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Abstract: Medicinal plants are rich sources of bioactive compounds widely used as medicaments,
food additives, perfumes, and agrochemicals. These secondary compounds are produced under
stress conditions to carry out physiological tasks in plants. Secondary metabolites have a complex
chemical structure with pharmacological properties. The widespread use of these metabolites in
a lot of industrial sectors has raised the need to increase the production of secondary metabolites.
Biotechnological methods of cell culture allow the conservation of plants, as well as the improvement
of metabolite biosynthesis and the possibility to modify the synthesis pathways. The objective of this
review is to outline the applications of different in vitro culture systems with previously reported
relevant examples for the optimal production of plant-derived secondary metabolites.

Keywords: secondary metabolites; cell culture; elicitor; biological effects

1. Introduction

Plants can synthesize chemical compounds either as primary or secondary metabolites
according to their biosynthetic pathways and their functions. The primary metabolites
ensure the vital function of the plant. However, the process of secondary metabolites is
not directly involved in plant growth and development. Even so, they have major roles in
interactions with the environment as a means of defense and adaptation to environmental
conditions [1].

The biosynthesis of secondary metabolites is based on geographical area, genetics,
climate, and environmental conditions [2]. Under plant growth conditions, many secondary
metabolites are amassed in distinct sites (vacuoles, specialized glands, trichomes, and
sometimes only during certain developmental stages) to enable functional flexibility under
the impact of environmental factors without influencing the cellular and physiological
developmental pathways [3]. Indeed, these substances have high values for humans
as pharmaceuticals, nutraceuticals, and cosmetics, making them targets for metabolic
engineering [4]. Phytochemical investigations have identified an arsenal of secondary
metabolites such as flavonoids, phenolic acids, nitrogen compounds, and terpenes [5,6].

The therapeutic effects of plants have been known since time immemorial [7]. These
molecules, which are made by plants, are now utilized by the pharmaceutical industry from
used vegetable raw materials [8,9]. While secondary metabolites exhibit various biological
properties [10–13], their distribution is very limited compared to primary metabolites.
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Many of these compounds occur in very low quantities in nature [14,15], necessitating
massive harvesting. This over-harvesting can threaten the biodiversity of the plants from
which these secondary metabolites originate.

Biotechnological approaches can be considered a key and powerful substitute in the
production of secondary metabolites coming from medicinal plants to support industrial
production and reduce the overexploitation of natural resources [16]. However, cell, tissue,
and plant organ culture techniques have been used for the production of these natural sub-
stances [17]. In this regard, effort has been made towards optimizing the culture conditions
for the production of secondary metabolites, as well as manipulating the synthesis of these
phytoconstituents through the application of different technological approaches including
cell line selection, elicitation, and precursor feeding [18]. These efforts have been carried
out to increase secondary metabolite production to meet the demand of the pharmaceutical
industry and to conserve natural sources [18–22].

Several extraction methods can be applied, depending on the physicochemical na-
ture of these compounds of interest [23]. These methods can be conventional or modern.
Conventional methods are generally based on the extraction potential of the different
solvents used before applying heat to them and/or mixing the solvents to obtain bioactive
compounds, such as Soxhlet extraction, maceration, and hydrodistillation [24–26], while
modern extraction techniques allow for shorter extraction time and reduced solvent con-
sumption [27]. New extraction methods, including ultrasonic-assisted extraction [28–30],
supercritical fluid extraction [29–31], and accelerated solvent extraction [32], are fast and
efficient for extracting chemicals from plant matrices. In addition, in situ extraction is con-
sidered an efficient method to recover secondary metabolites; moreover, it allows both to
improve the yield of the product and to orient the secondary metabolite pathway’s in vitro
culture system [33–35]. As the results revealed, the use of perfluorodecalin in the in situ
extraction system improved the performance of the cells’ culture as well as increased the
production of targeted molecules [36,37]. The choice of an appropriate extraction method
should be an essential consideration depending on the study objective, as the process of
the extraction may fully influence the chemical composition and therefore the biological
activity of the extract [38].

Plant extracts constitute a mixture of bioactive or phytochemical compounds of several
polarities, and their separation is an important challenge that leads to identification and
characterization processes [39]. In general, high-performance liquid chromatography
(HPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) or nuclear
magnetic resonance spectroscopy (NMR) are widely used to characterize and quantify
secondary metabolites in plant extracts.

For a long time, herbal treatments have been widely used for primary healthcare
needs. Through time, and with progress in the field of pharmacopy, synthetic drugs have
gradually started to be used instead of natural drugs, regardless of the side effects of the
synthetic components [40]. Moreover, these natural products have lower hydrophobicity
and higher stereochemical content than synthetic products [41]. Structural features of natu-
ral compounds can be effectively incorporated into synthetic drugs to increase chemical
diversity, and molecular complicity is an important feature for drugs [42], as molecular com-
plexity has been correlated with biological activity [43]. Indeed, in recent years, approval
of synthetic drugs has declined substantially [40,43]. So far, many successes have been
registered in the discovery of new active molecules in natural compounds. Some of these
molecules have become medicines or new paths of inspiration in finding new ones [44]. On
the other hand, medicinal plants and their natural products are still the best pharmaceutical
lead and offer an opportunity to discover new structures effective in a variety of human
diseases [38,44]. However, such property may threaten the biodiversity of these medicinal
plants due to overexploitation and unsustainable harvesting techniques [45].

In addition, plant biotechnology has offered alternative ways to access and explore
this chemical diversity through different in vitro culture techniques to produce natural
products for the pharmaceutical industries [46–48]. The cell culture technique can be
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used as a platform for the production of high-value secondary compounds [46,48–50].
Different biotechnology approaches represent a beneficial alternative for the production
of secondary metabolites under highly controlled conditions [51,52]. Therefore, in vitro
culture techniques such as plant organ culture provide plant material as a source of natural
products [38]. Multiple strategies using cell culture systems have been widely studied in
the context of improving the production and manipulating the flow of the biosynthesis of
desired secondary metabolites [46,53].

Plant cell and tissue culture offer an opportunity for the propagation of plants as well
as the production of phytochemicals [54]. Many plant species can be regenerated in vitro
through several approaches started by explants. Any part of the plant, such as meristems,
nodes, leaves, stems, roots, buds, embryos, etc., can be used for a limitless multiplication
of a plant and the production of bioactive compounds under sterile conditions [48,55–57].
Due to its various advantages, in vitro culture has been used as a powerful strategy for the
production of secondary metabolites [22,58]. In this review, we highlight biotechnological
approaches as promising strategies for the synthesis and improve secondary metabolites in
medicinal plants.

2. Plant Secondary Metabolites

Plant Secondary metabolites (PSMs) are low-weight molecules synthesized by the
plant to protect itself against potential enemies, including pathogens and herbivore attacks.
Even abiotic factors can affect the biosynthesis of secondary metabolites [59,60].

Due to their excellent biological activity, PSMs have been broadly used for centuries as
an important resource for traditional medicine, perfumes, and industrial raw materials [61].
Subsequently, they have been widely applied as valuable compounds such as pharma-
ceuticals, cosmetics, and bio-pesticides [4,51,61,62]. PSMs have contributed greatly to the
importance and commercial values of plants [63].

Phytochemical studies have identified an arsenal of secondary compounds such as
flavonoids, phenols, nitrogen compounds, and terpenes [5,6]. The more detailed biosyn-
thetic pathways of these metabolites are beyond the scope of this review. Thus, a preview
of the various biosynthetic pathways is represented in Figure 1.
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Figure 1. Principal biosynthetic pathways of major secondary metabolite plants’ classes. Figure 1. Principal biosynthetic pathways of major secondary metabolite plants’ classes.
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3. Micropropagation as a Tool for the Production of Secondary Metabolites

Micropropagation is the reproduction of plants in vitro which leads to the multiplica-
tion of genetically identical copies of the parent plant asexually. Micropropagation offers the
possibility of producing a limitless number of plants. Currently, this technique is applied
for clone selection and rapid biomass production in several organizations or establishments
for the large-scale production of higher plants.

In vitro propagation has become a crucial method for the mass production of medici-
nal plants and various protocols of the micropropagation of numerous medicinal species
that have been successfully achieved either by organogenesis [64–68] or by somatic em-
bryogenesis [69–71]. The micropropagation of many medicinal species has been revealed
to be similar and with a little variation in their phytochemical content [72].

Organogenesis is a micropropagation way that consists in the development of organs
derived from cells or tissues. Plant regeneration through organogenesis involves specifically
the induction and development of a shoot from an explant which is then transferred to
a different medium for root induction [73]. Several studies have demonstrated that a
successful application of organogenesis on medicinal plants can be achieved by the correct
establishment of the medium components and the selection of an adequate explant under
highly controlled conditions (Table 1).
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Table 1. Micropropagation of medicinal plants by organogenesis methods.

Plant Explant Source
Shoot Multiplication Rooting Phytochemical

Analysis Key Findings References
MS Medium Phytohormone MS Medium Phytohormone

Zingiber officinale
Roscoe

Rhizome
sproutedbud solid Zeatin (10 µM) solid NAA (7.5 µM) Flavonoids and

phenolic acids

The total content of phytochemical
components is not very different from
those of conventionally propagated

plants.

[74]

Plectranthusamboinicus Axillarybuds semi-solid BAP (0.4 mg/L) semi-solid Without PGR Carvacrol
γ-Terpinene

Essential oil yield was improved with
a higher quantity of chemical

compounds in vitro cultures. The
in vitro regeneration was chemically

true to the parent plant type.

[64]

Lavandula
coronopifolia Shoot tips solid BA (0.5 mg/L) solid IBA (10 mg/L) Caffeic acid

androsmarinic acid

Micropropagation was regenerated
from plants with genetic fidelity to

the parent plant.
A remarkable difference in the
chemical profiles of the in vitro

culture and the wild-type plants.

[75]

Tanacetum vulgare Shoot tips solid without PGR liquid
half-strength Without PGR

Monoterpenes
Sesquiterpene

Chlorogenic acid
3,5-O-

Dicaffeoylquinic
acid

Spontaneously rooted seedlings at the
time of propagation.

Terpenes are the most abundant in
essential oils.

In vitro grown roots are richest in
3,5-O-dicaffeoylquinic acid.

[76]

Cannabis sativa Nodal segments solid mT (2 µM) solid mT (2 µM) Cannabinoids

Rooting was performed on the same
propagation medium.

Auxin was not necessary for root
induction.

cannabinoid level in the
micropropagated plants is

comparable to the mother plant.
In vitro propagated plants are
identical to the mother plant.

[77]

Eryngiumalpinum Shoots solid
BAP, IAA, and

GA3 (each
1.0 mg/L)

__ __ Phenolic acids and
flavonoids

The solid MS medium with BAP, IAA,
and GA3 (each 1.0 mg/L) is the

optimal system for micropropagation
and accumulation of phenolic acids

and flavonoids.
An important variability in

phytochemicals between the intact
plant and different in vitro culture.

[6]
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Table 1. Cont.

Plant Explant Source
Shoot Multiplication Rooting Phytochemical

Analysis Key Findings References
MS Medium Phytohormone MS Medium Phytohormone

Spiraeabetulifoliasubsp.
aemiliana Axillarybuds solid

S1 = BAP (1.0 µM)
S2 = (BAP 5.0 µM)
+ (NAA 1.0 µM)

half-strength S1 = S2= IBA
(0.1 µM)

Phenolic acids and
flavonoids

Many differences in chemical profile
between in vitro culture and intact

plants.
Interpopulation genotypic differences

in the activity of morphogenic
processes have been identified in S.

betulifolia in vitro culture.

[78]

Salvia sclarea Nodal segments solid mT (2.0 mg/L) +
IAA (0.2 mg/L) solid NAA (1.0 mg/L)

A multitude of
secondary

metabolites

High genetic stability of
micropropagated plants.

N-alkanes, tetradecanal, octadecanal,
and hentriacontane are the major

components from micropropagated
plants.

PGRs have caused variability in the
content of secondary metabolite.

[79]

Lippiaoriganoides Nodal segments solid KIN (4.6 µM) solid KIN (2.3 µM)

Myrcene, p-cymene,
γ-terpinene, linalool,

thymol, carvacrol
and

(E)-caryophyllene.

The presence of PGR changed the
chemical profile of the volatile

organic compound.
[80]

Murashige and Skoog (MS), 6-benzylaminopurine (BAP), α-Naphthalene acetic acid (NAA), Benzyl adenine (BA), indole-3-acetic acid (IAA), Indol-3-butytic acid (IBA), Gibberellic acid
(GA3), Kinetin (Kin), meta-Topolin (mT), plant growth regulator (PGR).
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Somatic cells can produce somatic embryos, which are similar to zygotic embryos,
through a process called somatic embryogenesis. These somatic embryos can be developed
into seedlings in an appropriate medium [81]. Plant regeneration via embryogenesis
occurs in two steps: the callus is grown on an auxin-rich embryogenic induction medium,
sometimes combined with cytokinins, and is then transferred to an auxin-free medium,
which results in the formation of mature embryos [82]. The embryonic-like structure can
be produced either directly on the explant or indirectly from the callus or cell suspension
culture (Table 2). This technique has also allowed genetic, morphological, and physiological
manipulations to be performed [83].

Table 2. Micropropagation of medicinal plants by somatic embryogenesis (SE).

Family Plant Explant Source Phytohormone (mg/L)
for Induction SE

Basal
Medium

Somatic
Embryogenesis References

Direct Indirect

Apiaceae Ferulajaeschkeana Petiole 2,4-D (4.0) MS - X [84]

Asteraceae Seriphidiumherba-album Leaves 2,4-D (1.5) + BA (0.5) MS - X [85]

Fumariaceae Lamprocapnosspectabilis Leaves 2,4-D (0.5) + BA (0.5) 1
2 MS - X [86]Petioles PIC (1.0) + BA (0.5)

Plantaginaceae Digitalislanata
Leaves

2,4-D (1.0) + Kin (1.0)

MS

- X

[87]IBA (2.0) + Kin (2.0) X -

Root IBA (2.0) + Kin (2.0) X -

Murashige and Skoog (MS), 2,4-dichlorophenoxyacetic acid (2,4-D), Benzyl adenine (BA), Indol-3-butytic acid
(IBA), Kinetin (Kin), Picloram (PIC).

Micropropagation could be an attractive commercial activity for the production of high-
quality plants and offers advantages over conventional propagation practices [88]. Thus,
in vitro propagation is a sustainable alternative to the large-scale production of medicinal
species with economic value. Castilho et al. [80] allowed the use of an automated micro-
propagation system using bioreactors for industrial plant propagation as a possible way to
reduce micropropagation costs [89]. This can provide a means of supplying plant material
capable of providing plant material that is able to produce phytocompounds [19,38,48,90]
throughout the year without seasonal constraints [16].

4. The Importance of Cell and Suspension Culture in the Production of Plant
Secondary Metabolites

The evolution of biotechnology, in particular plant cell culture methods, should pro-
vide new means for the commercialization of plants and their chemical compounds. These
new technologies will expand and enhance the use of plants as valuable resources of
pharmaceutical compounds. Plant cell cultures have attracted considerable interest in the
industrialization of secondary metabolite production [91,92].

In vitro production of secondary metabolites requires the aggregation of cell biomass
for the synthesis of secondary metabolites [93]. Under in vitro conditions, plant cells that
induce callus formation through a high concentration of auxins or with the coordination of
auxin and cytokinin are frequently used [46]. Subsequently, callus can be used to develop a
suspension culture for the production of secondary metabolites [20,22,94]. In addition, the
immobilization of the cell system of hairy root plants is an efficient technique to produce
relevant bioactive compounds [34,35].

Plant cells, as defense mechanisms, produce secondary metabolites [16]. In this light,
the strategy to improve the synthesis of secondary metabolites, elicitation, is through the
application of agents that trigger the defense response. Hence, there have been several
authors who have illustrated the application of elicitors to enhance the production of sec-
ondary metabolites [95–99]. Similarly, plant growth regulators are known for their ability to
regulate the production of secondary metabolites [100–102]. Several studies confirmed that
phytohormones increase the production of secondary metabolites [101,103,104] (Table 3).
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Table 3. List of some applications of cell and suspension culture in the production of sec-
ondary metabolites.

Plant Species Active Ingredient Culture Condition (MS Medium) Culture Type References

Ageratinapichinchensis Artemesinol NAA + KIN Suspension [105]
Anethum graveolens Carvone BA + NAA + SA Suspension [106]

Camellia sinensis Catechin BAP + 2,4-D + Ph (phenylalanine) Callus [107]
Capparis spinosa Rutin B5 medium + 2,4-D + BAP + MeJA + SA Callus [108]

Carallumatuberculata
Total phenolics MS + 2,4-D + BAP + AgNPs(silver

nanoparticles) Callus [109]Total flavonoid

Cayratia trifoliata Stilbenes NAA + KN + MeJA Suspension [110]
Cupressus

sempervirens RutinQuercitrin BA + NAA + GA3 Callus [111]

Eysenhardtiaplatycarpa Total phenolics NAA + KIN Suspension [112]
Gardeniajasminoides Rutin TDZ Callus [113]

Gymnemasylvestre Gymnemic acid 2,4-D + BA + MeJA Suspension [114]
Phyllanthus acidus Phyllanthusol NAA + BA Callus [115]
Pluchealanceolata Quercetin NAA + BAP Callus [116]

Rosmarinus officinalis Flavonoid
2,4-D + BAP Callus [117]Terpenoids

Ocimumbasilicum

Rosmarinic acid

KIN + NAA + Sorbitol Suspension [118]
Chicoric acid

Rutin
Linalool

Methyl chavicol

Labisia pumila Total phenolics
2,4-D + Zea Callus [119]Total flavonoid

Murashige and Skoog (MS), Gamborg’s (B5), 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP),
α-Naphthalene acetic acid (NAA), Benzyl adenine (BA), Kinetin (Kin), Gibberellic acid (GA3), Thidiazuron (TDZ),
Zeatin (Zea), MeJA (methyl jasmonate), SA (Salicylic acid).

The in vitro culture of a Fritillaria unibracteata bulb by [120] confirmed that the growth
rate of the in vitro culture was faster than under natural conditions. The alkaloid and
microelement content of the in vitro cultured bulbs were higher compared to the wild
bulbs. Moreover, for the in vitro culture of Clinacanthus nutans leaves, [121] remarked that
the phenolic content and antioxidant activities were improved. Moreover, fungal elicitors
have been used to improve the production of secondary metabolites in Hybanthusennea-
spermus [122]. Furthermore, a cell suspension culture inclusion of α-Naphthalene acetic
acid (NAA) and Kinetin (KIN) from Eysenhardtiaplatycarpa showed a significant biomass
accumulation, as well as the dichloromethane extracts of the suspension which contains
phenolic components and flavonoids with remarkable antifungal activity [112]. Phyllanthu-
sol A was produced by callus culture in MS medium with NAA and BA [115]. Indeed, [117]
remarked that callus can accumulate the same secondary metabolites (53 metabolites were
identified) produced in the leaves (47 compounds in leaf extracts) of Rosmarinus officinalis.

5. Bioreactors: System for Large-Scale Production

The synthesis of secondary metabolites through in vitro culture has led to the concept of
bioreactors for the large-scale production of natural compounds in recent years [50,123,124].
Moreover, bioreactors are autonomous systems that have a sterile environment, control,
and which provide homogeneous culture conditions in terms of pH, aeration and tem-
perature, and agitation, as well as liquid and air inlet and outlet channels for the massive
multiplication of cells, tissues, or somatic embryos [125,126]. Reviews published [127–129]
contain schematics of different types of bioreactors. Therefore, Bioreactors are engineered
systems that can support the biological condition and aim of the realization of aerobic or
anaerobic biochemical processes. This means that bioreactors can replace the conventional
methods of in vitro culture [130,131].
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Bioreactor culture has led to the production of many products such as shikonin, a
rich reddish-purple pigment used in lipsticks [132], ginsenosides used as additives and
bleaching substances [53,133], paclitaxel (as well as the anti-cancer drug) [134], and in
food applications [135]. In addition, bioreactor production has been reported by several
authors [136–142].

Panax Ginseng suspension culture in the bioreactor enhanced biomass accumulation
as well as ginsenosides (5.4 mg/g) [136]. Similarly, ginseng culture treated with salicylic
acid led to an accumulation in total phenolic (62%), flavonoids (88%), and ascorbic acid
(55%) [142]. Somatic embryos can be grown in bioreactors as a source of raw materi-
als since they can accumulate secondary metabolites [141]. The cultivation of adventi-
tious roots of Hypericum perforatum in a bubble bioreactor containing MS half-strength
medium with 0.1 mg/L Kn and 1 mg/L IBA accumulated total phenolics (35.01 mg/g DW),
flavonoids (0.97 mg/g DW), and hypericin (1.389 mg/g DW) [143]. The highest production
of flavonoids from Gynuraprocumbens was obtained in the temporary immersion bioreactors
under the combined treatment of 15 min immersion frequency every 12 h in MS medium
with IAA and BA [144]. In vitro shoot culture of Verbena officinalis was grown in temporary
immersion bioreactors complemented with 4.92 µM IBA and produced large amounts of
biomass with increased levels of essential oils [128,137]. Single-use bioreactors are suitable
systems to increase and control the microenvironment culture. In this approach, the hairy
root culture of Ringeragraeca, supported by the WAVE 25 bioreactor system, exhibited a
strong increase in fresh biomass (more than 800%) and a very high yield of naphthoquinone
(Wierzchowski). Moreover, the culture of the cambial meristematic cells of O. basilicum
in wave-mixed disposable bioreactors was shown to produce the highest yield of triter-
penoids (oleanolic acid = 3.02 ± 0.76 mg/(l × d) and ursolic acid = 4.79 ± 0.48 mg/(l × d)),
1.75-times higher than the shake [130].

Thus, bioreactors could improve the efficiency of the process for more valuable plant-
derived products and lead to a new wave of industrial production.

6. Elicitation of In Vitro Products

The use of substances that trigger the defense response of plants and cells in vitro
culture is considered an excellent biotechnological method for the production of secondary
compounds [16,145]. An elicitor is defined as a factor or element that, once introduced or
modified in an in vitro culture, increases the biosynthetic capacity of secondary metabo-
lites [98]. Generally, there are two types of elicitors: biotic and abiotic. Both of them have
been well detailed in several reviews [56,95,98,146–150].

Adding an eliciting agent can improve the production of the secondary metabolites
of medicinal plants by in vitro culture. Many fields can use this approach, which allows
the production of high-value bioactive compounds such as pharmaceuticals, food, and
cosmetics [151]. The quantity and quality of the obtained metabolites can be greatly
influenced by various parameters such as the nature of the elicitor, its concentration, and
the exposure time, Table 4 [152–158].

Abiotic elicitors have wide effects on the production of secondary metabolites [159].
For example, Chavan et al. [160] reported that the application of jasmonic acid (75 µM) in
callus cultures in Salacia chinensis improved the total phenolic, flavonoid, and mangiferin
contents for the same application, which revealed the highest antioxidant potential. More-
over, Mahendran et al. [161] documented that Gymnemasylvestre cell suspension culture
with 20 µM sodium nitroprusside treatments revealed the highest accumulation of dea-
cylgymnic acid and XVII gymnemic acid. Furthermore, the cultivation of Carum copticum
under salt stress enhanced the phenolic content accumulation and antioxidant activity [162].
Similarly, elicitation with nanoparticles could enhance the production of the secondary
metabolites of Fagonia indica in callus cultures [163]. In the suspension culture of Lonicera
japonica Thun, a combination of 200 µM methyl jasmonate, 50 µM salicylic acid, and 2 h
d-1 Ultraviolet B radiation, improved the synthesis of the chlorogenic acids and showed
a high antioxidant capacity compared to untreated control and field-grown buds [164].
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Açıkgöz, [165] demonstrated the stimulatory effects of CdCl2 and AgNO3 on the accumula-
tion of bioactive components in Ocimum basilicum cell suspension cultures.

Biological substances such as polysaccharides and microbial compounds can be used
as biotic elicitors [159]. In the callus cultures of Lepidium sativum, the application of chi-
tosan (250 mg/L) increased the concentration of lepidin and total phenolic compounds by
19.87 times compared to the control value [166]. Elicitation by chitosan in Silybum mari-
anum cell suspension increased the production of silymarin and revealed high antioxidant
and anti-inflammatory activities [167]. Furthermore, Farhadi et al.’s [168] cell suspension
culture of Corylus avellana with a fungal elicitor application enhanced the biosynthesis of
paclitaxel. Treatment with an aqueous extract of Spirulina platensis increased the production
of linalool in Lavandula officinalis [169]. Yeast extract increased chicoric and rosmarinic acid
content in suspension cultures of Ocimum basilicum [165]. Salehi et al. [170] reported the
positive effects of fungal elicitors on paclitaxel production in the cell suspension culture
of Corylus avellana. Moreover, [171] reported that introducing elicitors from endophytic
fungi (Chaetomium sp.) into a culture of adventitious roots of Panax ginseng had a significant
increase in ginsenosides (56.29 mg/g) relative to the controls (17.56 mg/g).

Further studies on the elicitation of hairy root cultures [172–176] highlighted the po-
tential to produce higher amounts of secondary metabolites. Hashemi and Naghavi [172]
demonstrated elicitation in the hairy root culture of Papverorientale with methyl jasmonate
and salicylic acid, which resulted in the regulation of the expression of genes in the mor-
phine pathway; moreover, the elicitation of methyl jasmonate (MJ) improved the synthesis
of thebaine (3.08 mg/g), morphine (5.38 mg/g) and codeine (2.57 mg/g). Moreover, the
results demonstrated that the elicitation by chitosan (200 mg/L) in the hairy culture of
Psammosilenetunicoides a produced a 4.55-fold increase in total saponin accumulation for
nine days, and that the yields of quillaic acid, gypsogenin, and gypsogenin-3-O-β-D-
glucuronopyranoside were significantly increased after the chitosan treatments.

Table 4. Some application of abiotic and biotic elicitors in the production of plant secondary metabolites.

Plant Species Elicitor Factor Culture System Product Key Findings References

Abiotic elicitors

Chelidonium majus Methyl jasmonate (MJ)
Salicylic acid (SA) Cell suspension culture Chelidonine,

sanguinarine

Elicitation stimulated the
expression of genes in the

benzophenanthridine alkaloid
biosynthetic pathway.

[177]

Ocimumbasilicum Copper oxide (CuO) Callus culture Rosmarinic acid,
chicoric acid, eugenol

Elicitation by nanoparticles
stimulated the biosynthesis of the

secondary metabolite.
[178]

Ocimumbasilicum Salicylic acid (SA) + light
regimes Callus culture

Rosmarinic acid,
chicoricacid, cyanidin,

peonidin

Continuous light with SA
increased the content of phenolic
compounds and flavonoids, also

antioxidant activity.

[178]

Coelogyne ovalis Salicylic acid (SA) Tissue culture
Flavonoids,

anthocyanins, phenolic
compounds

Elicitation stimulates chalcone
synthase expression and

secondary
metabolites production.

[179]

Papaver orientale Methyl jasmonate (MJ),
salicylic acid (SA)

Hairy
root culture

Thebaine, morphine,
codeine

Expression of morphinan
biosynthetic genes was

significantly upregulated with MJ
and SA.

MJ and SA elicitation enhanced
thebaine, morphine, and

codeine biosynthesis.

[172]

Crocus sativus Ultrasonic waves Cell suspension culture Safranal, crocin

Ultrasonic treatment acted as an
effective mechanical stimulus on

the production of secondary
metabolites in

suspension cultures.

[180]
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Table 4. Cont.

Plant Species Elicitor Factor Culture System Product Key Findings References

Abiotic elicitors

Gymnemasylvestre Sodium nitroprusside
(SNP) Cell suspension culture

Deacylgymnemic acid,
gymnemagenin,

gymnemic acid XVII

Significant improvement in the
content of gymnemic acids in cell

suspension cultures of
G. sylvestre.

[161]

Momordica charantia Silver nanoparticles
(AgNPs) Cell suspension culture Hydroxybenzoic,

hydroxycinnamic

The significant increase in
bioactive compounds as well as
pharmacological activities was

enhanced by the application
of elicitation.

[181]

Biotic elicitors

Corylus avellana Chaetommiuglobosum Cell suspension cultures Paclitaxel Increased extracellular portion of
paclitaxel (44.0%). [170]

Bletilla striata Byssochlamys spectabilis Tissue culture Total phenolic content Increased total
phenolic compounds. [182]

Panax ginseng Aspergillus niger Adventitious root
culture Ginsenosides

A. Niger triggered the defense
response of plants and enhanced
the accumulation of nitric oxide

(NO), SA, and JA.
Significantly upregulated the

gene expression of
terpenoid biosynthesis.

[183]

Panax ginseng Alternaria panax Adventitious root
culture Ginsenosides

Nitric oxide (NO), putrescine
(Put), and hydrogen peroxide

(H2O2) are involved in regulating
ginsenoside synthesis in fungal

elicitor-treated Adventitious root
of P. ginseng.

[184]

Trichosanthescucumerina Chitosan Callus and suspension
culture Bryonolic acid

Callus and suspension cultures
presented higher levels of

Bryonolic acid than the natural
roots ones.

[185]

Psammosilenetunicoides Chitosan Hairy
root culture

Quillaic acid,
gypsogenin,

gypsogenin 3-O-β-D-
glucuronopyranoside

Chitosan elicitor promotes
triterpenoid saponin biosynthesis

by enhancing antioxidant
activities and differential

gene expression.

[175]

Iberis amara Chitosan Cell suspension culture Total phenol, flavonoid,
flavonol, anthocyanin

Chitosan elicitor promotes
phenolic compounds’

biosynthesis without genetic
modifications in medicinal herbs.

[186]

Plumbago zeylanica Chitosan and yeast extract Root callus Plumbagin Increase of 12.08-fold plumbagin
content compared to control. [187]

7. Conclusions and Perspectives

Medicinal plants represent an impressive reservoir of bioactive compounds with sev-
eral pharmacological properties. Biotechnological approaches and in vitro culture consti-
tute a precious, sustainable, and ecological alternative for the production of these bioactive
compounds to reduce the use of chemically synthetic compounds while decreasing the
overexploitation of natural resources. In this respect, the synthesis of secondary metabolites
by in vitro culture has experienced several successes in a variety of culture systems. The
industrial production of secondary metabolites is not totally developed because of the low
yields of the compounds targeted. Furthermore, the biosynthetic pathways of secondary
metabolites are not fully characterized, nor is the epigenetic control of the biosynthesis
of these compounds in long-term culture [188]. However, further studies are required to
comprehend the biosynthetic pathways and the epigenetic mechanisms that regulate the
biosynthesis of secondary metabolites to guarantee targeted production with a high and
stable yield of the secondary compounds wanted.
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