending vibrational band observed at 630 cm−1 infers the liberational -OH
group (due to surface adsorbed water vapor/moisture) and the bands at 498 and 452 cm−1

are assigned to the υ2 vibration of the PO4
3− group. The asymmetric bending vibrations of
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the phosphate group present in HAP were evident through the observation of a band at
608 cm−1. Similarly, for the β-TCP sample, some prominent sharp bands were observed
at 560 and 602 cm−1 and can be linked to the bending vibrations of PO4

3− group. The
band at 960 cm−1 (visible as a minor hump) stems from the υ1 frequency of vibration,
and the band at 1037 cm−1 from the P-O stretching vibration of PO4

3− ions in β-TCP [27].
Further, for each sample, we observed some prominent bands at 3572 and 630 cm−1 owing
to the presence of hydroxyl groups, i.e., the sharp band at 730 cm−1 is due to H2O (surface
adsorbed) is available in all the tested samples, indicating the presence of moisture. For
the BCP sample, the υ1 and υ4 absorption bands were observed at 926 and 567 cm−1,
respectively. The intensity of the band observed at 926 cm−1 was least pronounced for BCP
and Ag-BCP samples and was due to the composition of the 60:40 ratio of HAP and β-TCP.
We observed no evidence for the occurrence of any chemical bonding between BCP and
Ag, meaning that the Ag NPs were physically embedded in the BCP. From the analysis,
the band patterns that appeared in all the samples (a-d) are best correlated with the earlier
reports. Table 1 shows the composition of FT-IR spectra of all the samples.
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Table 1. FTIR spectral data for (a) HAP, (b) β-TCP, (c) BCP, and (d) Ag-BCP samples.

Vibrational Frequency
(cm−1)

Band Assignment

HAP β-TCP BCP Ag-BCP

3572, 630 -OH group -OH group -OH group -OH group

2920 - - - Glucose-assisted Ag NPs (C-H)
stretching

1032, 1098, 1133 Asymmetric stretching
vibrations of the P–O bonds 1133 is absent Asymmetric stretching of the

P–O bonds
Asymmetric stretching of the

P–O bonds
1037 - PO4

3− ions found in β-TCP PO4
3− ions found in β-TCP PO4

3− ions found in β-TCP

926 Symmetric stretching (υ1) of
P–O bond from PO4

3− group - Symmetric stretching (υ1) of
P–O bond of PO4

3− group
Symmetric stretching (υ1) of

P–O bond of PO4
3− group

960 - Symmetric stretching (υ1) of
P–O bond of PO4

3− group
Symmetric stretching (υ1) of

P–O bond of PO4
3− group

Symmetric stretching (υ1) of
P–O bond of PO4

3− group
730 Owing to H2O - - Owing to H2O
631 Liberational OH group Liberational OH group Liberational OH group Liberational OH group

602, 560 Phosphate bands (υ4) Vibrational bands of PO4
3− Phosphate bands (υ4) Phosphate bands (υ4)

498, 452 Phosphate bands (υ2) Phosphate bands (υ2) Phosphate bands (υ2) Phosphate bands (υ2)
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Figure 2 compares the Raman spectroscopic analysis of (a) HAP, (b) β-TCP, (c) BCP,
and (d) Ag-BCP samples. Table 2 shows the Raman spectral composition of all the samples.
The band with the highest intensity around 966 cm−1 relates to the symmetrical stretching
vibrations (υ1) of the phosphate (PO4

−3) confirming the formation of HAP. Furthermore, for
the same HAP sample, the symmetrical (υ2) and antisymmetrical bending (υ4) vibrations
of the PO4

−3 groups appeared at 432, 445, 572, and 598 cm−1, respectively. Additionally,
the asymmetric stretching vibrations (υ3) of PO4

−3 ions in the HAP were observed as weak
intensity bands around 1056 and 1090 cm−1 [28]. The high-intensity band at 964 cm−1

besides a weak shoulder at 948 cm−1 indicates the internal vibrations of β-TCP in the BCP
sample. For the BCP sample shown in Figure 2c, the spectrum has the same major band at
966 cm−1 and a shoulder band at 948 cm−1 corresponding to the β-TCP phase, as the BCP
is composed of HAP and β-TCP in a 60:40 ratio. Finally, for the Ag-BCP sample (Figure 2d),
the Ag NPs were loaded onto the BCP composite. The Ag particles were synthesized using
glucose and thus in this reaction gluconic acid is formed as a by-product which is observed
as a minor band at 1364 cm−1 [29]. Furthermore, the minor band at 226 cm−1 corresponds
to the presence of Ag NPs.
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Table 2. Raman spectral data of (a) HAP, (b) β-TCP, (c) BCP, and (d) Ag-BCP.

Frequency of
Vibration (cm−1)

Band Assignments

HAP β-TCP BCP Ag-BCP

1364 - - - Gluconic acid
1056
1090

Asymmetric stretching
vibrations (υ3) of PO4

−3
Asymmetric stretching

vibrations (υ3) of PO4
−3

Asymmetric stretching vibrations
(υ3) of PO4

−3
Asymmetric stretching vibrations

(υ3) of PO4
−3

966 Symmetric stretching vibrations
(υ1) of PO4

−3 group - Symmetric stretching vibrations
(υ1) of PO4

−3 group
Symmetric stretching vibrations

(υ1) of PO4
−3 group

964, 948 - Internal vibrations of β-TCP
in BCP

Internal vibrations of β-TCP
in BCP

Internal vibrations of β-TCP
in BCP

432, 445 Symmetrical bending (υ2) Symmetrical bending (υ2) Symmetrical bending (υ2) Symmetrical bending (υ2)

572, 598 Asymmetric bending (υ4)
vibrations of PO4

−3
Asymmetric bending (υ4)

vibrations of PO4
−3

Asymmetric bending (υ4)
vibrations of PO4

−3
Asymmetric bending (υ4)

vibrations of PO4
−3

The powder XRD reflection patterns of the four bioceramics (HAP, β-TCP, BCP, and Ag-
BCP) provided in Figure 3 confirm the formation of highly crystalline phases in all samples,
as shown by the narrow and sharp pattern. The XRD patterns provided in Figure 3a,b show
the calcium phosphate precursors derived from the HAP sintered at 800 ◦C and β-TCP
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at 900 ◦C, respectively. From the comparative analysis, the HAP patterns have perfectly
matched with the parent HAP, as provided by the JCPDS card No. 09–0432. The crystalline
nature of the HAP sample was confirmed by the patterns observed at 2θ of 25.9◦ (002), 28.6◦

(210), 31.7◦ (211), 32.2◦ (112), 34.0◦ (202), and 39.8◦ (310). These diffraction patterns indicate
the presence of HAP in BCP (JCPDS No. 9-432). The calcium to phosphorous (Ca/P) ratio
was found to be 1.6. Similarly, the reflection patterns of the β-TCP sample (Figure 3b)
appeared at 2θ of 21.8◦ (024), 25.8◦ (1010), 27.8◦ (214), 31.0◦ (0210), 32.4◦ (128), and 34.3◦

(220) (JCPDS No. 9-169), with the Ca/P ratio being 1:5. Hence, all the diffraction patterns of
HA and β-TCP in BCP were found to be more distinct and thereby indicate the crystalline
nature. Additionally, the XRD patterns of BCP (Figure 3c) and Ag-BCP (Figure 3d) were
observed at 2θ of 31.76◦ (211), 32.15◦ (112), 32.89◦ (300), and 34.02◦ (202), with the Ca/P
ratio of 1:6. These data also confirm the formation of BCP in its highly crystalline phase. It is
evident from the FTIR spectrum (Figure 1a–c) and the XRD phase composition (Figure 3c,d)
that there is no formation of a Calcite (calcium carbonate) pattern at 29.4◦. Moreover, it
can be observed from the XRD pattern that the characteristic patterns of HAP in the BCP
sample are much greater than in β-TCP [30]. Finally, the XRD pattern of the Ag-BCP sample
(Figure 3d) is in good agreement with that of BCP (Figure 3c). Furthermore, the observation
of no additional patterns for Ag NPs indicates its lower concentration.
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Figure 3. Powder XRD analysis for (a) HAP, (b) β-TCP, (c) BCP, and (d) Ag-BCP.

Figure 4 represents the FESEM analysis of (a) HAP, (b) β-TCP, (c) BCP, and (d) Ag-BCP
at three different magnifications. The surfaces of all samples appear to be rough and
granular and the maximum effect can be seen in β-TCP. The FESEM of HAP (Figure 4a1)
showed that there is a decreased surface roughness. Furthermore, the FESEM of β-TCP
(Figure 4b1) shows the micro- and macropores with a well-organized pore network, which
supports its enhanced solubility effects. Furthermore, this kind of pore arrangement is
predicted to permit the uptake of fluid, cell accommodation, and a greater surface area.
The FESEM of BCP (Figure 4c1) showed less roughness and the surface is uneven with its
patterns similar to the earlier report [27]. Finally, the morphology of Ag-BCP provided in
Figure 4d1 shows some small decorating particles and are referred to as Ag NPs.
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Figure 5 shows the zeta potential analysis of HAP, β-TCP, BCP, and Ag-BCP samples
in an aqueous solution. These studies were used to estimate the colloidal stability and
dispersions of bio-ceramics in solution. From the analysis, the zeta potential values of
HAP, β-TCP, BCP, and Ag-BCP were obtained to be −35.1 mV, −36.9 mV, −40.3 mV, and
−44.1 mV, respectively (Figure 5a–d). The zeta potential value obtained for pure HAP
was greater than −30 mV compared to the literature report [31] and in the same way, the
β-TCP sample with a value of −36.9 mV changed to −40.3 mV for BCP, indicating that
the system arrived at a state of moderate stability. Further, for the Ag-BCP sample, the
potential value of −44.1 mV was observed indicating the influential stability of the Ag NPs
onto the surface of BCP.
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The AFM provided topographic analyses of BCP and Ag-BCP samples and are shown
in Figure 6. For the topographical examination, both samples in their powdered form were
coated with Aluminum foil. As shown in Figure 6a, the topography of the BAP sample
confirms the formation of homogeneously arranged agglomerated globules. Furthermore,
the 2D image of Ag-BCP (Figure 6b) shows that the triangular shape is embedded on the
globules representing Ag and globules for the BCP. Similarly, the 3D image of Ag-BCP
shows the formation of highly crystalline homogenous peaks corresponding to Ag and are
in good agreement with the 2D image peaks [32] (Table S1).
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Figure 6. Surface topographical analysis for (a) BCP and (b) Ag-BCP.

The XPS analysis was used to determine the elemental composition of Ag-BCP samples
and the results are provided in Figure 7. The image provides the XPS spectrum along with
the elemental peaks of C, Ca, O, Ag, and P. The spectrum of the elements O1s, P2p, Ca2p,
Ag3d, and C1s are due to the adsorption of hydrocarbon impurities. The C-C component
at 285 eV is used to calibrate the energy level. The spectrum of C1s shows two major peaks
inclined at 284.95 eV for the non-oxygenated sp2 carbon ring (C-C) and at 286.5 eV for the
sp3 (C-O) oxygenated functional group of carbon. Furthermore, the XPS of Ca2p shows two
distinct peaks 347.35 and 351.23 eV corresponding to the Ca2p3/2 and Ca2p1/2, respectively.
The XPS of O1s shows binding energies of 530.8 eV and 533.2 eV corresponding to -OH
and P-O-P, respectively. Similarly, the prominent spectrum for Ag arises at 369.87 eV and
372.18 eV corresponding to 3d5/2 and 3d3/2. The observation of this Ag peak confirms the
successful decoration of Ag NPs onto the surface of the BAP sample [33]. The phosphate
spectra of P2p peaks at 132.8 eV and 135 eV correspond to P2p3/2 and P2p1/2 and confirm
the success of HAP formation.

Figure 8 provides a comparison of the thermal stability of BCP and Ag-BCP samples as
analyzed by TGA and DTA. The initial weight loss of up to ≈210 ◦C for both samples was
due to the loss of moisture/adsorbed water (up to 200 ◦C) and lattice water (up to 650 ◦C).
Above this, the occurrence of weight loss was seen in several stages between 200 ◦C and
900 ◦C, confirming the transformation of the HAP phase into a β-TCP phase in the BCP
sample [34]. For the BCP and Ag-BCP samples, the total weight loss measured around
1000 ◦C was only 1% and 0.5%, respectively, thereby indicating that the Ag decoration
reduced the thermal stability of BCP.

Figure 9 shows the comparison of porosity measurements of BCP and Ag-BCP samples.
The porosity of bare BCP was observed around 15.20%. BCP samples decorated with Ag
NPs showed an increase in porosity value at 32%. Such an observation of increased porosity
values is due to the occurrence of chemical interactions of Ag NPs with the BCP matrices.
This is the most useful factor in bone tissue engineering applications, as it can facilitate
cell growth and migration, protein delivery to the cells, and preserve tissue volume with
temporary mechanical function [35].
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3.2. Studies of Bioactivity, Biodegradation, and Drug Release

Figure 10 shows the in vitro bioactivity studies of BCP and Ag-BCP samples as investi-
gated by the amount of apatite formed on the sample’s surface. The sample’s morphological
changes associated with the formation of surface masses were recorded by SEM. The ma-
terials were maintained in SBF for 14 days at 37 ◦C. The optical and SEM images of BCP
(Figure 10a,c) show fibers with an anisotropic aspect of ~5–10 µm in length and 0.5–1.0 µm
in width. However, the Ag-BCP sample (Figure 10b,d) witnessed the formation of an ap-
atite layer at the surface of pellets and the newly formed layer comprised of tiny spherical
particles of calcium phosphate crystals. This indicates that the Ag-BCP composite serves as
a bioactive material with the ability to generate an apatite layer that can bond bones with
implant materials [36].
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Figure 10. Bioactivity investigation recorded by the optical microscopic images for BCP (a) and
Ag-BCP s (b) samples and the corresponding SEM images of BCP (c) and Ag-BCP (d).

Optical microscopic and SEM images of BCP and Ag-BCP samples are employed
to understand the biodegradation efficiencies linked to surface morphological changes
followed by the incubation in SBF (14 days, 37 ◦C, see Figure 11(i)) For both samples,
the surface roughness increased due to the degradation of material into the SBF medium.
Furthermore, after 21 days in SBF, 79.45% of BCP and 65.25% of the Ag-BCP composite
degraded (Figure 11(ii)). Further, the biodegradation behavior of BCP and Ag-BCP samples
in tris-buffer is compared in Figure 11(iii). We observed an overall increase in the pH value
after the sample’s immersion. This indicates that the BCP sample had an increased pH
compared to Ag-BCP. Over 3 weeks, Ag-BCP had the slowest bio-dissolution, while for
the BCP, the fastest mass decrease and high dissolution rates with pH increase were noted.
This result indicates that both samples are highly biodegradable. Pure BCP (as against
Ag-BCP) degrades fastest and the differences can be linked to the availability of solid Ag
NPs in the tri-component system. This difference in biodegradation is well suited for bone
tissue engineering applications as it helps to withstand mechanical stress and creates an
encouraging environment for cell attachment and growth.
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Figure 11. (i) Biodegradability investigation using optical microscopy (a,b) and SEM analysis
(c,d) for the BCP and Ag-BCP samples. The degradability efficiency (%) evaluation is determined by
the weight-loss method (* denoted as statistical analyses were performed using a one-way analysis of
variance (ANOVA) and the data presented are the mean ± standard deviation) (ii) and a pH meter
investigation (iii).

Figure 12 shows the pattern of CIP release from BCP and Ag-BCP samples under
physiological conditions (PBS; pH 7.4). The analysis was carried out by measuring the
optical absorption as a function of time. BCP exhibited an initial burst release of ~43%
within the first 5 mins. In contrast, the Ag-BCP sample showed a relatively lower release of
only 30%. Over 45 mins, BCP released±92.65%, whereas Ag-BCP released only±72.37% in
a slow and controlled way. This difference is linked to the presence of Ag which supports
the occurrence of heterogeneous oxidation reactions requiring the combined effects of
dissolved oxygen and protons [36]. From the CIP release studies, we observed that the
Ag-BCP has controlled release behavior due to its capacity to maintain the heterogenous
particles of varying sizes, shapes, and phases.
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3.3. In Vitro Antimicrobial and Cytocompatibility Studies

HAP, β-TCP, BCP, and Ag-BCP samples were tested for their antibacterial activity
against the Gram-positive S. aureus, Gram-negative E. coli, and the antifungal activity
against C. albicans (shown in Figure 13a–c). The reason for selecting S. aureus for the studies
is that it is responsible for the biofilm formation on bone implants. E. coli strains have a
reducing capability towards BCP. From the comparison of results provided in Figure 13,
the Ag-BCP sample performed almost equal to the standard (Std) in both antibacterial and
antifungal activities. Ag-BCP had a moderate inhibitory effect against all bacteria or fungi
during a 12 h culturing period. Among the two different bacterial cultures, Ag-BCP had
the highest activity towards gram-positive bacteria (S. aureus) and fungi (C. albicans) where
the ZoI was about 10 mm. Furthermore, gram-negative bacteria (E. coli) were inhibited
in their growth with ZoI of 8 mm. The ZoI of all the samples (HAP, β-TCP, BCP, and
Ag-BCP) against the tested microbial cultures are provided in Table 3. Ag-BCP shows better
antimicrobial (antibacterial and antifungal) activity than that of the other three samples
and thereby confirms the role played by the Ag NPs impregnated onto the BCP composite.
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Figure 13. Antimicrobial investigation against (a) S. aureus, (b) E. coli, and (c) C. albicans (where
1. Ag-BCP, 2. HAP, 3. B-TCP, 4. BCP, 5. DMSO, and 6. Standard).

Table 3. Zone of inhibition (mm) data of bioceramic samples treated against E. coli, S. aureus, and
C. albicans.

Microorganism
Zone of Inhibition (mm)

Ag-BCP HAP β-TCP BCP DMSO Std (20 µL)

E. coli 8 ± 1.15 - - - - 11 ± 1.75
S. aureus 10 ± 2.2 - - - - 17 ± 1.2

C. albicans 10 ± 1.5 - - - - 12 ± 1.0

Figure 14 provides a comparison of in vitro cytocompatibility studies of BCP and
Ag-BCP samples when tested on mouse fibroblast L929 cells at various concentrations. We
performed an MTT assay carried out with BCP and Ag-BCP samples. Both cells exhibited
a significant reduction in the number of cells (detected via their absorption recorded at
450 nm) with an increase in treatment dosage from 31.2 to 1000 µg/mL. When changing
the concentration from 31.2 to 62.5 µg/mL, the cell viability % decreased from 80.8 to 50%
for the BCP sample and 70 to 32.5% for the Ag-BCP. This determines the IC50 value of BCP
and Ag-BCP to be 62.5 and 46.8 µg/mL, respectively.
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Figure 14. Optical microscopic images of L929 fibroblast cells under various concentrations of BCP
(A) and Ag-BCP (B) ((a) for the control, (b–h) for the cell concentration in the range of 31.2 to
1000 µg/mL). The corresponding % cell viability changes for BCP (C) and Ag-BCP (D) in L929 cells.

4. Conclusions

In conclusion, the present study deals with the synthesis, characterization, and testing
of BCP and Ag-BCP composites for antimicrobial, drug delivery, and biodegradable char-
acteristics. Bioceramic composites (Venice Mestre, Italy) were characterized for improved
interconnectivity, porosity, moderate compressive strength, and biocompatibility where
all of these properties are beneficial for bone tissue engineering applications. The Ag-BCP
composite was formed by the decoration of Ag NPs with the bioceramic BCP base. The
composite maintained its BCP structural framework and at the same time, the porous
network structure was formed without compromising its basic characteristics. Nonetheless,
the compressive strength and thermal stability increased after Ag loading onto the BCP.
Furthermore, the composites showed a difference in pH values in SBF solution, and for the
Ag-BCP, the biodegradation rate was reduced. Based on the cumulative results, the Ag-BCP
composite would serve as a potential candidate for the efficient growth of damaged or
defective bone parts in tissue engineering applications.
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