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Abstract—Textile-based sensors offer an unobtrusive method of
continually monitoring physiological parameters during daily ac-
tivities. Chemical analysis of body fluids, noninvasively, is a novel
and exciting area of personalized wearable healthcare systems.
BIOTEX was an EU-funded project that aimed to develop tex-
tile sensors to measure physiological parameters and the chemical
composition of body fluids, with a particular interest in sweat.
A wearable sensing system has been developed that integrates a
textile-based fluid handling system for sample collection and trans-
port with a number of sensors including sodium, conductivity, and
pH sensors. Sensors for sweat rate, ECG, respiration, and blood
oxygenation were also developed. For the first time, it has been
possible to monitor a number of physiological parameters together
with sweat composition in real time. This has been carried out via
a network of wearable sensors distributed around the body of a
subject user. This has huge implications for the field of sports and
human performance and opens a whole new field of research in the
clinical setting.
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I. INTRODUCTION

W
EARABLE sensors allow the continuous monitoring of

a person’s physiology in a natural setting. At the present

stage, health-monitoring systems using electronic textiles are

mainly targeting applications based upon physiological param-

eter measurements, such as body movements or ECG. To open

a dramatically wider field of applications, chemical measure-

ments on body fluids (blood, sweat, and urine) are needed. This

area of research is unfortunately lacking due to the difficulty

in sampling such fluids. The BIOTEX project has tackled some

of these problems by developing a textile-based system to col-

lect and analyze sweat by using a textile-based sensor capable

of performing chemical measurements. The great advantage of

analyzing sweat for health monitoring is that it is noninvasive,

easily accessible, and it offers valuable physiological informa-

tion [1], [2]. The sweat test is the gold standard technique for

the diagnosis of cystic fibrosis (CF) [2]. This is a once-off test

that is performed in newborns and the diagnosis is based on

sodium and chloride concentration levels. However, advances

in this direction have been limited due to the difficulty in ob-

taining uncontaminated samples. The BIOTEX system involves

a network of textile sensors that can be easily integrated into ev-

eryday clothing and provide real-time physiological feedback.

During exercise, evaporation is usually the primary mecha-

nism of heat dissipation. If the body cannot adequately evaporate

sweat from the skin’s surface, core temperature rises rapidly. A

side effect of sweating is the loss of valuable fluids from the

finite reservoir within the body. The sweat rate relates to exer-

cise intensity, environmental conditions, acclimatization state,

clothing, and baseline hydration status. It also varies between

individuals. Sweat composition changes offer valuable infor-

mation regarding hydration status and electrolyte balance and

there are a number of fields where this can be applied [3], [4].

Hydration, performance, and physiological factors are all inter-

related; therefore, by monitoring sweat loss and composition, in

addition to heart rate and breathing, it is possible to get a more

complete picture of the body’s physiological state. Elite athletes

must ensure electrolyte balance and adequate rehydration after

exercise or risk-reduced performance [5]–[7]. Aside from ath-

letes, dehydration can impact on everyone’s general well-being,

while in the elderly, dehydration can cause serious illness and

1089-7771/$26.00 © 2010 IEEE
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even death, particularly, in the event of a heat wave [8]. There-

fore, it is useful to measure the sweat loss and also to know the

composition of sweat. Analysis of sweating patterns is also an

important parameter, as this can indicate autonomic dysfunc-

tion. A straightforward method of sweat analysis could help

in the diagnosis and treatment of various conditions that are

affected by autonomic dysfunction, such as diabetes and hyper-

hydrosis [9], [10].

While sweat may be easily obtainable, collection and mea-

surement techniques for analysis can be awkward—Minor’s

method involves covering the skin with starch–iodine pow-

der that exhibits purple dots when sweat droplets appear [11].

“Wash-down” techniques involve exercising within a plastic en-

closure to collect sweat and then washing down the body within

the enclosure using deionized water at the end of the exercise

trial [12]. These methods are obviously unsuitable for long-term

measurements outside of a laboratory setting. Parafilm patches

have been used to create a capsule on the skin surface, but

these may change the sweat composition, as they prevent water

evaporation [7]. Bioimpedance measurements have been used

to estimate the amount of water in the body, but as a wearable

system, this is challenging due to complex circuitry, measure-

ment times, and the effects of movement and electrode place-

ment [13], [14]. In the field, the most practical way for athletes

to monitor their sweat loss is to measure changes in body weight

pre and postexercise [15]. Therefore, it is clear that a method is

needed to collect and analyze sweat in an unobtrusive way in

normal settings, at home, in the gym, or on the track to provide

real-time analysis of sweat activity.

This paper presents the design of a sweat analysis system that

can be easily integrated into fabric for real-time analysis of sweat

during exercise. A number of textile sensors are distributed

around the body, including a multiparametric patch to measure

the pH, sodium concentration, and conductivity of sweat. The

patch is responsible for collecting and delivering sweat samples

to sensors and removing waste products. Other sensing modules

include sweat rate, ECG, respiration, and blood oximetry. The

design of each sensor is described and results of exercise trials

are presented.

II. METHODS

The types of sensors that are integrated into the system and

their placement on the body are listed in Table I. The sweat

analysis sensors are positioned on the lower back using a waist-

band, while a separate garment holds ECG, respiration, and

pulse oximetry sensors.

A. Multiparametric Patch for Sweat Analysis

1) Collection Methods/Fluidics: A textile-based platform

with fluid handling properties is used to collect and analyze

sweat samples. The system exhibits a passive pumping mech-

anism by capillary action using a combination of moisture-

wicking fabric and a highly absorbent material [16]. A textile

channel is created using the moisture-wicking material while

the absorbent is placed at the end of the channel. The absorbent

controls fluid flow, thus drawing the sweat toward it along the

length of the channel. In this way, a continuous flow of sweat

TABLE I
WEARABLE SENSORS INTEGRATED INTO TEXTILES AND SENSOR PLACEMENT

enters the textile-based channel where it is analyzed by the sen-

sors, and then, it travels toward the absorbent where it is stored.

The channel is formed by screen-printing a hydrophobic ma-

terial on either side of a polyester/lycra blend. Following this,

a polyurethane film is placed on the skin side of the fabric,

thus leaving a small area at the top of the channel uncovered.

This forms the inlet through which the sweat enters the pump.

The dimensions of the channel have a large influence on the

rate of fluid flow. The rate increased for wider channel width

and decreased for longer channel lengths. Therefore, the chan-

nel can be designed in order to collect sweat at a speed that

matches the sweat rate of the human body. The dimensions of

the patch were based on sweat rate measurements by Patterson

et al. [17]. The forehead, chest, and lower back are regions

that generate the most amount of sweat. The lower back was

chosen, as this is an unobtrusive location for sensor placement

during exercise. The sweat rate on the lower back is reported

to be 0.85 ± 0.41 mg/cm2 [17]. The channel design is shown

in Fig. 1. In order to maximize the sweat collection over the

area covered by the textile patch and move it toward the inlet to

the channel, a fabric with a triple layer of materials (Coolmax/

polyester/polyester) is stitched to the skin side of the patch,

as shown in Fig. 1(b). The patch collects sweat from an area

of 22 cm2 ; therefore, the expected flow rate of the pump is

17 mg/min. A small piece (1 cm × 3 cm) of superabsorbent

(Absorbtex) with a free swell capacity 25.1 g/g is used, which

means that the pump should operate for 75 min, assuming a

constant sweat loss rate of 17 mg/min.

2) pH Sensor: A colorimetric approach using pH sensitive

dyes has been used to develop a textile-based pH sensor. Such

dyes have different absorption properties depending on their

immediate pH environment. The pH indicator is immobilized

onto the textile substrate and the color is monitored using op-

tical components arranged in a reflectance-mode configuration

shown in Fig. 2. The dye used is bromocresol purple (BCP) that

responds to the pH range 4–7 and tetraoctyl ammonium bromide

is used to immobilize the dye [18], [19]. For optical detection,

a pair of LEDs is used. LEDs have been demonstrated to op-

erate as detectors as well as light sources and offer a low-cost
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Fig. 1. Textile-based fluid handling platform.

Fig. 2. pH sensor configuration.

Fig. 3. (a) Schematic representation of the working electrode layer (Na+ ISE).
(b) Picture of the electrochemical cell on flexible film.

and low-power solution, which is desirable for any wearable

application.

3) Sodium Sensor: The sodium sensor, developed by Elec-

tronics and Information Technology Laboratory of the French

Atomic Energy Commission (CEA-LETI), is fabricated on a

flexible kapton surface. The principle of the electrochemical

sensor consists of the measurement of the open-circuit potential

(OCP) between a reference gold electrode and an ion-selective

electrode (solid contact ion-selective electrode, SC-ISE), which

is a function of the sodium concentration. This Na+ selective

electrode is made on a gold contact covered with a polymeric

membrane that contains a polymer (polypyrrole, PPy), plasti-

cizer, ionophore, and ion exchanger, as shown in Fig. 3.

The polymeric ion-selective membrane requires a condition-

ing period before use (12 h in 1 mM NaCl) and must be cal-

Fig. 4. Multiparametric patch containing pH indicator, conductivity, sodium,
and temperature sensors.

Fig. 5. (a) Wearable humidity sensor. (b) Textile arrangement to measure low
sweat rate values.

ibrated prior to the trials, using model solutions with known

concentrations of sodium (20, 40, 60, and 80 mM). This sodium

electrochemical sensor is reusable and requires only one step of

washing before reuse.

a) Conductivity sensor: The conductivity sensor consists

of electrodes fabricated on the flexible kapton surface that

also contains the sodium sensor. As conductivity and sodium

measurements are temperature dependent, a temperature sen-

sor (Analog Device ADT7301) is included within the system

to compensate for temperature changes. The kapton patch is

placed across fluidic channel, as shown in Fig. 4. Literature re-

ports a range of values from 2 to 15 mS/cm, with an average

conductivity of 5 mS/cm for the sweat of healthy subjects [20].

b) Sweat rate sensor: The skin is a complex structure,

but to model perspiration it can be effectively approximated by

a homogenous flat surface continuously emitting water vapor.

With such an assumption, Fick’s first law of diffusion can be

used to calculate sweat rate from the gradient of humidity mea-

sured by a pair of wearable humidity sensors at two distances

(0.5 and 1.5 cm) from the skin. In cases of low sweat rates

(10–40 g/(m2
·h)), more accurate estimates can be obtained by

increasing the gradient by means of a net fabric (88% polyamide

and 12% elastane). Fig. 5 shows a humidity sensor and the latter

textile arrangement. The textile membrane is removed when the

measurement range has to be extended up to 1000 g/(m2
·h). In

that case, a flexible textile frame is used to place the sensors

at the right positions. Capacitive humidity sensors are prepared

either by vacuum-depositing gold electrodes onto hydrophilic

films (polyvinyl alcohol or cellulose acetate butyrate) or by

modifying a commercial device (Philips H1).
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Fig. 6. Thoracic oximetry sensor located at the upper sternum.

Fig. 7. (a) Arrangement of the ECG, respiration, and thoracic oximetry sen-
sors. (b) Experimental setup during an exercise trial.

B. Chest band/Vest

1) Thoracic Oximetry Sensor: Commercial pulse oximeters

measure blood oxygenation (SpO2) at the fingertip or earlobe.

Such sites benefit from a dense vascular bed providing high-

quality information on blood oxygenation. Nevertheless, they

are not textile accessible and fingertip or earlobe SpO2 probes

are quite obtrusive, as they interfere with the user’s daily activ-

ities. The BIOTEX SpO2 sensor measures blood oxygenation

at the sternum. The sensor is shown in Fig. 6. At its centre, the

circular plastic support holds red and infrared LEDs that emit

light to the sternum. At the outer contour, the optical fibers are

positioned to receive the light reflected at the sternum.

Optical fibers integrated in the fabric make it possible to

access the sternum while ensuring user comfort. It is possible to

produce a bus with a high number of fibers. An elastic version of

the optical fiber fabric further improves comfort [21]. A textile

shoulder strap has been designed and realized to keep the optical

system in place while also applying the right pressure to the skin

[see Fig. 7(a)].

2) ECG and Respiration: Three textile electrodes with sil-

icone cushions, to improve signal stability, are integrated into

the garment to measure ECG signals. The use of a seamless

knitting-dedicated machine (i.e., Santoni SpA5) provides elas-

tic, adherent, and comfortable garments. The devices are real-

ized using stainless-steel yarns produced by Bekintex for the

electrodes and the Meryl Skinlife purchased by Nylstar as basal

TABLE II
SIGNAL ACQUISITION AND SAMPLING FREQUENCIES

yarn. A piezoresistive sensor responds to the movement of the

ribcage during breathing and measures respiration rate.

3) Control Electronics: A central electronics unit powers

controls and saves data from each of the sensors. Data are either

transmitted over Bluetooth for remote saving and further pro-

cessing or saved by an SD card recorder included in the control

electronics. A touch-screen display is used to set the configura-

tion parameters as a simple user interface. This allows the user

to navigate through the menus and to view the results processed

by the unit. Graphical presentation on a laptop is also used to

simplify the interpretation of the data. Table II describes the

measurements carried out by the control electronics. The con-

trol electronic also extracts the heart rate and the SpO2 from the

measured signals.

III. EXPERIMENTAL SETUP

In order to test the sensors and fabric patch on-body, the

sweat analysis sensors are enclosed in a waistband, designed by

Smartex, which ensures that the fabric patch maintains good

contact with the skin. It is also used to reduce motion arte-

facts during exercise and block ambient light, which may affect

the operation of the optical-detection unit of the pH sensor.

The waistband is made from a moisture wicking, stretch fabric

for comfort with an integrated pocket to hold the multisensor

patch in place. The use of an elastic fabric laminated with a

hydrophobic membrane prevents the absorption of sweat from

the waistband, which would reduce the sweat flow to the pump.

Hooks and loops fasteners are used to keep the passive pump

and the electronics in place, thereby reducing motion effects

during exercise.

A second pocket houses the sweat rate sensor. A neoprene

frame makes sure that the right distance between sensors and

skin is maintained, while holes in the pocket allow the water

vapor to diffuse away without obstacles.

The waistband is positioned on the subject’s back, as shown

in Fig. 7(b). The multiparametric patch is to the right of the

spine, while the sweat rate sensor is positioned to the left of the

spine. This is done to avoid collecting sweat, which runs from

the top to the bottom of the back along this hollow.

IV. RESULTS

Exercise trials involved indoor cycling at 20 ◦C for up to

60 min. Subjects typically started sweating after 5–10 min.
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Fig. 8. Sweat pH during an exercise trial.

A. Fabric Fluid Handling Platform

Fluid transportation is achieved through capillary action in a

moisture-wicking fabric in conjunction with a superabsorbent

material. In this way, a continuous flow of sweat may enter the

textile-based channel, where it is analyzed by the sensors and

then travels on to the absorbent where it is stored. The weight

of the absorbent on the fabric patch was recorded before and

after exercise, in order to obtain an estimate of the flow rate of

sweat through the textile patch. Sweat rates ranged from 4 to

8.3 mg/min. Female subjects tended to have lower sweat rates

compared to males, which is well established [22]. Lower sweat

rate affects the time for sweat to reach the sensors, and if the

flow rate is too low, there is not adequate fluid to wet the sensors

on the kapton layer that touch the surface of the fabric channel.

B. pH Sensor

The ability of the textile-based pH sensor to measure real-time

changes in sweat pH during exercise was assessed by comparing

the results of the sensor to those obtained using a Skincheck pH

meter. This is a hand-held device used to measure skin surface

pH. Reference measurements were taken from the fabric surface

of a reference fabric patch positioned beside the multiparametric

patch. The reference device is not wearable and does not allow

for continuous real-time measurements. Point measurements

were taken every 2 min once there was sufficient sweat on the

fabric patch, i.e., after 15 min during the trial depicted in Fig. 8.

The wireless fabric sensor data shows close correlation with

the handheld reference meter (mean absolute error = 0.03 pH

units).

C. Sodium Sensor and Conductivity Sensor

The responses of the sodium and conductivity sensors are

shown in Fig. 9. Meaningful measurements can be taken once

sufficient sweat begins to enter the channel and makes contact

with the sensors. Following this priming period, the electrodes

respond to the sweat on the surface of the fabric channel. For

the trial depicted in Fig. 9, this takes approximately 35 min.

After this time, the sodium sensor reaches a steady-state value

corresponding to a concentration of 15 mM. The duration of

the priming period is not constant among different subjects, as

it depends on how much and how fast the subject is sweating.

Fig. 9. Response of sodium and conductivity sensors during an exercise trial.

Fig. 10. Textile sweat rate sensor compared to commercial VapoMeter.

The signal from the sweat rate sensor can give an indication

of when there is sufficient flow of sweat to the sensors for the

measurements to be valid.

D. Sweat Rate Sensor

Sensor development and calibration is described by Salvo

et al. [23]. The difference in capacitance between the bottom

and top humidity sensors has been considered as an indication

of sweat rate. The results of a trial are shown in Fig. 10. The trial

lasted 45 min and involved 30 min of indoor cycling, at a self-

selected pace, following by 15 min rest. A commercial meter

(VapoMeter, Delphintech) for measuring water evaporation was

used as a reference, as there are currently no wearable devices

available to measure sweat rate in real time. The VapoMeter is a

hand-held device, but it is not wearable and needs about 2 min

to perform a point measurement. From the results of the trial, it

can be seen that the subject started sweating after approximately

5 min and that sweat rate declined as soon as the subject rested

after 30 min. The measurements taken by the textile sensor are

congruent with those provided by the VapoMeter (mean absolute

error = 10.17 g/(m2
·h)).
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TABLE III
PERFUSION INDEX FOR THE RED AND INFRARED LIGHT AT THE FINGER,

THE FOREHEAD, AND THE STERNUM

E. ECG and Respiration

The textile sensors to measure ECG and respiration are based

on the knowledge gained from previous EU projects including

MyHeart and Wealthy [24]. The applied sensing technology

has been tested against gold standard references in previous

work [25]. The signal-to-noise ratio has been high enough for

all the tests, in order to make it possible to compute heart rate

with the internal algorithm of the BIOTEX control electronics.

Signals gathered during rest show high quality and reliability

allowing the study of the T wave and morphology analysis.

The goal of the breathing measurement system was to mea-

sure the respiration rate, which has been achieved. In two sub-

jects who had very high sweat rates, the signal showed signifi-

cant drift and noise. The quantity of sweat that soaked the band

caused a variation of the electrical resistance of the sensor. This

variation was simply reduced by applying a bandpass filter of

0.2–2 Hz.

F. Thoracic Oximetry

The finger is generally the preferred location for measuring

oxygen saturation. Table III shows the perfusion index of the

finger compared to the forehead or chest. The finger or forehead

may prove to be obtrusive during exercise, whereas measuring

oxygen saturation on the chest by a sensor embedded in a t-shirt

is more appealing solution. Comfort, practicality, and appear-

ance are issues that must be addressed when designing wearable

sensing devices. As shown by the figures in Table III, this unob-

trusive placement comes at the price of a much lower perfusion

index, compared to the fingertip, which means that the detection

of reflected light is more challenging. Motion artifacts during

physical activity have added to this challenge, while sweat on

the skin surface also affects the authenticity of the signal.

A BIOPAC fingertip SpO2 probe has been used to provide

a reference measurement. Blood oxygenation variations have

been induced by causing hypoxic periods using a high-altitude

simulator (Altitrainer4). Fig. 11 shows the response of the

BIOTEX sternum sensor with the reference fingertip probe mea-

surement while the subject was seated.

V. DISCUSSION

Further testing is needed to establish the reasons for the

changing composition of sweat during exercise, as research in

this area is unfortunately lacking due to the difficulty in sam-

pling sweat. Changes in sweat composition during exercise may

be explained by considering the anatomy of sweat glands and

their operation. Sweat glands have two main components, a

Fig. 11. BIOTEX SpO2 sensor compared with the reference measurement.

tubular coiled area where the sweat is produced and the duct

through which it reaches the skin surface. The secretory portion

of the eccrine sweat gland produces an isotonic fluid that moves

through the ductal portion of the sweat gland, where solutes

such as sodium ions are reabsorbed. One hypothesis is that dur-

ing exercise, the sweat secreted at the skin is initially acidic due

to reabsorption processes in the sweat duct. During exercise,

an increase in sweat rate affects the reabsorption processes in

the sweat duct and increases the electrolyte concentration and

pH of the sweat on the skin surface [26]. During an exercise

trial, the sweat secreted at the skin is initially acidic due to

these reabsorption processes that occur in the duct. However,

as the subject continues to exercise, the rate at which sweat is

excreted increases, in order to regulate body temperature. This

reduces the time available for reabsorption processes, and there-

fore, sweat pH increases along with sodium concentration and

conductivity. Further work is needed to investigate the changes

in sweat compositions during different training regimes in dif-

ferent environmental conditions.

With the current design, the sensors responded well provided

that there was an adequate supply of sweat. While this is not a

problem for fit healthy subjects, the design needs to be adapted

for users who may not be capable of strenuous physical exer-

cise. Reducing sensor size and thereby reducing the channel

dimensions would help to improve this. This would also help

to reduce the priming time involved. Indeed, in the case of

sodium and conductivity sensors, the trial results showed that if

good contact between the sensors and the textile channel can be

maintained, it is possible to make measurements in real time. A

future improvement may be to change the fabric or the design

of the textile-based channel, in order to improve the absorption

of sweat.

VI. CONCLUSION

The textile pump has been designed in such a way that it

can successfully collect sweat from human subjects during ex-

ercise. It then moves that sweat along a predefined channel,

where it is analyzed by pH, sodium, and conductivity sensors

and stores the sweat in an absorbent in such a way as to allow
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for a continuous flow of fresh sweat. Therefore, a passive pump-

ing mechanism has been realized requiring no external power

supply. Real-time information regarding sweat composition has

been measured during exercise. A sweat rate sensor was also

developed as a separate device. In addition to chemical-sensing

measurements, other physiological parameters have been mea-

sured by developing a complete network of textile-embedded

sensors. Ultimately, these would be distributed within the one

garment providing complementary information to give an over-

all picture of the wearer’s health status.

Changes in the composition of sweat can be used to pro-

vide information on a person’s well-being and physiological

condition [3], [4], [6]. In the case of athletes who partake in en-

durance sports analysis of sweat can give information on hydra-

tion levels. Dehydration affects performance and if left untreated

can lead to symptoms such as irritability, headache, dizziness,

cramps, vomiting, increased body temperature and heart rate,

increased perceived work rate, reduced mental function, and

slower gastric emptying. These symptoms can be avoided and

a high level of performance is maintained if the correct amount

of fluids and Na+ are ingested.

Endurance sports are not just the domain of the elite athlete. It

is becoming increasingly popular for people to train for events

such as the half and full marathon. In addition to the risks

of drinking too little, ingesting too much water can lead to

hyponatremia, which is characterized by low levels of sodium.

Where there is a quick onset of hyponatremia, for example,

during prolonged exercise, it can lead to severe complications

such as seizures, coma, brain damage, and death.

The ability to measure changes in sweat electrolyte concentra-

tions can assist people in choosing the correct level of hydration

and avoid the need for medical intervention. It may also be used

to protect amateur sports people from developing potentially

fatal conditions.

The advantages of noninvasive monitoring of body fluids such

as sweat has been touched in this paper, but further investigation

is needed to explore this new and exciting area of research.

The textile sensor system provides a straightforward, real-time

measurement system, which may prove to be a valuable tool

for medical research, and particularly, sports physiology. The

feasibility of real-time and continuous chemical monitoring in

a garment has been demonstrated. BIOTEX forms part of a

textile roadmap, which has included projects such as MyHeart

and WEALTHY in the past and currently PROETEX, aiming

to provide health-monitoring tools through textiles to bring the

benefits of safety and comfort to the users.
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