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Abstract

Agricultural sustainability may represent the greatest encumbrance to increasing food production. On the other
hand, as a component of sustainability, replacement of chemical fertilizers by bio-fertilizers has the potential to
lower costs for farmers, to increase yields, and to mitigate greenhouse-gas emissions and pollution of water and
soil. Rhizobia and plant-growth-promoting rhizobacteria (PGPR) have been broadly used in agriculture, and
advances in our understanding of plant-bacteria interactions have been achieved; however, the use of signaling
molecules to enhance crop performance is still modest. In this study, we evaluated the effects of concentrated
metabolites (CM) from two strains of rhizobia—Bradyrhizobium diazoefficiens USDA 110" (BD1) and Rhizobium tropici
CIAT 899" (RT1)—at two concentrations of active compounds (10 and 107 M)—on the performances of two
major plant-microbe interactions, of Bradyrhizobium spp.-soybean (Glycine max (L) Merr) and Azospirillum brasilense-
maize (Zea mays L.). For soybean, one greenhouse and two field experiments were performed and effects of
addition of CM from the homologous and heterologous strains, and of the flavonoid genistein were investigated.
For maize, three field experiments were performed to examine the effects of CM from RT1. For soybean, compared
to the treatment inoculated exclusively with Bradyrhizobium, benefits were achieved with the addition of CM-BD1;
at 107 M, grain yield was increased by an average of 4.8%. For maize, the best result was obtained with the
addition of CM-RT1, also at 107 M, increasing grain yield by an average of 11.4%. These benefits might be related
to a combination of effects attributed to secondary compounds produced by the rhizobial strains, including
exopolysaccharides (EPSs), plant hormones and lipo-chitooligosaccharides (LCOs). The results emphasize the
biotechnological potential of using secondary metabolites of rhizobia together with inoculants containing both
rhizobia and PGPR to improve the growth and yield of grain crops.
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Introduction

Sustainability probably represents the greatest challenge to
increase food production. Year after year, the agricultural
sector is forced to adopt new technologies to maintain high
yields—without clearing new land for agriculture—and to
minimize degradation of land that is occurring worldwide.
Since the Green Revolution, the use of chemical fertilizers
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has played a key role in increasing yields; however, costs
are often a major limitation to farmers in developing and
poor countries, whereas, for developed countries, pollution
of water and soil by fertilizers and greenhouse-gas emis-
sions are sources of concern.

Bio-fertilizers can help meet the demands of sustain-
able, productive agriculture at low cost. Rhizobial inocu-
lants have been applied to legume crops for over
120 years as bio-fertilizers, and inoculants carrying
plant-growth-promoting rhizobacteria (PGPR) have been
used in agriculture for over half a century (Okon and
Labandera-Gonzalez 1994; Bashan and Bashan 2005;
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Hungria et al. 2005; Ormeno-Orrillo et al. 2012a). Con-
sidered safe, inoculants have been the focus of hundreds
of basic and applied studies.

For rhizobial inoculants, a molecular dialogue between
the host plant and the bacterium results in root nodula-
tion and nitrogen fixation, involving plant flavonoids and
bacterial nodulation (Nod) factors, identified as lipo-
chitooligosaccharides (LCOs) (Schultze and Kondorosi
1996; Hungria and Stacey 1997; Perret et al. 2000; Oldroyd
and Downie 2008; Ferguson et al. 2010); however, the
roles of other molecules, such as those related to type-III
secretion systems and exopolysaccharides (EPSs) (Perret
et al. 2000; Fauvart and Michiels 2008; Downie 2010) have
also been emphasized.

A broad range of beneficial effects has been reported
for PGPR, including biological nitrogen fixation (Ashraf
et al. 2011), phosphate solubilization (Rodriguez et al.
2004), and production of hormones, such as auxins,
cytokinins, gibberelins and ethylene (Tien et al. 1979;
Bottini et al. 1989; Strzelczyk et al. 1994) and control of
pathogens (AratGjo et al. 2005; Hernandez-Rodriguez
et al. 2008; Wang et al. 2009), among others. However,
our understanding of the molecular interactions of host
plants with PGPR is still modest.

Despite results showing benefits of specific molecules to
the performance both of rhizobia, e.g. by a supply of the
flavonoids to soybean (Glycine max (L.) Merr.) and com-
mon bean (Phaseolus vulgaris L.) (Hungria and Phillips
1993; Hungria and Stacey 1997), and of PGPR, e.g. by a
supply of crude or formulated metabolites of Bacillus
subtilis (Aradjo and Hungria 1999), the use of molecules
to enhance crop performance under field conditions is
incipient, highlighting the imbalance between basic know-
ledge and exploitation of biotechnological products in
agriculture.

One exception is commercially available inoculants for
soybean crops carrying Nod factors (Supanjani et al.
2005; Smith et al. 2012); however, responses in the field
have often been slight and/or erratic, or dependent on
specific conditions (Leibovitch et al. 2002). It could be
that the problem lies in applying single molecules and
that improved results may accrue with crude or formu-
lated metabolites carrying several molecules (e.g., Aradjo
and Hungria 1999).

In this study, we evaluated the use of concentrated rhizo-
bial metabolites on the performances of the two major grain
crops that are frequently inoculated in South America, the
Bradyrhizobium spp.-soybean and Azospirillum brasilense-
maize (Zea mays L.) associations.

Materials and methods

Bacterial strains

For maize (Zea mays L.), liquid inoculants were pre-
pared with Azospirillum brasilense strains Ab-V5 and
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Ab-V6, each at a concentration of 2 x 10° cells mL™.
These strains, identified in a previous selection program
(Hungria et al. 2010), are broadly used in commercial in-
oculants in Brazil.

For soybean [Glycine max (L.) Merr.], liquid inocu-
lants were prepared with Bradyrhizobium strains CPAC
15 (=SEMIA 5079) and CPAC 7 (=SEMIA 5080),
the combination most used in commercial inoculants
in Brazil (Hungria et al. 2006), each at a concentration
of 5x10° cells mL™. Recently, strains belonging to
Bradyrhizobium japonicum have been split into two
species, B. japonicum and B. diazoefficiens. CPAC 15 is
still classified as B. japonicum, but CPAC 7 now be-
longs to B. diazoefficiens, and the type strain for this
new species is USDA 110" (Delamuta et al. 2013).

For the production of concentrated metabolites (CM),
a search was performed among more than fifty strains of
bacteria in the culture collections of the Universidad de
Sevilla and of Embrapa Soja. Several properties poten-
tially beneficial for plant growth were investigated,
including the production of plant hormones (indole
acetic acid, cytokinin, gibberelin), production of EPSs,
and capacity to enhance soybean nodulation under con-
trolled conditions. Two strains were identified: Rhizo-
bium tropici CIAT 899" and B. diazoefficiens USDA
110", here named RT1 and BDI, respectively.

Concentrated metabolites (CM)

CM were produced from RT1 and BDI1, grown under
conditions that enhance production of molecules benefi-
cial to plant growth, as described before (Dardanelli
et al. 2012). Metabolites were lyophilized, and effects of
protectors, such as carbon methyl cellulose (CMC), bo-
vine serum albumin (BSA) and milk powder were inves-
tigated. The process of producing the concentrated
metabolites maintaining more than 90% of the original
properties is now under registration. Shelf-life of the
lyophilized CM was confirmed for 24 months, when the
activity corresponded to 90% of that of the fresh
metabolites.

Seed inoculation
Prior to sowing, CM were re-suspended in a mixture of
acetonitrile and water at concentrations of 0.1 mL L™ and
1 mL L of inoculant, corresponding to approximately
10~ and 10™® M, respectively. Inoculants for soybean
(with B. japonicum and B. diazoefficiens) and for maize
(with A. brasilense) were tested with and without CM. For
soybean, homologous and heterologous CM were used,
i.e.,, BD1 and RT1, respectively, while for maize only
RT1 was evaluated.

Inoculants were applied to supply approximately
1.2 x 10° cells of A. brasilense per seed of maize, and of
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1.2 x 10° cells of Bradyrhizobium spp. per seed of soy-
bean, as recommended for both crops in Brazil.

For the greenhouse experiments, soybean seeds were
surface-sterilized (Vincent 1970), and then inoculated by
mixing the liquid inoculants with the seeds. For the field
experiments, soybean and maize seeds were not surface
sterilized and the inoculants were mixed with the seeds
immediately before sowing. CM were added to the inoc-
ulants before seed inoculation.

Greenhouse experiment

Differences in soybean nodulation may be difficult to
detect in soils with indigenous or naturalized popula-
tions of compatible bradyrhizobia, as is the case for most
soils in Brazil cropped with this legume. Therefore, for
the soybean, one experiment was also performed under
greenhouse conditions, using modified Leonard jars
(Vincent 1970) containing sterilized substrate, consisting
of a mixture of sand and pulverized coal (1:1, v/v) with
application of N-free nutrient solution (Andrade and
Hamakawa 1994).

The experiment consisted of seven treatments, includ-
ing a non-inoculated control and all the others inocu-
lated with B. japonicum and B. diazoefficiens strains
CPAC 15 and CPAC 7, respectively, supplied or not with
genistein (5 uM), or with CM-BD1 or CM-RT1, at 0.1 or
1.0 mL L' The jars were arranged in a completely
randomized block design with six replicates. Four seeds
of soybean cultivar BRS 245 were sown per jar and
thinned to two plants five days after emergence. Mean
temperatures during the experiments were of 28/23°C
(day/night), and the N-free nutrient solution was applied
as needed.

Plants were harvested at 45 days after emergence. Shoots
were detached at the cotyledonary nodes, roots were
washed, and nodules were removed and counted. Weight
of shoots, roots and nodules were determined after drying
to constant weight at 65°C (approximately 72 h). Shoots
were ground (20 mesh) and total N was determined by
Kjeldahl's digestion method followed by the indophenol-
blue colorimetric assay (Feije and Anger 1972).

Field experiments
Site descriptions
Two field experiments were conducted with soybean and
three with maize in the summer cropping season of 2011/
2012. The soybean experiments were performed in Bonito,
State of Mato Grosso do Sul (central-west region), and
Ponta Grossa, State of Parana (southern region). Maize
experiments were performed in Bonito, Ponta Grossa, and
Trés Lagoas, State of Mato Grosso do Sul.

In Bonito (21°07" S and 56°28" W) the area is at an
altitude of 290 m and the soil is classified as Latossolo
Vermelho Distréfico (Brazilian classification) (Typic
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Haplustox, Soil Taxonomy, USDA). The climate is clas-
sified as Aw (Koppen’s classification) (tropical with dry
winter). In Ponta Grossa (25°13' S and 50°1'" W), at
880 m altitude, the climate is classified as Cfb (temperate
with mild summer). The trials were performed on a
Latossolo Vermelho Distréfico (Brazilian classification)
(Typic Hapludox, Soil Taxonomy, USDA). In Trés Lagoas,
altitude 310 m, the climate is Aw and the soil is also a
Latossolo Vermelho Distréfico (Typic Haplustox).

At each site, two months before the experiments were
planted, twenty soil samples (0-20 cm depth) were taken
to evaluate chemical properties (Pavan et al. 1992), as
described before (Hungria et al. 2006). For chemical ana-
lyses, the samples were previously dried (60°C for 48 h)
and sieved (2 mm). Soil texture was determined after
Embrapa (1997).

Soil chemical properties and granulometric fractions at
each site are shown in Table 1. About fifty days before
starting the experiment, lime was applied to alleviate
acidity, based on soil pH values. The amount of applied
lime was estimated for a base saturation of 70% to in-
crease the pH to approximately 5.5.

In the experiments with soybean, the soil soybean-
bradyrhizobial population was estimated using the most
probable number (MPN) technique (Vincent 1970) and
the statistical tables of Andrade and Hamakawa (1994)
with soybean plants of cultivar BMX Poténcia RR®
(BRASMAX) as trap host (Table 2).

Treatments and experimental design

For soybean, seven treatments were evaluated, consisting
of a non-inoculated control and six treatments inocu-
lated with B. diazoefficiens strain CPAC 7 + B. japonicum
strain CPAC 15, supplied or not with genistein (5 uM),
and CM of the homologous (CM-BD1) or heterologous
(CM-RJ1) species, at the 0.1 and 1.0 mL L™ of inoculant
(10~ and 10™® M, respectively). The cultivar used was
BMX Poténcia RR®.

The experiment with maize consisted of six treat-
ments. Three treatments were non-inoculated and
receiving 0, 75 and 100% of the dose of N-fertilizer at
the V4 stage, as specified in the field management item.
The other three treatments received 75% of the dose of
N-fertilizer, were inoculated with A. brasilense strains
Ab-V5 and Ab-V6 and received or not CM of R. tropici
(CM-RT1) at 0.1 and 1.0 mL L' (10~ and 10™* M,
respectively). The hybrid maize used was DKB 350 YG
(DEKALB).

The experimental design was a completely randomized
block with six replicates. For soybean, each plot had
eight rows, spaced by 0.5 m, with 4 m (width) x6 m
(length) (24 m?). For maize, the plots had six rows,
spaced 0.8 m, with 4.8 m (width)x6 m (length)
(28.8 m?). Plots were separated by at least 1.0 m and,
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Table 1 Chemical and granulometric properties (0-20 cm) of the soils where the field experiments were performed

Site Chemical Granulometry
pH' P H+Al Al K Ca+Mg SB*> CEC?® BS? C Clay silt Sand
caCl, mgdm3®  ———— cmoldm™> ——————— % gdm3 g kg™
Bonito 422 1.94 842 1.02 045 398 443 1285 34 7.7 162 266 572
Ponta Grossa 5.68 2.55 363 0.00 0.1 4.55 4.66 829 56 21.7 238 30 732
Trés Lagoas 523 7.04 295 0.00 008 1.93 201 4.95 40 257 86 44 870

'Before addition of lime.

25B, sum of bases; CEC, cation exchange capacity; BS, bases saturation = [(K + Ca + Mg)/Tcec] x 100, where Tcec =K + Ca + Mg + total acidity at pH 7.0 (H + Al).

where necessary, small terraces of approximately 1.5 m
width were built to prevent contamination by superficial
run-off containing bacteria or fertilizer, caused by heavy
rains that often occur in the summer season.

Field management

Densities were of about 300,000 plants ha™ for soybean
and of 60,000 plants ha™ for maize. For both crops,
300 kg ha™ of N-P-K (0-28-20) were applied in-furrow
immediately before sowing. For soybean, no N-fertilizer
was applied, and at V4 stage [four nodes on the main
stem with fully developed leaves, beginning with the
unifoliolated node (Fehr and Caviness 1977), approxi-
mately 30 days after emergence] plants received
20 g ha™! of Mo (as Na,Mo00O,.2H,0) and 2 g ha™! of
Co (as CoCl,.6H,0) as foliar spray. For maize, 24 kg of
N ha™" (urea) were applied to all treatments at sowing, in-
furrow, and, 30 days after emergence, plants received 0, 75
or 100% of the recommended dose for the crop, of 90 kg
of N ha™! (urea), broadcast.

For both crops, herbicides were used equally in all
treatments, while insects were controlled with biological
and chemical insecticides. Sowing and harvesting days
and harvested area to evaluate grain yield in each experi-
ment are shown in Table 2.

Plant sampling, harvesting and analyses

For the soybean, at the V4 stage (Fehr and Caviness
1977) six plants were randomly collected per plot
(avoiding central rows, to be used for determination of
grain yield) for evaluation of nodulation [nodule number
(NN) and nodule dry weight (NDW) per plant]. At R2
stage (full bloom), another six plants were collected for

Table 2 Agronomic information about the field trails

evaluation of shoot dry weight (SDW) and total N in
shoot (TNS). Dry weight was determined as described
for the greenhouse experiment. The early evaluation of
nodulation at V4 indicates effects of inoculation, since nod-
ules formed later result from infection also by the indigen-
ous rhizobial population. Shoots were ground (20 mesh)
and TNS determined after Kjeldahl’s digestion method, as
described for the greenhouse experiment.

Maize plants were harvested at V4 stage (lowa State
University 1993) (fourth leaf fully expanded, approximately
35 days after emergence) for evaluation of SDW and TNS.

Grain yields of soybean and maize were determined at
physiological maturity by harvesting a central area of
each plot (Table 2). Grains were cleaned and weighed,
with moisture content corrected to 13%.

Statistical analyses

Data from each experiment were first submitted to tests
of normality and homogeneity of variances for each vari-
able and then to analysis of variance (ANOVA). When
confirming a statistically significant value in the F test
(p<0.05), a post hoc test (Duncan’s multiple-range test
at p <0.05) was used as a multiple comparison proced-
ure (SAS 1999).

Results
Effects of inoculation with Bradyrhizobium spp. and of
the supply of genistein or CM of rhizobia on soybean
nodulation, growth and grain yield

Under greenhouse-controlled conditions and with a
sterile substrate, soybean nodulation was significantly
improved when, in addition to the inoculation with B.
diazoefficiens + B. japonicum, seeds were supplied with

Site Crop Soybean bradyrhizobia Cultivar/Hybrid Sowing Harvest Harvested area
population (CFU g~' soil)
Bonito Soybean <10 BMX Poténcia RR 10/27/2011 03/20/2010 75 m?
Maize not evaluated DKB 350 YG 10/28/2011 03/20/2012 84 m?
Ponta Grossa Soybean 932 x 10 BMX Poténcia RR 11/23/2011 04/03/2012 75 m?
Maize not evaluated DKB 350 YG 11/24/2011 05/30/2012 84 m?
Trés Lagoas Maize not evaluated DKB 350 YG 11/03/2011 02/29/2012 84 m?
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genistein (5 pM), CM of the homologous strain (CM-
BD1) (Table 3). The best performance was achieved with
the addition of 1 mL L™ CM-BDI, statistically increas-
ing nodule number (NN) and dry weight (NDW) by 21%
and 12%, respectively, in comparison to sole inoculation
with Bradyrhizobium. CM-BD1 (1 mL LY also resulted
in higher values, although without statistical difference,
of shoot and root dry weight (SDW, RDW), N content
and total N in shoots (NC, TNS). In contrast, the CM of
the heterologous strains (CM-RT1) did not improve
nodulation (Table 3).

In the field trial carried out in Bonito, high NDW at
the V4 stage and the highest grain yield were achieved
with the addition of 0.1 mL L™ CM-BD1 (Table 4).
Grain yield increase in this treatment was significantly
higher in comparison to both the non-inoculated control
nodulated by naturalized bradyrhizobial strains (205 kg
ha™' or 7.6%), and the treatment inoculated only with
Bradyrhizobium (203 kg ha™! or 7.5%). At 1 mL L of
CM-BD1, the increase in grain yield in comparison to
the treatment with sole inoculation with B. japonicum
was of 47 kg ha™ (1.7%), statistically non-significant.
Interestingly, the highest SDW at R2 stage was achieved
with CB-RT1, also at the lower dose, but a strong inhibi-
tory effect was observed with the higher dose of
1 mL L™" (Table 4).

In Ponta Grossa, highest NDW at V4 was obtained
with both doses of CM-BD1, but with no statistical dif-
ference in comparison to the naturalized population and
to the control inoculated solely with Bradyrhizobium
(Table 4). Additionally, although without statistical dif-
ference, an increase of 169 kg ha (5.2%) was observed
in grain yield in the treatment receiving 1 mL L™ of
CM-BD], and of 84 kg ha (2.6%) at the lower dose of
0.1 mL L™". In this experiment, the addition of genistein
also improved yield of inoculated plants by 146 kg ha™
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(4.5%), but the effect was not statistically significant. A
decrease in SDW at R2 stage was observed with the sup-
ply of heterologous CM-RT1, but no differences in total
N accumulation in shoots was observed (Table 4).

When the experiments were analyzed together, consid-
ering the treatment inoculated with Bradyrhizobium as
the control, the addition of the lower dose of active
compounds (0.1 mL L") resulted in increases of 29.0%
in NN (p<0.05 Duncan’s test) and of 143.5 kg ha™
(4.8%) in grain yield (p <0.09, Duncan’s test).

Effects of inoculation with A. brasilense and of CM of
rhizobia on maize growth and grain yield

Under field conditions, in Bonito, at V4 stage, no dif-
ferences were observed in SDW, but the highest N con-
tent (TNS) (although not differing statistically) was
achieved with the CM-RT1 at the lower concentration
(0.1 mL L™) (Table 5). At physiological maturity, the
comparison of the treatments receiving 75% of N
revealed that plants inoculated with A. brasilense and
supplied with 0.1 mL L™ of CM-RT1 resulted in a sig-
nificant increase in grain yield (1,045 kg ha™', or 19%)
and, although not statistically significant, of 936 kg ha™
(17%) in relation to the inoculated treatment without
CM-RT1 (Table 5); for this last comparison, differences
were significant at p < 0.07 (Duncan’s test).

In Ponta Grossa, the best performance was achieved
again in the treatment inoculated with A. brasilense sup-
plied with CM-RT1 (0.1 mL L"), resulting in higher
TNS at V4, statistically similar to the non-inoculated
control receiving 100% of N-fertilizer (Table 5). In the
comparison of the treatments receiving 75% of N-
fertilizer, the highest grain yield was also observed in the
treatment inoculated with A. brasilense supplied with
0.1 mL L' of CM-RT1 (Table 5).

A severe drought in Trés Lagoas inhibited plant
growth and reduced grain yield. Under these conditions,

Table 3 Nodulation [nodule number (NN) and dry weight (NDW)], plant growth [shoot and root dry weight (SDW,
RDW)], N concentration (NC) and total N accumulated in shoots (TNS) of soybean cultivar BRS 245 inoculated or not
with Bradyrhizobium japonicum CPAC 15 + B. diazoefficiens CPAC 7 and supplemented or not with genistein (5 uM) or
concentrated metabolites (CM) of B. diazoefficiens USDA 110 (BD1) or Rhizobium tropici CIAT 899 (RT1)

Treatment NN NDW SDW RDW NC TNS
(#pl™ (mg pl™") (@pl™ (gpl™ (mgNg™) (mg N pl™")

Non-inoculated control zero? zero 081b 051b 657 b 519b
Inoculated with Bradyrhizobium 380b 162 a 131a 0.77 a 19.38 a 25.5a

Inoculated + genistein 452 a 169 a 1.29a 072 a 2128 a 283 a
Inoculated + CM-BD1 (1 mL L")’ 459a 180 a 143a 084a 2157 a 293 a
Inoculated + CM-BD1 (0.1 mL L") 425 a 140 a 122 b 0.63 ab 19.07 a 237 a
Inoculated + CM-RT1 (1 mL L") 332 b 138 a 123 b 0.66 ab 2065 a 253 a
Inoculated + CM-RT1 (0.1 mL L") 325 b 128 a 114 a 061 ab 1981 a 229a

0.1 and 1.0 mL L' correspond to approximately 10~° and 1078 M of active compounds, respectively.
2 Data represent the means of six replicates and when followed by different letters within the same column are significantly different (p <0.05, Duncan’s test).
Experiment performed in Leonard jars, with sterile substrate and receiving N-free nutrient solution, under greenhouse conditions. Plants were harvested at

45 days after emergence.



Table 4 Nodulation [nodule number (NN) and dry weight (NDW)], shoot dry weight (SDW), N concentration (NC) and total N accumulated in shoots (TNS) and
grain yield of soybean cultivar BMX Poténcia RR inoculated or not with Bradyrhizobium japonicum CPAC 15 + B. diazoefficiens CPAC 7 and supplemented or
not with genistein (5 pM) or concentrated metabolites (CM) of B. diazoefficiens USDA 110 (BD1) or Rhizobium tropici CIAT 899 (RT1). Experiments performed in

two field sites in Brazil

Treatments Bonito Ponta Grossa
v4 R2 Maturity v4 R2 Maturity

NN NDW SDW NC TNS Yield NN NDW SDW NC TNS Yield

#pl)  (mgpl™) (gplI") (mgNg") (mgNpl™") (kgha') (#pl") (mgpl™) (gpI") (mgNg") (mgNpl") (kgha)
Non-inoculated control 104ab> 432D 184ab  202a 371b 2701 b 457a 163 ab 104ab  365a 379 a 3166 a
Inoculated with Bradyrhizobium 15.1 ab 684 a 133 ab 204 a 271 ¢ 2703 b 420 a 149 b 104 ab 351 ab 365 a 3191 a
Inoculated + genistein 10.7 ab 436 b 144 ab 202 a 290 ¢ 2737 ab 48.7a 171 ab 123 a 320b 393 a 3337 a
Inoculated + CM-BD1 (1 mL L)' 1822 654 a 174ab  176a 306 ¢ 2750ab  525a 206 a 1212 346 ab 418 a 3359a
Inoculated + CM-BD1 (0.1 mL L") 160 a 68.1 a 198 ab 176 a 348 b 2906 a 578a 212 a 113 ab 346 ab 390 a 3275 a
Inoculated + CM-RT1 (1 mL L™") 73b 251 ¢ 104 b 16.8 a 174 d 2641 b 453 a 170 ab 92 ab 334 ab 307 a 3202 a
Inoculated + CM-RT1 (0.1 mL L) 134 ab 699 a 2343 181 a 423 a 2817 ab 46.8 a 162 ab 89b 353 ab 314 a 3253 a

10.1 and 1.0 mL L™ correspond to approximately 10~ and 10® M of active compounds, respectively.

2 Data represent the means of six replicates and when followed by different letters within the same column are significantly different (p < 0.05, Duncan’s test).
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Table 5 Shoot dry weight (SDW) and total N accumulated in shoots (TNS) at V4 and grain yield at the maturity of
maize hybrid DKB 350 YG inoculated or not Azospirillum brasilense strains Ab-V5 + Ab-V6 and supplemented or not
with concentrated metabolites of Rhizobium tropici CIAT 899 (CM-RT1)

Treatment/Site Bonito Ponta Grossa Trés Lagoas

v4 v4 V4

SDW TNS Yield SDW TNS Yield SDW TNS Yield

(gpl™) (mgpl™) (kgha') (gpl™) (mgpl™) (kgha™) (gpl") (mgpl") (kgha™)
0%N 137 a 402 a 5452 b 172 ¢ 255 ¢ 5708 ¢ VANS 161 b 2444 b
100%N 16.1 a 510 a 6184 ab 264 ab 558 ab 8483 a 97 a 252 a 2965 ab
75% N 124 a 407 a 5516 b 242ab 511 b 7964 ab 94 ab 243 a 3010 ab
75% N + Inoculated with A. brasilense 140 a 412 a 5625 ab 221 bc  445Db 7208 b 7.9 bc 201 b 3319a
75% N + Inoculated with A. brasilense +  11.5a 399 a 6091 ab 255ab 542 ab 7707 ab 70 ¢ 172 b 2972 ab
CM-RTT (1 mL L)
75% N+ Inoculated with A. brasilense+ 129 a 458 a 6561 a 295 a 669 a 8113 a 7.9 bc 199 b 33223

CM-RTT (0.1 mL L™

0.1 and 1.0 mL L™ correspond to approximately 10~ and 10° M of active compounds, respectively.
2 Data represent the means of six replicates and when followed by different letters within the same column are significantly different (p < 0.05, Duncan’s test).
All plants received 24 kg of N ha™ at sowing and 0, 75 or 100% of N (90 kg of N ha™) at 30 days after emergence, broadcasted. Experiment performed in three

field sites in Brazil.

plant biomass at V4 was improved by addition of the full
dose of N-fertilizer (Table 5). However, at the final har-
vest, higher grain yields were observed in the plants inocu-
lated with A. brasilense, with and without CM. Although
not differing statistically from the non-inoculated control
with 75% of N-fertilizer, these two treatments increased
grain yield by an average of 300 kg ha™" (Table 5).

Considering the overall analysis of the three field experi-
ments, statistically significant increases were obtained
with the supply of 0.1 mL L™' CM-RT1, of 614 kg ha™
(11.4%), when compared to the treatment inoculated
solely with A. brasilense and receiving 75% of N-fertilizer
(p <0.05, Duncan’s test).

Discussion

Modern agriculture has increasingly focused on the use
of microbial products as alternatives to chemical fertil-
izers. Benefits from this replacement include substan-
tially lower costs for farmers, less pollution and land
degradation, and reduced concerns regarding adverse
side effects on human health (Crews and Peoples 2004;
Peoples et al. 2009; Saharan and Nehra 2011; Bakker
et al. 2012). It is noteworthy that extensive use of rhizo-
bial inoculants in Brazil, mainly with soybean, provides
N with a value equivalent to US$ 7 billion in fertilizers
(Hungria et al. 2006; Hungria et al. 2007). Several coun-
tries—including Brazil—benefit from the use of inocu-
lants carrying PGPR, which may benefit crops by
promoting uptake of nutrients and by increasing resist-
ance to abiotic and biotic stresses, among other effects
(Okon and Labandera-Gonzalez 1994; Bacon and Hinton
2002; Bashan et al. 2004; Bashan and Bashan 2005;
Hungria et al. 2010; Saharan and Nehra 2011). Currently,
in Brazil, about 25 million doses of rhizobial inoculant for

soybean and 2 million doses of inoculant containing A.
brasilense for maize and wheat crops are produced annu-
ally. However, despite improved understanding, particularly
over the past two decades, of molecular signaling in the
rhizobia-legume interaction (e.g. Geurst and Bisseling 2002;
Brencic and Winans 2005; Ferguson et al. 2010), as well as
of other signals involved in host-microbe interactions
(Brencic and Winans 2005), transfer of this knowledge to
effective commercial products is still incipient.

In our study, we investigated the effects of supplying in-
oculants carrying Bradyrhizobium spp. and A. brasilense
strains with concentrated metabolites (CM) of selected
rhizobial strains. For soybean, under greenhouse and
sterile-substrate conditions we found that addition of the
homologous concentrated metabolites (CM-BD1) at the
higher dose (1 mL L™' of inoculant) increased nodule
number in comparison to the treatment inoculated solely
with Bradyrhizobium. Considering the field experiments
individually, both doses of CM-BD1 (0.1 and 1.0 mL L
corresponding to 107 and 107 M of active compounds,
respectively) resulted in improvements in plant growth.
Considering both field experiments, the addition of the
lower dose resulted in increases of 23.6% in NN, and of
4.8% in grain yield. Interesting, positive effects were ob-
served only with the metabolites from the homologous
species, and the higher dose of the heterologous RT1
negatively affected nodulation and plant growth.

Secondary metabolites may provide an evolutionary ad-
vantage for survival of microbes in soil (Demain 1998),
and they may also help in the establishment of symbiotic
partnerships (Brencic and Winans 2005). Chemical ana-
lyses of the secondary metabolites contained in CM-BD1
and CM-RT1 indicated that the benefits may result mainly
from LCOs, but also from EPSs and plant hormones.
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EPSs play important roles at several stages of the de-
velopment of the root-nodule symbiosis (Fraysse et al.
2003; Kirichenko et al. 2004; Becker et al. 2005; Downie
2010). Therefore, the addition of extra EPSs to inocu-
lants may increase root infection. Furthermore, EPSs
protect bacteria against stressful conditions, such as des-
iccation and osmotic and pH extremes, substantially in-
creasing cell survival (Castellane and Lemos 2007); this
feature may be critical for maintenance of bacterial via-
bility in inoculants while on the shelf and after applica-
tion to seeds or to the soil. Many plant-associated
bacteria, including rhizobia, synthesize plant growth
hormones, such as auxins (Tien et al. 1979; Ashraf et al.
2011), gibberelins (Bottini et al. 1989), cytokinins (Tien
et al. 1979; Strzelczyk et al. 1994) and ethylene
(Strzelczyk et al. 1994). Recently, genomic sequences of
R. tropici strain CIAT 899" and Rhizobium sp. PRF 81
highlighted a variety of metabolic pathways related to
plant-hormone synthesis (Ormefio-Orrillo et al. 2012b).
Therefore, EPSs and plant hormones may have contrib-
uted to the observed increases in soybean performance
and yield.

Lipo-chitooligosaccharides affect a number of physio-
logical processes in the legume host plant, including
root-hair curling and stimulation of division of cortical
cells (Schultze and Kondorosi 1996; Hungria and Stacey
1997; Perret et al. 2000; Oldroyd and Downie 2008;
Ferguson et al. 2010). It has also been demonstrated that
LCOs effects resemble those of cytokinins, and of the in-
hibitors of the transport of auxins (Relic et al. 1993);
interestingly, they also activate enzymes related to plant
defense (Inui et al. 1997). Finally, other benefits attrib-
uted to LCOs require further exploration, e.g., increases
in seed germination (Miransari and Smith 2009). We
attribute the effects observed in our study to LCOs; they
are consistent with the activity of these compounds at
concentrations as low as 107> M (Hungria and Stacey
1997). Activity at such low concentrations may be
responsible for the differences observed between green-
house and field experiments. In addition, it is known
that the LCOs of B. japonicum are very specific, with a
methyl-fucose moiety under the control of nodZ (Lépez-
Lara et al. 1996), which may explain the responses exclu-
sively to homologous metabolites. Finally, in our study
the addition of a plant molecular signal (genistein) was
not as successful as the addition of LCOs, although the
concentration applied (5 uM) was much lower than
doses previously reported for soybean and common bean
(40 pM) (Hungria and Stacey 1997). The effects of
adding CM to the maize crop surpassed those observed
with soybean. Considering three field experiments, in-
creases in grain yield by the addition of CM-RT1 at the
lower dose (10~° M) were of 11.4%. The increases may
be attributable to EPSs and plant hormones, and in the
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latter case, it is known that the effects are strongly
dependent on concentration, and can be inhibitory at
higher concentrations (Arshad and Frankenberger 1991),
which may explain the better performance at the lower
concentration of CM. In addition, benefits can also be at-
tributed to the LCOs, which may activate cell division in
non-leguminous plants, such as tobacco (Nicotiana sp.)
(Baier et al. 1999), tomato (Solanum lycopersicum)
(Staehelin et al. 1994), carrot (Dacus carota) (De Jong et al.
1993), and also maize (Khana et al. 2008). Often, the effects
mimic those of plant hormones, such as cytokinins and
auxins (Dyachok et al. 2000). Interestingly, under green-
house conditions Souleimanov et al. (2002) reported
increases in soybean and maize biomass seven days after
the addition of LCO (at 10~ M) of B. Japonicum.

In conclusion, the results from our study indicate bio-
technological potential in the use of secondary metabo-
lites of rhizobia—together with inoculants containing
both rhizobia and PGPR—to improve growth and grain
yields of crops of soybean and maize. Such improve-
ments, which favor agricultural sustainability by bringing
economic and environmental benefits, merit further in-
vestigation. It is noteworthy that commercial products
containing the CM of our study are now registered in
Brazil.
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