
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

November 2018 

BIOTRANSFORMATION OF RESVERATROL AND ITS BIOTRANSFORMATION OF RESVERATROL AND ITS 

IMPLICATIONS IN BIOLOGICAL ACTIVITIES IN THE COLON IMPLICATIONS IN BIOLOGICAL ACTIVITIES IN THE COLON 

Fang Li 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Food Biotechnology Commons, and the Food Microbiology Commons 

Recommended Citation Recommended Citation 

Li, Fang, "BIOTRANSFORMATION OF RESVERATROL AND ITS IMPLICATIONS IN BIOLOGICAL ACTIVITIES 

IN THE COLON" (2018). Doctoral Dissertations. 1448. 

https://doi.org/10.7275/12725753 https://scholarworks.umass.edu/dissertations_2/1448 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/88?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/86?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/12725753
https://scholarworks.umass.edu/dissertations_2/1448?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1448&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


 

 

BIOTRANSFORMATION OF RESVERATROL AND ITS IMPLICATIONS IN 

BIOLOGICAL ACTIVITIES IN THE COLON 

 

 

 

 

 

 

 

 

 

A Dissertation Presented 

 

by 

 

FANG LI 
 

 

 

 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate School of the 

University of Massachusetts Amherst in partial fulfillment 
of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

September 2018 

 

The Department of Food Science 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Fang Li 2018 

All Rights Reserved



 

 

BIOTRANSFORMATION OF RESVERATROL AND ITS IMPLICATIONS IN 

BIOLOGICAL ACTIVITIES IN THE COLON  

 

A Dissertation Presented 

 

by 

 

FANG LI 
 

 

 

 

 

 

Approved as to style and content by: 
 

 

 

_______________________________________ 

Hang Xiao, Chair 
 

 

 

_______________________________________ 

Guodong Zhang, Member 
 

 

 

_______________________________________ 

Richard J. Wood, Member 
 

 

____________________________________ 

  Eric A. Decker, Department Head                                     
                                                  Department of Food Science  



 

 

 

DEDICATION 

I dedicate this thesis to 

my beloved families and friends



v 

 

 

ACKNOWLEDGEMENTS 

 I would like to express my sincere gratitude to my advisor, Dr. Hang Xiao, for 

providing me an opportunity to fulfill my dream in his group. With his continuous support, 

his kind guidance, his motivation and insight on science, I was trained and prepared to be 

a mature researcher. Without his help and guidance, I cannot complete this work. I treasure 

the time and experience in Xiao’s group. Also, I would like to thank my committee 

members, Dr. Guodong Zhang and Dr. Richard J. Wood, for their kindly guidance, valuable 

time, feedbacks and recommendations that improve the quality of this dissertation. 

Many thanks to all my lab members, past and present: Mingyue, Xian, Jason, Minqi, 

Cici, Jingjing, Nok, Xiaokun, Hua, Zili, Mingfei, Zhengze, Haiyan, Min, Tim, Will, 

Makenzi, Yuchao, Jiazhi, Che, Qi, Ando, Boimin, Yanhui and Jiazhi for the past four years. 

Thank Chiayu for lab general maintaining. I would like to thank all of Food Science 

faculties, staffs and students, especially Fran, Deby, Dave, Ruth, Mary and Stacy, for their 

help and friendship.  

Last but not least, I would like to express my gratitude to my family for their 

unconditional love and support.  

 

  



vi 

 

ABSTRACT 

BIOTRANSFORMATION OF RESVERATROL AND ITS IMPLICATIONS IN 

BIOLOGICAL ACTIVITIES IN THE COLON  

SEPTEMBER 2018 

FANG LI 

B.S., NORTHWEST A&F UNIVERSITY, CHINA 

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST, MA, USA 

Directed by: Professor Hang Xiao 

Resveratrol (RES) is a natural polyphenol compound with a wide range of health-

promoting activities, including protective effects against colon cancer and renal disease. 

However, the premise of these benefits has been dampened since RES shows a poor oral 

bioavailability due to its rapid and extensive biotransformation after oral consumption. The 

paradox (low bioavailability but high bioactivity) warrants further investigations to 

determine the contribution of RES metabolites to the health benefits associated with RES. 

We identified 11 metabolites of RES in mice with high-resolution HPLC-MS/MS, then 

quantified two major metabolites - dihydro-resveratrol (DHR) and lunularin (LUN). To 

further understand the chemopreventative effects of RES metabolites in the kidney and 

colon, the inhibitory effects of RES, DHR, LUN, and their combinations at the 
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concentrations equivalent to those found in mouse tissues were determined in 

corresponding cell models. Our results demonstrated that DHR and LUN exhibited much 

stronger anti-inflammatory, anti-clonogenic and anti-proliferative effects than did RES at 

physiologically relevant levels. Moreover, the combination of RES, DHR and LUN 

produced the strongest inhibitory effects, while the contribution of RES was marginal.  

DHR and LUN might be the main force that responsible for the chemopreventive effects 

attributed to RES.  

Accumulating evidence indicated that gut microbiota plays important roles in the 

pathogenesis of colitis, and microbiota composition could be modulated by dietary 

components. Therefore, ameliorating colitis-associated bacterial dysbiosis by dietary 

components may be a unique strategy to improve gut health. Herein, we determined the 

effects of resveratrol on gut microbiota and their implications in anti-colonic inflammation 

in mice with colitis induced by dextran sodium sulfate (DSS). Our results reinforce the 

protective effects of resveratrol in intestinal inflammation by alleviating the body weight 

loss, reducing the disease activity index, attenuating tissue damage and down-regulating 

the expression of pro-inflammatory cytokines such as IL-2, GM-CSF, IL-1β, IL-6 and 

TNF-α in the colon of DSS-treated mice. Moreover, dietary resveratrol restored the 

microbial richness and evenness in DSS-treated mice. Specifically, at the genus level 

resveratrol effectively reduced the richness of Akkermansia, Dorea, Sutterella and 

Bilophila and increased the abundance of Bifidobacterium in colitic mice. Furthermore, a 
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Pearson’s correlation analysis indicated that resveratrol suppressed pro-inflammatory 

cytokines were strongly correlated with gut microbiota composition. Overall, our results 

suggested that dietary resveratrol attenuated inflammation perhaps by modulating the 

microbial composition.  

 

Fig. 1 Graphic abstract 

The necessary role of gut microbiota in the biotransformation of RES was 

evidenced by antibiotic treated mice. DHR, LUN, and their conjugates were completely 

absent in the antibiotic treated mice. Moreover, we found that in colitic mice LUN and its 

conjugates were extinguished, which may associate with the altered gut microbiota 

composition and structure.  Most interestingly, we found that RES metabolites at the 

concentrations equivalent to that observed in the colonic tissues in colitic mice exhibited 

significantly stronger chemopreventative effects than that observed in the healthy mice. 
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These results suggested that absence of LUN may resulted in stronger biological activities 

of RES. Overall, our results provided a solid scientific basis for understanding the 

chemopreventive mechanisms of RES from the perspective of biotransformation and gut 

microbiota and are of great value for future research on RES in prevention and treatment 

of colonic diseases in humans. 
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CHAPTER 1 

INTRODUCTION 

Resveratrol (trans-3, 5, 4’- trihydroxystilbene, RES), a stilbenoid, abundant in grapes, 

wines, peanuts and mulberries. Its health beneficial bioactivities have been recognized and 

studied widely. Accumulating evidence demonstrated the superior pharmacological 

properties of RES such anti-cancer [1], anti-diabetes [2], anti-oxidant [3] and 

cardiovascular protective effects [4]. However, RES is subjected to extensive 

biotransformation mediated by drug-metabolizing enzymes, which may produce 

metabolites with different bioactivities in comparison with the parent compound [5, 6]. 

Therefore, it is critical to establish the detailed information of the biotransformation and 

tissue distribution of RES to better understand its mechanism of action. On the other hand, 

metabolites may achieve higher concentrations than their parent compound at certain 

tissues [7]. Therefore, the metabolites rather than the consumed components, may mainly 

responsible for the biological effects at site of function. Regarding these concerns, one of 

our current thesis aims is to identify and quantify metabolites of RES present in mouse 

tissue, gastrointestinal tract (GIT) and biological fluids. And the potential chemopreventive 

effects of RES metabolites were further investigated in corresponding cell-based models.  

Over 1 million residents in the USA are estimated to be suffering from inflammatory 

bowel disease (IBD) [8]. And one of the most important and devastating complications of 
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long-term IBD is colorectal cancer development [9]. Phytochemicals enriched diet have 

been explored as a prophylactic tool to moderate the disease course [10]. Consistent results 

showed that RES could down-regulated inflammatory biomarkers, reduced oxidative stress 

and attenuated clinical symptoms in experimental murine colitis models [1, 3, 11]. 

However, the contribution of its metabolites in this process is not clear. Moreover, the 

implication of gut microbiota dysbiosis on the pathogenesis of IBD has been highlighted 

recently [12]. High accumulation of RES and its metabolites in cecum and colon suggesting 

the dual interactions existing between gut microbiota and RES. Therefore, it is of great 

significance to explore the mechanisms of anti-colitis effects of RES from the gut microbial 

and metabolic perspectives.   

The microbial biotransformation of dietary polyphenols, including ring fission, 

reduction, demethylation, hydrolyzation glycosides, and dihydroxylation, has been well 

described [13, 14]. On the one hand, significantly interindividual differences exist in gut 

microbial composition, which may lead to different microbial transformation patterns of 

polyphenols. As in the case of production of either equol or O-demethylangolensin and 

dihydrodaidzein from daidzein [15]. Given the complex metabolism of other polyphenols 

by gut microbiota, we speculated the pronounced interindividual different routes of 

resveratrol biotransformation by the human gut microbiota. On the other hand, gut 

microbiota composition could be dramatically altered in various diseases [16]. It is crucial 

to systematically discuss the effects of altered gut microbiota on the biotransformation of 
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resveratrol and its important implications in biological activities of RES. 

Our long-term goal is to the set up a database of bioavailability and bioactivities of 

diet-based resveratrol administration in different diseases models and elucidate its 

implication on various chemopreventive effects of RES. To reach this goal, our main 

objective of this dissertation is to elucidate the biotransformation of resveratrol and its 

implication on gut inflammation in DSS-induced colitis model. Our central hypothesis is 

that resveratrol is extensively metabolized in vivo, and its metabolites are at least partially 

responsible for the chemopreventive effects that attributed to RES. Dietary resveratrol will 

restore the microbial dysbiosis in the colitic mice. In turn, its metabolic profile will be 

changed in colitic mice. As a result, the biological activities of resveratrol will be different 

in colitic mice.  

We will test our central hypothesis and achieve our objective by completing the 

following specific aims: 

Specific Aim 1: Identification and quantification of resveratrol metabolites in mice 

tissue after sustained oral consumption of RES. Mice will receive 0.5% (w/w) of RES for 

four weeks. RES metabolites will be identified with Orbitrap HPLC-MS/MS in the urine 

and fecal samples. The concentrations of RES metabolites will be quantified with HPLC-

MS in the organs/tissues, serum, bile, and gastrointestinal tract.  

Specific Aim 2: Evaluate the chemopreventive effects of RES metabolites at 
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physiological levels in cell-based model. The in vitro anti-inflammatory efficacy of RES 

metabolites will be determined in lipopolysaccharide (LPS)-stimulated RAW 264.7 

macrophages. The in vitro growth inhibitory effects of RES metabolites on human renal 

carcinoma cell lines and colon cancer cell lines will be determined by using cell viability 

assay and colony formation assay.   

Specific Aim 3: Evaluate the effects of dietary resveratrol on gut microbiota and its 

implication on gut inflammation in DSS-induced colitic mice. Dextran sulfate sodium 

(DSS)-induced colitis mice model will be used to assess the anti-inflammatory efficacy of 

RES in vivo. Histological evaluation will be performed to assess the colon morphological 

damage. ELISA assay will be used to determine the expression of inflammatory cytokines. 

Gut microbiota composition will be analyzed with 16S-RNA based sequencing technique.  

Specific Aim 4: Determine the role of gut microbiota in biotransformation of RES 

and its implication in the anti-inflammation in the colon. Broad spectrum antibiotic will 

be used to wash out the gut microbiota in mice. The metabolites of RES will be identified 

and quantified with HPLC-MS in antibiotic treated mice. 300 mg of resveratrol capsules 

will be assigned to eleven healthy volunteers every day for three days. The metabolites in 

the urine samples will be quantified with HPLC-MS. We expect to observe pronounced 

interindividual differences in RES biotransformation induced by gut microbiota. The 

metabolites of RES in the cecum, colon, bile, liver, kidney, and serum in healthy mice and 

DSS-treated mice will be analyzed and compared with HPLC-MS.  We expect to observe 
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distinguished metabolism patterns of RES in healthy mice vs DSS-treated mice. The in 

vitro anti-inflammatory efficacy of RES metabolites will be determined in 

lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The in vitro growth 

inhibitory effects of RES metabolites on human colon cancer cell lines will be determined 

by using cell viability assay.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction of biotransformation 

2.1.1 Biotransformation 

Since the chemopreventive agents in food are subjected to digestion, understanding 

of metabolic fate of bioactive food components is crucial in elucidation the efficacy of 

these compounds. Dietary bioactive compounds are regarded as xenobiotics by human 

body. Therefore, as a self-defense, biotransformation will take actions to chemically 

modify dietary bioactive compounds and eliminate them. Biotransformation can be defined 

as production of chemical changes on compounds that are not their natural substrates by 

using the biological systems [17]. In general, biotransformation reactions are divided into 

two categories known as phase I and phase II metabolism. Phase I reactions including 

oxidation, reduction and hydrolytic reaction, are mediated by enzymes such as CYP family 

and amidases [18].  In phase II reactions, small polar molecules, like sulfate and 

glucuronides, conjugate with appropriate functional groups of substrates. 

Glucuronosyltransferase, sulfotransferase and N-acetyltransferase are three most common 

enzymes that mediate phase II metabolism [19]. Although the process of biotransformation 

on one hand produces active metabolites from some dietary compounds [7]. On the other 

hand, it reduces the plasma concentrations of dietary compounds [5]. Therefore, 



7 

 

elucidating the biotransformation of bioactive compounds is essential to better define the 

bioavailability of dietary bioactive compounds and further evaluate their biological activity.  

2.1.2 Implication of biotransformation in bioavailability 

Bioavailability theoretically defined as the fraction of the administered dose that 

reaches the general circulation unchanged [20]. It often characterized by the absorption, 

tissue distribution, metabolism and elimination of the dietary bioactive compounds.   

Different bioactive compounds show different rates of absorption. Biotransformation 

can be a speed-limit step. Some of flavonoids naturally occurred as glycosides in plants, 

which means glycoside moieties are attached to the flavonoids backbone. Glucosides need 

to undergo deglycosylation prior to be absorbed [21], which is carried out by intracellular 

cytoplasmic β-glucosidase [22]. For example, quercetin-3-O-rutinoside is deglycosylated 

by rhamnosidases and β-glucosidase before absorbing by epithelial cells [23].  However, 

recent evidence suggests that anthocyanins, e.g. cyanidin-3-glucoside, are rapidly and 

efficiently absorbed in the small intestine intact without deglycosylation [24].  

The biotransformation also plays an important role in the disposition of dietary 

compounds, especially in the enteroenteric and enterohepatic circulation. Small intestine 

and liver are the crucial tissues responsible for various biotransformation leading to 

different conjugated forms of dietary bioactive compounds. However, kidney and other 

tissue also involved in the metabolism of dietary bioactive compounds. Take anthocyanins 
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as an example (Fig. 2) [20]. After ingestion, only native anthocyanins are detected in 

stomach. Once arriving at small intestine, extensive glucuronidation, sulphoation and 

methylation of anthocyanins occurs. After absorption and intestinal biotransformation, 

hepatic metabolism of anthocyanins takes place. Through enterohepatic recirculation, part 

of the resultant anthocyanins can be recycled back to the small intestine through bile 

excretion. As a result, anthocyanins metabolites (methylated and glucurono-conjugated 

derivatives) are identified in various organs including bladder, prostate, testes, heart, 

adipose tissue, liver, eyes, cerebellum and kidney as shown in Fig.2. The rest of 

anthocyanins will pass from the small intestine to the large intestine where the gut 

microbiota further bio-transform anthocyanins and their conjugates.  
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Fig. 2 Hypothetic pathways of anthocyanins absorption, distribution, metabolism and 

excretion based on current information. Adopted from reference [17]. 

2.1.3 Implication of biotransformation on bioactivity  

Biotransformation of dietary bioactive compounds affects properties such as mass, 

charge and hydrophobicity, which may influence their ability to cross biological 

membranes. It is also likely impacting their half-life in plasma and rates of excretion, 

further influences their bioactivities. Quercetin is one of the most extensively studied 

polyphenols. It has been shown that some conjugates of quercetin possess significant anti-

oxidative, anti-inflammatory and anti-angiogenic properties [25, 26]. Conjugates derivate 

from dietary polyphenols often have weakened bioactivities compared to the parent 

compounds, and this seems to be the case for RES based on previous studies [6]. While, 

Wu et al. demonstrated that metabolites of nobiletin showed much stronger anti-carcinoma 

and anti-inflammatory effects than nobiletin itself [27]. Therefore, it is important to 

determine the impacts of biotransformation on biological activities of dietary bioactive 

compounds. 

2.2 Inflammatory bowel disease 

2.2.1 Introduction of inflammatory bowel disease 

Inflammatory bowel disease (IBD), including relapsing-remitting inflammatory 
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disorders Crohn’s disease and ulcerative colitis, is a chronic inflammatory disease of 

gastrointestinal tract [28]. Over 1 million residents in the USA are estimated to be suffering 

from IBD [8]. One of the most important and devastating complications of long-term IBD 

is colorectal cancer development [9]. The precise etiology of IBD remains unknown, the 

most accepted hypothesis to date is that aberrant and continuing immune response against 

the commensal gut microbiota in genetically susceptible hosts [28, 29]. Fig. 3 summarized  

 
 



11 

 

Fig. 3 Pathophysiology of inflammatory bowel disease. Adopted from reference [30]. 

The proposed pathophysiology of IBD. Tight junction is disrupted due to genetic or 

environmental factors, which causes increased the change of uptake of commensal bacteria 

and microbial products. Immune cells including macrophages, dendritic cells lead to 

immune system activation and cytokines production. If acute inflammation cannot be 

resolved by immune systems, chronic intestinal inflammation develops [30].  

2.2.2 Preventive effects of phytochemicals on inflammatory bowel disease 

IBD conduct a growing health concern due to increasing incidence worldwide. The 

current notion on pathogenesis of IBD is the involvement of diet, gut microbiome and 

epigenetics. Among these factors, diet plays an important role in modulating the gut 

microbiota and influencing epigenetic changes [10]. Therefore, improving diet quality 

could be applied as a prophylactic tool to moderate the disease course. Consequently, many 

phytochemicals enriched diet have been explored as preventive treatments recently [31].  

Previous studies indicated that high prevalence of IBD in northern Europe, United 

Kingdom and North America may associated with their typical diet [32]. Paik et al 

demonstrated that high-fat diet exacerbated IBD in Mdr1a-/- male mice [33].  While, 

dietary polyphenols such as curcumin, quercetin, ellagic acid and resveratrol possess both 

protective and therapeutic effects in the management of IBD via enhancing antioxidant 

defense and suppressing inflammatory pathways [34]. Galvez et al. indicated that rutin can 
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alleviate the inflammation and mucosa lesion by modulation the levels of internleukin-1 

and tumor necrosis factor alpha [35]. Green tea polyphenols are widely studying for their 

strong anti-oxidative effects. Several studies demonstrated the preventive effects of green 

tea polyphenols on IBD [36].  

2.3 Gut microbiota 

2.3.1 Introduction of gut microbiota 

The collection of bacteria, archaea, and eukarya living in the gastrointestinal tract 

(GIT) is termed as the “gut microbiota” [37].  The number of bacterial cells inhabiting in 

the GIT accounted ~10 times more than the number of human cells [37]. Gut microbiota 

exerts a marked influence on the health of host by metabolizing nutrients, harvesting 

energy, regulating immune system, and protecting intestinal epithelium [38].   Alteration 

of gut microbiota composition (dysbiosis) is associated with the pathogenesis of many 

disease. 

Advanced sequencing techniques including 16S rRNA based bacterial sequencing and 

whole-genome shotgun metagenomics allowed researches to survey the breath of the gut 

microbiota. 16s rRNA is a popular approach, since 16S ribosomal RNA gene is present in 

all bacteria and archaea, which allows species to be easily identified [39]. Whole-genome 

shotgun metagenomics is more reliable than 16S rRNA based sequencing techniques due 

to its higher resolution [39].  MetaHit and the Human Microbiome Project have provided 
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the comprehensive data of human gut microbiota [40] 2172 species have been identified 

from human samples, which are classified into 12 phyla, of which 93.5% belonged to 

Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes [40].   

Gut microbiota begin to develop since from birth. In the early stage, the microbiota is 

in low diversity and dominated by Actinobacteria and Proteobacteria[41]. In the first year 

of life, the microbial diversity increases, and the microbiota composition is distinct from 

microbial profile in the adult [42]. By around 2.5 years old, the microbial diversity, 

function, and composition are similar with adults [41]. Recently, cohort studies indicate 

that gut microbial composition shifted, function compromised, and diversity decreased in 

elder populations [43]. 

2.3.2 Diet shapes the gut microbiota 

Diet can rapidly and reproducibly alter gut microbiota [44]. Food components (e.g. 

fiber, polysaccharides, polyphenols), which are non-digestible to human enzymes, are 

subjected to the intestinal microbial metabolism.  

Dietary patterns, such as Western diets or plant-based diet, are strongly associated 

with distinct gut microbiota compositions [44]. Previous studies observed that Clostridum 

cluster XIVa, Bcteroides/Prevotella, Bacteroides thetaiotaomicron, and Faecalibacterum 

prausnitzii were enriched in vegetarians compared with omnivores [45]. Moreover, another 

comprehensive research reported that irrespective of age, the least microbial diversity was 
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observed in adults of Americans vs Venezuela and Malawi [46].  

Specific foods, such as whole grains, fruits, and vegetables, can partially get rid of the 

metabolizing in the upper GIT, reach to the large intestine, and interact with gut microbiota. 

Martinez et al. demonstrated that whole grains interventions led to an increased microbial 

diversity, as well as a rise in the Firmicutes/Bacteroidetes ratio [47].  A placebo-controlled 

crossover study revealed that wild blueberry drink enriched the gut microbial diverstity 

and increased the amount of Bifidobacterium spp [48].  After consumption of red wine that 

abundant with polyphenols, the relative counts of Bifidobacterium, Enterococcus, and 

Eggerthella lenta were increased [49].  

It is obvious that diet has an important influence on the structure and composition of 

gut microbiota. Furthermore, the end products of bacterial metabolism, especially vitamins 

and short-chain fatty acids (SCFA), are vital for human health.  

2.3.3 Microbial biotransformation of dietary polyphenols 

It has been estimated that only 5-10% of the total intake polyphenol can be absorbed 

in the small intestine. The remaining 90-95% of intake polyphenol may accumulate in the 

large intestinal lumen, where they are subjected to the enzymatic activities of gut microbial 

community [50]. Currently, it is estimated that 500-1000 different microbial species inhabit 

the gastrointestinal tract, reaching the highest concentrations in the colon (up to 1012 cells 

per gram of feces) [50]. Thus, the encountering of gut microbiota and polyphenols can lead 
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to the development of two-way mutual reactions. In one direction, polyphenols are bio-

transformed into their metabolites by gut microbiota that may results in the changed 

biological activities. Bacterial metabolites are different from those that can be generated 

by transferase enzymes because bacterial processes occur under anaerobic conditions and 

are based mainly on reactions of reduction and/or hydrolysis.  

Accordingly, luteolin is metabolized by colon microbiota (C. orbiscindens, 

Enterococcus avium), breaking down its C-ring towards to phloretin chalcone, 3-(3,4-

dihydroxyphenyl) - propionic acid and 4-hydroxycinnamic acid, which are absorbed and 

excreted by urine [51]. Ellagic acid is largely metabolized by the gut microbiota, giving 

rise to urolithin A and its analog known as urolithin B [52]. However, it is noteworthy that 

there is a large interindividual variation in colonic microbiota composition, which may 

cause variations in the timing, quantity, and types of metabolites produced in large intestine.  

In another way, polyphenols modulate the composition of gut microbial community 

mostly by enhancing the probiotics and inhibiting the pathogenic bacteria. The interactions 

between dietary bioactive compounds and gut microbiota may impact on human host health.  

Several polyphenols have been recognized as potential prebiotics that can enrich the 

beneficial bacteria in gut. It has been reported that grape seed extract resulted in the 

dramatically increasing of Lactobacillus, Lachnospiraceae and Ruminococcaceae [53]. It 

has been demonstrated that dietary supplemented-curcumin increased the abundance of 

Lactobacillales, and decreased Coriobacterales order in AMO/Il10 model [54]. 
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Pterostilbene, an analog of resveratrol, modified intestinal bacteria composition toward to 

a healthier microbial profile in obesity rats [55]. Overall, two-way, reciprocal interactions 

of gut microbiota and phenolic compounds have an important impact on the bioavailability 

of phenolic compounds and human health.  

2.3.4 The role of gut microbiota in inflammatory bowel disease 

The gut microbiota exerts a marked influence on the host during homeostasis and 

disease. The possible implication of gut microbiota in the pathogenesis of IBD has been 

highlighted recently. Multiple lines of evidence suggested the important role of gut 

microbiota in the progress of IBD. Firstly, Metagenomic and 16S RNA based sequencing 

studies demonstrated reduced diversity and altered composition of gut microbiota in 

patients with IBD compared with healthy subjects [56-58]. Secondly, germ-free animals 

were protected against colitis development in DSS-treated mice [12]. Thirdly, IL-10-

deficient mice, a murine model of IBD, did not develop colitis under germ-free conditions 

[59]. All these results suggested that microbial factors might directly contribute to the 

development of colonic inflammation and adverse metabolic consequences. 

The gut microbiota has become an important target in the treatment of IBD, and 

therapy has focused on correcting intestinal microbial imbalance. The gut microbiota, 

including symbiotic, probiotic, and pathogenic microorganisms, plays an important role in 

human health. Its balance can be destroyed by the introduction of invasive pathogens, 
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activation of immune cells, and production of pro-inflammatory cytokines [60]. Meantime, 

interaction of dietary compounds and gut microbiota have been shown in great part to affect 

the immune response and the inflammatory status [61]. Unravelling the complex 

interactions underlying diet, IBD and gut microbiota will have implications for the 

development of novel therapies.  

2.4 Resveratrol 

2.4.1 Introduction of resveratrol 

Natural phytochemicals presenting in our diet have seen a wide range of acceptability 

for the prevention and treatment of diseases. Resveratrol (3,4’,5-trihydroxystilbene) is a 

polyphenolic compound, presenting itself in both trans- and cis- isomeric forms naturally. 

It is found abundantly in red wine, grapes, peanuts and Japanese knotweed. The 

concentrations of resveratrol in grapes varies from 0.16 to 3.54 μg/g depends the varieties 

[62]. The concentrations of resveratrol in various types of wines ranged from 0.1 to 14.3 

mg/L [62].   

The use of resveratrol as a health-promoting dietary supplement is rapidly increasing 

in market due to its numerous benefits including anti-oxidant, anti-cancer, anti-aging, anti-

inflammatory and the prevention of cardiovascular disease [63].  Furthermore, resveratrol 

plays an effective role against various pathways such as, apoptosis, inflammation, 

oxidative damage and angiogenesis [63]. The high efficiency of resveratrol might be owing 
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to the three hydroxyl groups in its structure as shown in Fig. 4. Recent clinical trials proved 

that resveratrol is well tolerated and pharmacologically safe at doses up to 5 g/day [64]. 

 

Fig. 4 Chemical structure of trans-resveratrol 

2.4.2 Current studies on biotransformation of resveratrol 

Low solubility of resveratrol in water and organic solvents (log P = 3.10), determined 

by its chemical structure, impacts its absorption in vivo. Studies on metabolic conversion 

and tissue distribution of RES are continuously undertaken [5, 65-70]. Fig. 5 summarized 

the absorption and metabolism of resveratrol in vivo. the Studies convincingly 

demonstrated that RES was highly absorbed but rapidly and extensively metabolized, 

predominantly into glucuronides and sulfates derivatives, and only trace amount of RES 

could be detected in the plasma [5, 65-68]. The maximum plasma peak concentration of 

unmetabolized resveratrol was observed at 30-90 mins after oral consumption [5]. The 

Appearance of the second peak at 6h after resveratrol intake indicated the enteric 

recirculation and reabsorption of resveratrol [5].  Twelve conjugated metabolites of 

resveratrol were identified, including resveratrol-3-O-sulfate, resveratrol-3-O-glucuronide, 

resveratrol-4-O-glucuronide, resveratrol diglucuronide, resveratrol-sulfoglucuronide, 
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resveratrol trisulfate, and resveratrol disulfate [66]. By using 14C-labeled resveratrol, 

dihydro-resveratrol (DHR) was firstly identified as a microbial metabolite of  

 

Fig. 5 Absorption and metabolism of resveratrol. RSV stood for resveratrol, G-RSV stood 

for glycoside resveratrol, CBG stood for cytosolic glucosidase, BG stood for beta-

glycosidases, UGT stood for uridine-5’-diphosphate-glucuronosyltransferase, SULT stood 

for beta-glycosidase, UGT stood for uridine-5’-diphosphage-glucuronosyltransferase, 

SULT stood for sulfotransferase, MRP2 stood for multidrug resistance protein, BCRP1 

stood for breast cancer resistance protein 1. Figure is adopted from reference [30]. 
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resveratrol [5]. Later, the DHR derived metabolites were identified as well, such as DHR 

diglucuronide, DHR sulfoglucuronide, DHR trisulfate, DHR-3-O-glucuronide, DHR 

sulfate, and DHR disulfate [71], which together with its conjugates (sulfates and 

glucuronides) accounted for as much as 50% of an oral RES dose [72]. With the in 

analytical techniques lunularin (LUN) and 3,4’-dihydroxy-trans-stilbenes have been 

recognized as microbial metabolites of RES in rats and humans [73-76]. Nevertheless, their 

concentrations in tissues/plasma and their potential contribution to the pharmacological 

efficacy of RES have not been probed yet. 

2.4.3 Biological effects of resveratrol 

Tons of researches suggests the low toxicity and high bioactivity of resveratrol. Many 

studies have shown that resveratrol possess anti-oxidant, anti-cancer, anti-aging, anti-

inflammatory and the prevention of cardiovascular disease [63]. It is worth mentioning that 

the effects of resveratrol heavily depending on its doses. At low concentrations (5 to 10 

μM), resveratrol increased various cancer cells proliferation, while at higher concentrations 

(higher than 15 μM) itinduced apoptosis [62]. It also has been reported that in 

cardiovascular diseases, at low dose (5 to 10 μM) resveratrol functioned as anti-oxidant. 

While at higher concentrations, it acts as prooxidant [77]. Consequently, resveratrol 

possesses biphasic properties over low to high concentration, which is a critical point when 

design it as a chemopreventative agent. 
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Resveratrol has been reported to suppress proliferation of various tumor cells 

including myeloid, breast, lung, liver, prostate, colon and stomach [78]. Moreover, 

resveratrol induces apoptosis through various pathways: cell cycle arrest, silent 

information regulator-mediated pathways, and caspase-8-dependent pathways [79]. 

Besides, resveratrol exhibits neuroprotective activity by enhancing glutathione and 

decreasing malondialdehyde levels [80]. Lee et al, demonstrated that resveratrol 

considerably attenuates dopamine-induced cell death in neuroblastoma cells by activating 

the antiapoptotic factor Bcl-2 and inhibiting caspase-3 [81]. 

2.4.4 Biological effects of resveratrol metabolites 

Nonetheless, these health benefits elicited by RES have been questioned, since it is 

rapidly and extensively metabolized upon digestion, resulting in low plasma concentrations 

[72]. This raises the impetus sparking the scientific inquiry that whether sufficient levels 

of RES can be attained at the proposed function sites and whether RES metabolites might 

contribute to the beneficial effects associated with the parent compound.  

Therefore, researches diverted attentions to the chemopreventive effects of RES-

sulfates and RES-glucuronides [6, 82-85]. It has been reported that relative to RES, its 

glucuronide and sulfate metabolites showed comparable or some degree of activities in 

anti-oxidation [6], anti-inflammation [84, 85], and cytotoxicity against SW480, SW620 

and SMMC-7721 cancer cell lines [6, 82]. Aires et al. reported that the mixture of RES-3-
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O-sulfate, RES-3-O-gucuronide, and RES-4’-O-glucuronide at the human plasma 

concentrations exhibited synergistic inhibition effects on proliferation of colon cancer cells 

[82]. Patel and Brown fed mice with RES-3-O-sulfate and RES-4’-O-sulfate proved that 

sulfate metabolites served as an intracellular pool in the body from which RES could be 

regenerated locally, and further demonstrated that RES mono-sulfates could inhibit the 

growth of HT-29 cancer cells at clinically relevant concentrations [83]. Only limited 

reports focused on DHR’s biological activities, especially at physiological levels. Lu et al. 

[6] reported that DHR exhibited comparable activity compared to RES in inhibiting NO 

production and liver cancer cells proliferation. Tang et al. accentuated that DHR showed 

comparable inhibition effects with RES on pancreatic oxidative damage [86]. Along with 

the discovering of new metabolites, it is important to reveal the contributions of resveratrol 

metabolites on its biological activities.  

2.4.5 Effects of resveratrol on inflammatory bowel diseases 

Consistent results convinced the anti-inflammatory attribute of resveratrol. Very 

recently a randomized, double-blind, placebo-controlled pilot study demonstrated that 6 

weeks supplementation with 500 mg of resveratrol significantly reduced the levels of TNF-

α and hs-CRP in the plasma [87]. The mechanisms underlying anti-inflammation of 

resveratrol are explained from following perspectives: down-regulation of inflammatory 

MAPK, and NF-κB pathways, reduction of COX-2, modification the expression of 

cytokines, diminish the leukocytes and alleviation of the clinical symptoms [88]. However, 
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the involvement of gut microbiota in this progress has never been reported.  

 

  



24 

 

CHAPTER 3 

 

BIOTRANSFORMATION OF RESVERATROL IN THE GASTROINTESTINAL 

TRACT DICTATES ITS BIOLOGICAL ACTIVITIES

3.1 Introduction 

Resveratrol (trans-3, 5, 4’- trihydroxystilbene, RES), a phytochemical abundant in 

grapes, wines, peanuts and mulberries, has attracted much scientific attentions because of 

its potentially beneficial effects on numerous disorders, i.e. colon cancers [1], 

cardiovascular disease [4], diabetes [2], neurodegenerative diseases [89], and renal 

carcinoma [90]. Nonetheless, these health benefits elicited by RES have been questioned, 

since it is rapidly and extensively metabolized upon digestion, resulting in low plasma 

concentrations [72]. This raises the impetus sparking the scientific inquiry that whether 

sufficient levels of RES can be attained at the proposed function sites and whether RES 

metabolites might contribute to the beneficial effects associated with the parent compound.  

Regarding these concerns, studies on metabolic conversion and tissue distribution of 

RES are continuously undertaken [5, 65-70]. Studies convincingly demonstrated that RES 

was highly absorbed but rapidly and extensively metabolized, predominantly into 

glucuronides and sulfates derivatives, and only trace amount of RES could be detected in 
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the plasma [5, 65-68]. Therefore, researches diverted attentions to the chemopreventive 

effects of RES-sulfates and RES-glucuronides [6, 82-85]. It has been reported that relative 

to RES, its glucuronide and sulfate metabolites showed comparable or some degree of 

activities in anti-oxidation [6], anti-inflammation [84, 85], and cytotoxicity against SW480, 

SW620 and SMMC-7721 cancer cell lines [6, 82]. Aires et al. reported that the mixture of 

RES-3-O-sulfate, RES-3-O-gucuronide, and RES-4’-O-glucuronide at the human plasma 

concentrations exhibited synergistic inhibition effects on proliferation of colon cancer cells 

[82]. Patel and Brown fed mice with RES-3-O-sulfate and RES-4’-O-sulfate proved that 

sulfate metabolites served as an intracellular pool in the body from which RES could be 

regenerated locally, and further demonstrated that RES mono-sulfates could inhibit the 

growth of HT-29 cancer cells at clinically relevant concentrations [83]. These findings 

partially explained the RES paradox. 

With the advances in analytical techniques, dihydro-resveratrol (DHR) was identified 

as a microbial metabolite of RES in mice and humans [5, 65, 66, 91, 92], which together 

with its conjugates (sulfates and glucuronides) accounted for as much as 50% of an oral 

RES dose [72]. However, only limited reports focused on DHR’s biological activities, 

especially at physiological levels. Lu et al. [6] reported that DHR exhibited comparable 

activity compared to RES in inhibiting NO production and liver cancer cells proliferation. 

Tang et al. accentuated that DHR showed comparable inhibition effects with RES on 
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pancreatic oxidative damage [86]. Very recently, lunularin (LUN) and 3,4’-dihydroxy-

trans-stilbenes have been recognized as microbial metabolites of RES in rats and humans 

[73-76]. Nevertheless, their concentrations in tissues/plasma and their potential 

contribution to the pharmacological efficacy of RES have not been probed yet.  

Regarding these research preceding, the purpose of this study was to identify and 

quantify metabolites present in mouse tissues and biological fluid with Orbitrap Fusion 

high-resolution HPLC-MS/MS after sustained oral consumption of RES. Based on the 

concentrations observed in mouse kidney and colon, we further investigate the anti-

inflammatory, anti-clonogenic, and anti-proliferative efficacy of RES metabolites alone or 

in combination in renal and colon cancer cells. Our findings provided important scientific 

support to the notion that RES’s biological activities could be compensated by its 

metabolites.  

3.2 Materials and methods 

3.2.1 Materials 

RES (>99% purity) was purchased from Quality Phytochemicals (Edison, NJ, USA).  

Pinostilbene (PIN) (>98% purity) and DHR (>98% purity) were obtained from Yuanye 

Bio-Technology Co., Ltd (Shanghai, China). LUN (>98% purity) was purchased from 

Aikon Biopharma LLC (Nanjing, China). Sulfatase (type H-1, from Helix pomatia, 
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containing sulfatase and β-glucuronidase) was obtained from Sigma-Aldrich (St. Louis, 

MO, USA). Acetonitrile (ACN), methanol (MeOH), acetic acid and ethyl acetate were 

purchased from Fisher Scientific (Fairlawn, NJ, USA). All these solvents are HPLC grade. 

3.2.2 Animas, diets and experimental design 

The Institutional Animal Care and Use Committee, University of Massachusetts-

Amherst approved all animal experiments performed. Twenty male CD-1 mice (5-week 

old) were obtained from Charles River Laboratory (Wilmington, MA, USA). After one 

week of diet acclimation, ten mice were randomly chosen to receive standard AIN93G diet 

containing 0.05% (w/w) RES, while the other ten remaining on standard diet. Urine and 

feces were collected with metabolic cages. All mice were sacrificed with CO2 asphyxiation 

after four weeks. Heart, liver, spleen, lung, kidney, brain, stomach, small intestine 

(transversely cut equally into four parts), cecum, colon and bile were collected and stored 

at -80°C for further analysis. Blood samples were centrifuged at 3 000g for 15 mins at 4°C 

to collect serum.  

3.2.3 Sample preparation 

Serum, bile and urine samples were extracted according to Menet et al. [93]. Briefly, 

aliquots of samples were vortex-mixed with ten volume of acidified (2.5% acetic acid) 

ACN and stood at ice for 20 min to precipitate the protein. After centrifugation (14000 rpm, 
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10min, 4°C), the supernatant was evaporated to dryness using a Speed Vac Concentrator 

(Savant Thermo Fisher Scientific Inc., Agawam, MA, USA). Tissue samples were prepared 

according to Juan et al. with modifications [67]. Briefly, aliquots of tissues were 

homogenized with 10 volume of MeOH/water/acetic acid (80:20:2.5) solution using a Bead 

Ruptor Homogenizer (Omni International, Kennesaw, GA, USA). The homogenates were 

then centrifuged at 14000 rpm for 5 min. Specially for kidney samples, the homogenate 

was sonicated for 20 min before centrifugation. The residues were extracted one more time 

and combined methanolic layers were evaporated to dryness under vacuum. All sulfated 

and glucuronide metabolites were measured by enzymatic hydrolysis of the processed 

samples with β-glucuronidase and sulfatase as reference described [74]. The internal 

standard PIN (5 μmol/L) was routinely used in all the samples. The dried extractions were 

reconstituted in 50 μL 50% MeOH for further analysis.  

3.2.4 Orbitrap Fusion high resolution HPLC-MS/MS and HPLC-MS analysis 

Identification of RES metabolites was performed in an Ultimate 3000 RSLC HPLC 

(Thermo Scientific, USA) coupled with Orbitrap Fusion High-Resolution Mass 

Spectrometer (Thermo Scientific, Waltham, MA, USA). The metabolites were eluted with 

a Zorbax SB-Aq C18 column (Agilent Technologies, Santa Clara, CA, USA) at flow rate 

of 0.6 mL/min. Mobile phase A was 5% acetonitrile/water, mobile phase B was 100% 

acetonitrile. Gradient elution started at 15% solvent B, linear gradient from 15 to 70% 
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solvent B over 18 min, held at 70% B for 3 min, then followed by washing and 

reconditioning the column. The Mass-spectra conditions were optimized at negative 

electrospray ionization mode, as follows: ion spray voltage 3.5 kv, ion transfer tube 

temperature 325°C, vaporizer temperature 275°C, sheath gas 15 Arb, aux gas 6 Arb, 

Orbitrap resolution 120K, and collision energy 30%. Data acquisition and processing were 

accomplished using Xcalibur V4.1 (Thermo Scientific).  

The concentration of RES and its metabolites were quantified by using the Shimadzu 

Model 2020 HPLC-MS (Shimadzu, Kyoto, Japan). The conditions of chromatography and 

Mass-Spectra were same with Orbitrap Fusion HPLC-MS/MS, except the sample injection 

volume was 20 μL rather than 5 μL. The data was processed with Labsolutions Software 

(Shimadzu).  

3.2.5 In vitro fermentation 

Mouse fecal samples were collected from cecum and colon and placed into anaerobic 

chamber (A35 anaerobic workstation, Whitley, USA) immediately. Aliquots of fecal 

samples were suspended in gifu anaerobic broth (Hemedia). Small intestine digesta were 

collected from RES-fed mice and incubated with fecal suspension under anoxic conditions 

for 24 h. Digesta was defined as the complex aqueous suspensions of undigested matters 
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and solubilized nutrients in GIT lumen [94]. 1 mL of samples were collected and extracted 

with ethyl acetate for further HPLC-MS analysis.  

3.2.6 Cell viability assay, colony formation assay, and nitric oxide assay  

We adopted various cell models to investigate the multiple biological activities of RES 

and its metabolites, including anti-proliferation of cancer cells, anti-inflammation, anti-

oxidant and anti-colony formation. Mouse TLR-4 (mTLR-4) cell was purchased from 

InvivoGen (San Diego, CA, USA). All other cells were purchased from American Type 

Cell Collection (ATCC, Manassa, VA, USA). HT-29, HCT-116, A498 and 786-O were 

applied to MTT and colony formation assays as described previously to explore the anti-

proliferatory effects [95-97]. Nitric oxide assay (anti-inflammation) were performed 

according to Guo et al. in RAW264.7 macrophage model [95, 96]. mTLR-4 cells are 

designed to specifically study that whether toll-like receptor 4 (TLR-4) mediated NF-κB 

pathway involved. This experiment was conducted following manufacture’s HEK-Blue 

protocol.  

3.2.7 Statistical analysis 

All data were expression as Mean ± SD. The statistical significance was assessed by 

one-way ANOVA with post hoc Tukey HSD test. P value < 0.05 was considered as 

statistically significant.  
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3.3 Results and discussion 

3.3.1 Identification of RES metabolites  

To investigate the biological properties of resveratrol metabolites, the very first step 

should be the identification of metabolites. By using high-resolution HPLC-MS/MS, RES 

metabolites were characterized in urine and fecal samples. Blank urine and fecal samples 

were injected to discard confounding ions not related to RES-derived metabolites (results 

not shown). Eleven metabolites were detected in urine and fecal samples including two 

microbial metabolites-DHR and LUN, three RES conjugates (RES-sulfate, RES-

glucuronide, and RES-sulfoglucuronide), four DHR conjugates (DHR-sulfate, DHR-

glucuronide, DHR-diglucuronides, and DHR-sulfate-glucuronide) and two LUN 

conjugates (LUN-sulfate and LUN-glucuronide), as shown in Table 1 and Fig. 6. In 

agreement with previous publications, the main RES metabolites were RES-sulfates, RES-

glucuronides, and RES-sulfoglucuronide as well as the microbiota-derived DHR and its 

corresponding sulfate, glucuronide, diglucuronides, and sulfoglucuronide conjugates [5, 

65-67, 91, 92]. LUN was identified as a microbial metabolite of RES in urine and fecal 

samples recently [74, 76]. Importantly, for the first time, our results revealed that LUN 

conjugates were important metabolites derived from resveratrol.  
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Table 1 List of resveratrol metabolites identified with HPLC-MS/MS 

 

The spectra of metabolites were shown in Supplementary Fig. S1. RES, DHR and 

LUN were fully identified by direct comparison with the authentic standards. The rest of 

metabolites were tentatively identified regarding to their pseudo molecular ions and 

daughter ions within 5ppm measurement error. For example, RES glucuronide showed a 

[M-H]- ion at m/z 403.1029, which further fragmented to form a product ion of m/z 

227.0703 that corresponded to RES itself after the loss of fragment at 113.0236 (Fig. S1). 

This results was consistent with previous report [91]. The exact positions of these 

conjugations in the resveratrol molecule were not established. 

 

# 

 

Metabolites 

Retention 

time (min) 

 

m/z [M-H] 

 

MS/MS fragment 

1 

2 

3 

4 

5 

 

6 

7 

8 

9 

10 

11 

12 

Resveratrol (RES) 

RES-sulfate 

RES-glucuronide 

RES-sulfoglucuronide 

Dihydro-resveratrol 

(DHR) 

DHR-sulfate 

DHR-glucuronide 

DHR-diglucuronides 

DHR-sulfoglucuronide 

Lunularin (LUN) 

LUN-sulfate 

LUN-glucuronide 

13.67 

9.75/9.96 

8.45/6.48 

6.86 

13.42 

 

9.65 

8.55/8.60 

6.43 

7.01 

17.14 

10.35/10.56 

9.85 

227.0708 

307.027 

403.1029 

483.0597 

229.0865 

 

309.0433 

405.1186 

581.1506 

485.0754 

213.0916 

293.0484 

389.1236 

227.0702, 185.079, 143.0493 

307.0269, 227.0702, 185.0595 

403.1026, 227.0703, 113.0236, 175.0293 

307.027, 227.0715, 113.0223 

229.0837, 123.0442, 81.0339 

 

309.0424, 229.0395, 123.0443 

405.1161, 229.0865, 113.0235 

405.1160, 229.0875, 175.0238, 113.0236  

485.0757,405.152, 309.0425, 113.0237  

213.0912, 106.0415, 107.0494 

293.0476, 213.0910, 79.9567, 107.0494 

389.1267, 213.0910, 113.0235 
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Fig. 6 Chromatogram of eleven RES metabolites identified in urine and fecal samples after 

sustained oral consumption of RES. 

3.3.2 Distribution of RES and its metabolites in tissues and biological fluids 

We further quantified the levels of RES and its metabolites in tissues/organs, 

gastrointestinal tract (GIT) and biological fluids. Due to the paucity of available standards 

for sulfate and glucuronide conjugates, their concentrations were assessed by enzymatic 

hydrolysis as the whole, presenting as RES-conjugates, DHR-conjugates and LUN-

conjugates, respectively. We noticed that not even trace amount of unmetabolized RES was 

detected in bile, liver, kidney and serum (Fig. 7A-7D), which implied that RES underwent 
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extensive metabolism after oral consumption. More interestingly, DHR, LUN and their 

conjugates were much more abundant than RES-conjugates (Fig. 7A-7D). RES and its 

conjugates together were presented as RES-M and the same applied to DHR and LUN. As 

shown in Fig. 7, DHR-M and LUN-M were 5.3- and 4.6- folds higher in bile, 1.2- and 4.8- 

folds higher in serum, 10.3- and 3.4- folds higher in liver and 2.9- and 3.1-folds higher in 

kidney than RES-M, respectively. Above results suggested that besides RES-sulfate, RES-

glucuronide and RES-sulfoglucuronide that were reported widely before, RES was more 

profoundly metabolized into DHR, LUN and their conjugates after oral consumption. 

Higher amounts of DHR-M than RES-M were reported before [72], while our current study 

emphasized the high abundance of LUN-M in tissues for the first time. Considering the 

absence of RES in tissues and limited bioactivity of RES conjugates, this was very useful 

information since it indicated that DHR-M and LUN-M might play more important roles 

than RES-M after oral administration of RES, due to their much greater abundance than 

RES-M in tissues.  

Moreover, high concentration of RES (179.1 μmol/L) and its conjugates (145.3 μmol/L) 

were detected in urine (Fig. 7E). This result suggested that higher amount of RES-M was 

excreted compared with DHR-M and LUN-M through urine, which further supported 

previous results.  
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Fig. 7 Distribution of RES, DHR, LUN and their conjugates in bile (A), kidney (B), liver 

(C), serum (D) and urine (E). Data presented as mean ± SD (n=8). 

3.3.3 Distribution of RES and its metabolites in GIT 

For better understanding the metabolic pathways of RES after oral consumption, we 

also examined the accumulation of RES metabolites in both the digesta and the 

gastrointestinal (GI) tissues. Small intestine (SI) was equally cut into four segments 

labelled as SI-1, 2, 3, and 4, referring to as the duodenum, jejunum, proximal ileum and 

distal ileum in human.  

Considerable amount of unmetabolized RES were detected in the stomach digesta, as 

well as the occurrence of lesser extent of RES-conjugates, DHR, LUN, DHR-conjugates, 
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and LUN-conjugates (Fig. 8A). Conjugates in stomach digesta could attribute to the 

metabolizing ability of gastric cells [98]. The presence of DHR and its conjugates in the 

stomach digesta has been reported before by Azorin-Ortuno et al [66], which was 

tentatively explained by the presence of microbial groups in the stomach and SI involved 

in the formation of DHR. This may also explain the appearance of LUN and its conjugates 

in the stomach lumen. While, mice eat their feces, which contained large volumes of DHR 

and LUN, could be another potential reason.  
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Fig. 8 Levels of RES metabolites in gastrointestinal digesta and tissues. (A-C) 

Concentration of RES, DHR, LUN and their corresponding conjugates in digesta. (D) 

Relative abundance of RES metabolites in digesta. (E-G) Concentration of RES, DHR, 
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LUN and their corresponding conjugates in GIT tissues. (H) Relative abundance of RES 

metabolites in GIT tissues. (I) Concentration of RES, DHR, LUN and their conjugates 

before and after anaerobic fermentation with mouse fecal bacteria. Data presented as mean 

± SD (n=8). 

Free-formed RES, DHR and LUN dominated (78.06%) in the stomach digesta. While 

once the digesta arriving at the SI, the concentration of free-formed metabolites showed a 

dramatic decline, meanwhile their conjugates significantly increased to 80.81% of total 

RES metabolites (average of SI-1 to SI-4) (Fig. 8A-8D). The abundance of conjugates in 

the SI digesta could due to several contributions together: catalyzed by transferase enzymes 

that rich in SI enterocytes, an active efflux of conjugates to the lumen content, and biliary 

secretion of the enterohepatic circulation [5, 66, 99] 

However, when digesta reached the cecum and colon, conjugated metabolites 

including those from DHR and LUN dramatically dropped down below 10.6% of the total 

metabolites, while their corresponding parent compounds rocketed up (Fig. 8A-8D). 

Similar situation have been reported in previous study [66]. We also noticed that the RES-

M dropped down from 47.97% of the total metabolites in the SI digesta (average) to 10.46% 

in the large intestine inner content (average of the cecum and colon). While the abundance 

of DHR-M and LUN-M increased at the meantime. (Fig. 8A-8D). Given the richness of 

gut microbiota in the cecum and colon, we hypothesized that gut microbiota plays a role in 
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the de-conjugation process and the production of DHR and LUN in the large intestine. To 

examine our hypothesis, we incubated SI digesta, which was collected from RES-fed mice, 

with mice-derived gut microbiota and determined the levels of free- and conjugated-

metabolites before and after the fermentation. We successfully observed that after 24h 

anaerobic incubation, majority of the conjugates were converted back to their parent 

compounds (Fig. 8I). We also found that the total amount of RES and its conjugates 

decreased by 3.20 μmol/L after fermentation, while DHR-M increased by 1.12 μmol/L and 

LUN-M increased by 0.16 μmol/L (Fig. 8I). Though this result did not strictly consistent 

with our in vivo data, it still highly suggested the involvement of gut microbiota in the 

biotransformation of RES to DHR and LUN. Bode et al. successfully identified Slackia 

equolifaciens and Adlercreutzia equolifaciens as two DHR producers from human stools 

[74]. The LUN producers, however, still had not been identified. The low increased-

proportion of DHR-M and LUN-M might due to the limited in vitro fermentation 

conditions so that the bacteria composition was different with that in vivo. The relative high 

concentrations of DHR and LUN in the bile, could be considered because of the 

reabsorption from the large intestine [100] (Fig. 7A).  

The distribution of RES and its metabolites in the GI tissues had similar pattern with 

GIT digesta, as shown in Fig. 8E-8H, excepting the lower concentrations and lesser 

percentage of RES and its conjugates. The luxuriant enzymes in epithelial cells, such as 
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cytochromes P450, UDP-glucuronosyltransferases, sulfotransferases, could be an 

explanation of this observation [19]. Based on above discussion, the proposed metabolic 

pathway of resveratrol was summarized in Fig. 9. 

 

 

Fig. 9 Proposed metabolic pathway of RES. Solid arrows indicated metabolism conducted 

by various transferases. Dotted arrows indicated the involvement of gut microbiota. 

3.3.4 Metabolites of RES showed stronger chemopreventive effects than RES at 

physiological concentrations  

There are compelling evidences that RES exerts multiply chemopreventive properties 

against various diseases. Nevertheless, these health benefits remained controversial due to 

the low oral bioavailability and fast metabolism of RES [5, 72]. Consequently, the potential 
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bioactivity of RES metabolites is an important question to solve to better understand RES’s 

mechanisms of action. Conjugates derivate from dietary polyphenols often have weakened 

bioactivities compared to the parent compounds, and this seems to be the case for RES 

based on previous studies [6, 101]. Therefore, we focused on the chemopreventive effects 

of two free-formed phase I metabolites (DHR and LUN) of RES in our study. RES 

exhibited colon and renal protective effects and high levels of DHR and LUN were detected 

in kidney and colon [1, 90]. Thus, the chemopreventative effects of DHR and LUN were 

examined in renal and colonic cell lines. To establish the protective effects of RES and its 

metabolites in a physiologically relevant manner, we deliberately used the concentrations 

measured in tissues to determine their bioactivities.   
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Fig. 10 Renal protective effects of DHR and LUN at renal relevant concentrations. Growth 

inhibitory effects of DHR and LUN in 786-O (A) and A498 (B) renal carcinoma cells. DHR 

and LUN potently inhibited colony formation of 786-O (C) and A498 (D) cells. Data 

presented as mean ± SD (n=3). Different letters indicate statistical differences (P<0.05). 

Regarding the zero concentration of RES in kidney, the renal protective effects of RES 

inevitably drove attentions to its metabolites [90]. A498, a “classical” human renal 

carcinoma cell line, is widely used as a model of clear cell renal cell carcinoma (ccRCC) 

[102]. 786-O, with the phenotype of ccRCC, is primary cell line that most commonly used 

in renal carcinoma focused researches [102]. These two cell lines were adopted to evaluate 

the anti-proliferatory and anti-clonogenic effects of DHR and LUN at renal relevant 

concentrations. Four levels of DHR, LUN and DHR+LUN were used at 0.5, 0.75, 1 and 

1.5×. Concentration at 1× was equivalent to the concentrations (DHR: 14.3 nmol/g; LUN: 

53.6 nmol/g) found in kidney tissues. Concentrations at 0.5, 0.75 and 1.5× were half, three 

quarters and one and half times of the concentrations of RES metabolites at 1×. As shown 

in Fig. 10, DHR and LUN inhibited the growth of both 786-O and A498 cells in a dose-

dependent manner. LUN showed stronger inhibitory effects than DHR in both 786-O and 

A498 cells at all tested concentrations (P<0.05). LUN caused 15.6, 16.5, 18.2 and 25.4% 

of inhibitions on 786-O cells at 0.5, 0.75, 1 and 1.5×, respectively. The combination of 

DHR and LUN produced stronger inhibitory effects, i.e., at concentration of 1×, treatment 

of DHR+LUN caused 23.2% death of 786-O cells. Similar results were also observed in 
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A498 cells. A498 and 786-O cells were also subjected to anti-colony formation assay at 

the 1× concentration. The formed-colonies were scanned and counted as shown in Fig. 10C, 

7D. LUN significantly inhibited the clonogenic formation of A498 and 786-O cells by 

43.38 and 48.44%, respectively (P<0.01). Combination of DHR and LUN exhibited 

stronger inhibitory effects than LUN alone (P<0.05). As shown in Fig. 10C-10D, 

DHR+LUN suppressed the colony formation by 54.15 and 62.03% in A498 and 786-O 

cells, respectively. These results suggested that renal protective effects of RES might highly 

relevant to its metabolites (DHR and LUN) in the kidney.  

In order to establish the anti-colitis and anti-colon cancer effects of DHR and LUN in 

a physiologically relevant manner, we determined their inhibitory effects on two widely 

used human colon cancer cell lines (HCT-116 and HT-29) at the concentrations found in 

the mouse colonic tissues. Treatment of 1× stood for concentrations measured in the 

colonic tissue, that was, 4.3 μmol/L of RES, 42.8 μmol/L of DHR and 60.5 μmol/L of LUN. 

DHR showed a tendency to suppress the proliferation of HCT-116 cells, although it did not 

achieve a statistical significance. While, LUN profoundly and dose-dependently inhibited 

the multiplication of HCT-116 cells since concentration of 0.75× compared to RES 

(P<0.01). Markedly, DHR+LUN together showed stronger inhibitory effects than DHR 

and LUN alone, i.e., at 1.0×，compared to 8.2 and 12.7% of inhibition induced by DHR 

and LUN, DHR+LUN inhibited cell growth by 24.8% (P<0.05) (Fig. 11A).  
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Interestingly, combination of all three compounds (RES+DHR+LUN) exerted the 

strongest inhibition, however, it was not statistically greater than that produced by 

combination of two metabolites (DHR+LUN). This finding further demonstrated the 

meager contribution of RES itself to its in vivo protective effects against colon cancer. It is 

noteworthy that at the concentration of 1.5×, DHR+LUN+RES showed no significant 

inhibition on the growth of normal human colon CCD-18Co cells (Supplementary Fig. S2). 

This result indicated that cytotoxic effects of RES, DHR and LUN were cancer cell specific.  

In addition, HT-29 cells were subjected to different treatments at 1×. After 12 days of 

incubation, the colonies formed were photographed and quantified as shown in Fig. 11B. 

The numbers of colonies formed followed the order of RES > DHR > LUN > DHR+LUN > 

RES+DHR+LUN. Compared to 5.0% of suppression caused by RES alone, treatments of 

DHR, LUN, DHR+LUN and RES+DHR+LUN restricted the clonogenic survival of HT-

29 cells by 11.3, 35.2, 45.0 and 56.7%, respectively (P<0.05) (Fig. 11B). These results 

indicated that RES metabolites might play more vital role in promoting the reproductive 

death of colon cancer cells than RES itself in the colonic tissue after oral consumption of 

RES.  

Besides the anti-proliferative and anti-clonogenic effects, RES metabolites also 

exerted stronger anti-inflammatory ability than RES at the colonic concentrations (Fig. 11C. 

LPS-stimulated RAW 264.7 macrophages were used to determine the anti-inflammatory 
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potency of DHR and LUN. LUN behaved a dose-dependent inhibition on LPS-induced NO 

production (an important inflammatory mediator) by 14.2, 21.6, 28.3 and 38.2% at 0.5, 

0.75, 1 and 1.5×, respectively (P<0.01). Overall, DHR did not produce a significant anti-

inflammatory ability, which was consistent with previous study [6]. The combined 

treatments of DHR and LUN caused a significant decrease on production of NO compared 

with LUN alone (P<0.01), i.e., 19.1, 26.8, 36.9 and 46.2% of NO inhibition throughout the 

concentration range. Most interestingly, the combination of all three compounds (RES, 

DHR and LUN) did not produce stronger inhibitory effects in comparison with the 

combination of DHR and LUN (Fig. 11C).  

To obtain further understanding of the anti-inflammatory signaling pathway, we 

employed mTLR-4 cells to exam the involvement of NF-κB pathway. Stimulation of 

mTLR-4 cells with a bacterial toxin LPS activated NF-κB and activator protein 1 (AP-1), 

which induces the production of secreted embryonic alkaline phosphatase (SEAP). As 

shown in Fig. 8D, single treatment of DHR and LUN at a concentration range of 0.75× to 

1.5×, caused a significant dose-dependent inhibition on SEAP production compared to RES 

alone (P<0.01). Furthermore, cotreatments with serial concentrations of DHR+LUN 

resulted in suppression of SEAP production by 25.4, 40.6, 51.5 and 75.6% at 0.5, 0.75, 1 

and 1.5×, respectively. The involvement of RES strengthened the inhibitory effects of 

DHR+LUN on SEAP expression, but not statistically significant at lower concentrations 
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(0.5 and 0.75×) (Fig. 11D). However, further analyses were required to clarify the specific 

molecular mechanisms of anti-inflammatory effects of RES metabolites. Nonetheless, it 

should be noted that RES exhibited stronger inhibitory effects on these cancer cell lines [6] 

and NO production than DHR and LUN at the same concentration, however, this dose 

range of RES is not achievable in our in vivo feeding study (Supplementary Fig. S3). 

Overall, our results demonstrated that colonic metabolites of RES played more important 

roles than RES itself in inhibiting cancer cell growth and inflammation.  

 

Fig. 11 Chemopreventive effects of RES, DHR and LUN at colonic tissue levels. (A) 

Growth inhibitory effects of RES, DHR and LUN on HCT-116 cancer cell line. (B) Anti-

clonogenic effects of RES, DHR and LUN on HT-29 cancer cell line. (C) Percentage of 
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inhibition on NO production by RES, DHR, LUN and their combination in LPS-stimulated 

RAW 264.7 cells. (D) Inhibitory effects of RES, DHR, LUN and their combination on LPS-

induced SEAP production. Data presented as mean ± SD (n=3). Different letters indicate 

statistical differences (P<0.05).  

3.4 Conclusion 

The present study for the first time systemically determined the biotransformation of 

RES in mice, with focuses on its metabolic fate in the GIT. Our results demonstrated that 

DHR, LUN and their corresponding conjugates were dominated metabolites of RES after 

sustained oral consumption of RES, rather than RES-sulfates and RES-glucuronides. More 

importantly, we found that DHR, LUN and their combination exerted much stronger 

chemo-preventive and anti-inflammatory effects in the renal and colonic tissues, at their 

concentrations achieved in these tissues, suggesting that DHR and LUN may greatly 

contribute to the chemopreventive properties elicited by RES in the kidney and colon. 

Overall, our findings provided a solid scientific basis for understanding the 

chemopreventive mechanisms of RES from the perspective of biotransformation, and are 

of great value for future research on RES in prevention and treatment of renal and colonic 

diseases in humans
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CHAPTER 4 

ANTI-INFLAMMATORY EFFECTS OF RESVERTROL ASSOCIATED WITH 

THE ALTERATION OF GUT MICROBIOTA

4.1 Introduction 

Inflammatory bowel disease (IBD), including relapsing-remitting inflammatory 

disorders Crohn’s disease and ulcerative colitis, is a chronic inflammatory disease of 

gastrointestinal tract [28]. Over 1 million residents in the USA are estimated to be suffering 

from IBD [8]. One of the most important and devastating complications of long-term IBD 

is colorectal cancer development [9]. The precise etiology of IBD remains unknown, the 

most accepted hypothesis to date is that aberrant and continuing immune response against 

the commensal gut microbiota in genetically susceptible hosts [28, 29]. The possible 

implication of gut microbiota in the pathogenesis of IBD has been highlighted recently. 

Multiple lines of evidence suggested the important role of gut microbiota in the progress 

of IBD. Firstly, Metagenomic and 16S RNA based sequencing studies demonstrated 

reduced diversity and altered composition of gut microbiota in patients with IBD compared 

with healthy subjects [56-58]. Secondly, germ-free animals were protected against colitis 

development in DSS-treated mice [12]. Thirdly, IL-10-deficient mice, a murine model of 

IBD, did not develop colitis under germ-free conditions [59]. All these results suggested 
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that microbial factors might directly contribute to the development of colonic inflammation 

and adverse metabolic consequences. 

The gut microbiota has become an important target in the treatment of IBD, and 

therapy has focused on correcting intestinal microbial imbalance. The gut microbiota, 

including symbiotic, probiotic, and pathogenic microorganisms, plays an important role in 

human health. Its balance can be destroyed by the introduction of invasive pathogens, 

activation of immune cells, and production of pro-inflammatory cytokines [60]. Diet has 

an influence in shaping the development and composition of the gut microbiota and many 

phytochemicals enriched diet have been explored as preventive treatments of IBD recently 

[31].  

Resveratrol (3,5,4’-trihydroxy-trans-stilbene) is a natural polyphenol abundant in 

grapes, wines and peanuts. Consistent results showed that resveratrol could down-regulated 

inflammatory biomarkers, reduced oxidative stress and attenuated clinical symptoms in 

experimental murine colitis models [1, 3, 103]. A recent human study claimed that 6-weeks 

supplementation of resveratrol could improve clinical colitis [87]. Moreover, high 

accumulation of resveratrol in the gastrointestinal tract (65.1%) was reported, suggesting 

it could arrive intact at the colon, where it may interact with micro flora [71]. In the view 

of direct contact and dual interaction existing between resveratrol and gut microbiota, 

possible composition modifications in gut microbiota might be expected as a result of 
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consumption of resveratrol, which ultimately contribute to its anti-inflammation property.  

Given the complex relationship among diet, IBD and gut microbiota. The purpose of 

this study was to elucidate whether supplementation of trans-resveratrol could counteract 

gut microbiota dysbiosis produced by DSS-induced colitis and whether these changes 

might be correlated with anti-colitis effects of resveratrol.  

4.2 Materials and Methods 

4.2.1 Animals and experimental design 

Institutional Animal Care and Use Committee of University of Massachusetts 

Amherst approved the protocol for the animal experiment. 40 male wild-type CD-1 mice 

(6-8 weeks old) were obtained from Charles River Laboratories (Wilmington, MA, USA). 

Animals were randomly assigned to four groups and housed in groups of five mice per 

cage in a temperature-controlled environment (22±2 °C) with 65 % relative humidity and 

fixed 12 h light/dark cycle. After one-week diet acclimation, four groups were distributed 

as follows: the control group (RES-, DSS-; n=10), which was fed with standard chow 

(AIN93G diet); the resveratrol group (RES+, DSS-; n=10), which was fed with the standard 

diet supplemented with 0.025% (w/w) resveratrol (>99% purity) (Quality Phytochemicals, 

NJ, USA); the DSS group (RES-, DSS+; n=10), which received the standard diet and 1.5% 

DSS water (wt/v, dextran sulfate sodium salt) (International Lab, Chicago, IL, USA); and 
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the resveratrol-DSS group (DSS+, RES+; n=10), which received resveratrol (0.025% w/w) 

supplemented diet and 1.5 % DSS drinking water (wt/v). 1.5% DSS was administered in 

the drinking tap sterilized water ad libitum for 4 days followed by 7 days of pure water for 

recovery, and this cycle was repeated four times. Body weight and disease activity index 

(DAI) were monitored at every last day of recovery cycles and DSS cycles. At the end of 

the fourth cycle of DSS treatment, all mice were sacrificed with CO2 asphyxiation. The 

liver, spleen and kidney were removed and weighted. After measurement of weight and 

length, the entire colon was cut into two pieces longitudinally. Half of the colon was fixed 

in 10% buffered formalin (pH=7.4) for further histopathological analysis. The other half 

of the colon was stored at -80°C for ELISA analysis. The feces collected from colon were 

stored at -80°C for further sequencing analysis. 

4.2.2 DAI and histological assessment 

DAI was determined by scoring extent of rectal bleeding (Score: 0, none; 1, hemoccult 

positive; 2, blood; 3, gross bleeding), stool consistency (Score: 0, normal; 1, soft but form; 

2, soft; 3, diarrhea) and weight loss (Score: 0, none; 1, 1~5%; 2, 5~10%; 3, 10~20%; 

4, >20%) [104]. The final macroscopic score for each animal is the sum of each individual 

score. 

Formalin fixed colon tissues was processed for paraffin embedding, sectioning (5 μm), 
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and haematoxylin and eosin (H&E) staining as previously described [7, 105, 106]. Three 

parameters were graded: surface epithelial loss, crypt destruction and inflammatory cell 

infiltration into the mucosa based on the established criteria [107]. A score of 0-4 was 

assigned to each parameter (maximum macroscopic score = 12).  

4.2.3 Enzyme-linked immunosorbent assay (ELISA) 

Colonic mucosa was scraped and homogenized in MSD Tris lysis buffer (Meso Scale 

Discovery, Rockville, MD, USA) contained with 1% protease inhibitor cocktail (Boston 

Bioproducts, Ashland, MA, USA). Supernatants were collected by centrifuging at 14000 

rpm for 20min at 4°C, then loaded in sandwich enzyme-linked immunosorbent assay kits 

(Meso Scale Discovery, Rockville, MD, USA) to determine the concentrations of cytokines 

according to the manufacturer’s instructions.  

4.2.4 16S rRNA analysis and Illumina Mi-Seq sequencing 

Fresh fecal samples were collected from colon and immediately frozen at −80°C for 

future analyses. Bacterial DNA was extracted from feces by using the PowerFecal DNA 

isolation kit (MoBio Laboratories, Inc., Carlsbad, CA), following supplier’s protocols.  The 

DNA was quantified by the NanoDrop spectrophotometer (Thermo Scientific, Waltham, 

MA, USA) and normalized to 20 ng/μL. 16s rRNA genes were amplified with PCR by 

using Forward primer 
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5'TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 

and Reverse Primer = 

5’GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTA

ATCC as described by Klindworth et al. [108]. Amplicons of interest was verified by gel 

electrophoresis. If required, low yields were further amplified. PCR products were then 

purified with AMPure XP beads (Beckman Coulter, Danvers MA, US) to remove primer 

dimers and other small mispriming products. Dual indices and Illumina sequencing 

adapters were attached by PCR using the Nextera XT Index Kit (Illumina, San Diego, CA, 

US). The quantity and size of PCR products were determined and verified by using Qubit 

dsDNA BR Assay kit (Life technology, Carlsbad, CA, US) and DNA analysis ScreenTape 

Assay on Tape Station 2200 (Agilent Technologies, Santa Clara, CA, US). Final PCR 

products were pooled in equimolar concentration and denatured by NaOH. After 

combining the amplicon library and PhiX control, the samples were loaded onto the 600-

cycle MiSeq Reagent kit v3 cartridge and sequenced on an Illumina MiSeq platform 

(Illumina Inc, San Diego, CA, USA). 

4.2.5 Statistical analysis 

Raw Illumina Miseq sequence data were processed with Quantitative Insights Into 

Microbial Ecology (QIIME) software pipeline v1.9.1[109]. Generated operational 

taxonomic units (OTUs) were further subjected to alpha- and beta-diversity and principal 
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coordinate analysis (PCoA) analyses using QIIME. Cladogram and Linear discriminant 

analysis (LDA) characterized by LEfSe tool [110]. The LEfSe analysis was performed 

using an alpha value of 0.01 for both the factorial Kruskal-Wallis rank sum test and 

pairwise Wilcoxon test and a threshold of 2.0 for the LDA. The approach used was an all-

against-all multi-class analysis. Correlation analyses were performed with SPSS 17.0 

software (Chicago, IL, USA). Data were presented as the mean ± standard error of the 

mean (SEM). The statistical significance of differences among groups was performed using 

one-way ANOVA followed by Tukey-Kramer multiple comparison post hoc analysis. The 

differences between groups were considered significant at P< 0.05.  

4.3 Results 

4.3.1 Dietary resveratrol attenuated colitis symptoms 

Cyclic administration of DSS in drinking water resulted in the establishment of 

chronic colitis and the development of colorectal dysplasia in mice [111]. Body weight was 

monitored at the end of every DSS and recovery cycles, as an indicator of colitis severity. 

Lower percentage of body weight gain was observed since the end of the first DSS cycle. 

With increased DSS-treatment cycles, the percentage of body weight gain in DSS group 

was getting lower and lower than control group and statistically significant at the fourth 

DSS cycle (P < 0.05), while dietary resveratrol significantly counteracted this trend in DSS-
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treated mice (Fig. 12A). The final body weight was 48.98 ± 5.06 g for control group, and 

significantly decreased to 36.92 ± 3.05 g for DSS group (P < 0.01). Whilst, dietary 

resveratrol supplementation ameliorated the body weight loss by elevating the final body 

weight to 44.78 ± 1.61 g in DSS-treated mice (P < 0.01) (Fig. 12B). DAI exhibits features 

of fecal consistency, haematochezia and body weight loss, and is used to evaluate 

inflammation severity in mice with colitis [104]. The DAI score was as high as 7.9 ± 1.9 

in DSS treated group, whereas it was markedly attenuated by 1.8-fold with resveratrol 

treatment (P< 0.05) (Fig. 12C). Colon weight/length ratio is another index that correlated 

with the progression of colorectal inflammation. As shown in Fig.12D, compared to the 

DSS group, dietary supplement of resveratrol rescued the inflammation-associated 

elevation of colon weight/length ratio (P < 0.05). Furthermore, remarkable increased in the 

ratio of spleen to final body weight were observed in DSS-treated mice compared with 

control mice. Dietary resveratrol significantly decreased this spleen to final body weight 

ratio to control level (P < 0.05) (Fig. 12E). These results suggested that dietary resveratrol 

offered protective effects against DSS-induced colitis.  
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Fig. 12 Dietary resveratrol attenuated colitis symptoms. (A) Percentage of body weight 

gain during entire experiment; (B) Final body weight; (C) Disease activity index (DAI); 

(D) Colon weight to colon length ratio; (E) Spleen weight to body weight ratio. Data are 

mean ± SD (n=10). Significant differences are indicated: *, P<0.05, **, P<0.01. 

4.3.2 Dietary resveratrol suppressed DSS-induced colitis by improving colonic tissue 

damage and reducing the colonic levels of pro-inflammatory cytokines 

Histological H&E staining of the colonic segments from DSS group showed severe 

inflammatory lesions, supported by the significant distortion of crypts structure, infiltration 

of inflammatory cell, edema of submucosa, and formation of dysplasia (Fig. 13A). 
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Resveratrol supplementation significantly mitigated morphological alteration associated 

with DSS treatment, thus protected colonic structure. In majority of areas, the epithelium 

and mucosal architecture remained intact (Fig. 13A). Damage of colonic mucosa assessed 

by overall histological score was 1.7-fold higher (P < 0.01) in the DSS group compared to 

the resveratrol-DSS group (Fig. 13B). 

 

Cytokines play a vital role in the pathogenesis of IBD. The imbalance between anti-

inflammatory and pro-inflammatory cytokines results in colonic diseases [112]. The 

expression levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), 

interferon gamma (IFN-γ), Interleukin 10 (IL-10), Interleukin 2 (IL-2), Interleukin 1 beta 

(IL-1β), Interleukin 6 (IL-6), keratinocyte chemoattractant/human growth-regulated 

oncogene (KC/GRO), and tumor necrosis factor alpha (TNF-α) in colon mucosa were 
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Fig. 13 Dietary resveratrol improved tissue damage and suppressed the overexpression of 

inflammatory cytokines. (A) Representative colon tissue images of H&E-stained 

colorectum sections (60X magnification); (B) Histology score; (C) Concentration of 

inflammatory cytokines (GM-CFS, IFN-γ, IL-10, IL-2, IL-1β, IL-6, KC/GRO, and TNF-α) 

in colonic mucosa. Data are mean ± SD (n= 6-8). Significant differences are indicated: *, 

P<0.05; **, P<0.01.  

increased to 5.2, 8.7, 2.0, 2.1, 10.0, 47.9, 10.9 and 7.0-fold over control levels, respectively, 

in mice consumed 1.5% DSS drinking water (P < 0.05) (Fig. 13C). While consumption of 

resveratrol markedly reduced their colonic expression by 44.2%， 48.5%， 43.2%, 46.8%，
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58.0%, 79.9%，48.5%, and 46.5%, respectively (P < 0.05) (Fig. 13C). Taken pathological 

changes together, these results suggested the effective capacity of dietary resveratrol to 

mitigate the severity of DSS-induced colitis by down-regulating the level of colonic pro-

inflammatory cytokines. 

4.3.3 Resveratrol partially rescued gut microbiota dysbiosis induced by DSS 

Ilumina Mi-Seq sequencing of the 16S rRNA gene of fecal samples analyzed effects 

of dietary resveratrol on gut microbiota structure and composition. Expressive changes 

observed in the microbial ecology (Fig. 14). The terms of OTUs mean a cluster of related 

(no less than 97% similarity) 16S rRNA sequences [113]. Numbers of OTUs, Shannon 

diversity, Chao1, and phylogenetic distance (PD) whole tree are common indexes of α-

diversity that indicate the depth of sequence coverage and community diversity within 

samples [114]. As shown in Fig. 14A, dietary resveratrol significantly enriched the 

bacterial diversity versus control group (P < 0.05), while DSS treatment prevented the 

enrichment of microbiota caused by resveratrol (P < 0.05). Bacterial α-diversity was 

marginally decreased in DSS-treated group compared with control group (P < 0.05) for 

Numbers of OTUs), suggesting similar richness and evenness of community species 

between these two groups (Fig. 14A). There were no significant differences of PD whole 

tree among groups (Data not shown). Additionally, the structure of fecal microbiota was 

further assessed by β-diversity, which generated based on the number of shared species 
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between samples [27]. The weighted β-diversity (weighted UniFrac distances) analysis 

suggested that DSS treatment dramatically shifted the fecal microbiota, supported by a 

significant distance between control and DSS group (P = 0.009). While dietary resveratrol 

dragged the plot back toward the control group and clearly distinguished with DSS group 

(P = 0.008) (Fig. 14B), which implied that administration of resveratrol partially blunted 

the dysbiosis caused by DSS. The presence of overlapping clusters between control and 

resveratrol group illustrated the relative similarity of microbial profiles between these two 

groups (Fig. 14B).  

To profile the specific changes in the gut microbiota, we analyzed the relative 

abundance of the predominant taxa identified from sequencing in all groups (Fig 14C-14F). 

At the phylum level, there were no significant differences existed between control and 

resveratrol group, except the up-regulation of Bacteroidetes in resveratrol group (P < 0.05) 

(Fig. 14C-14E). This result was consistent with previous studies [115]. DSS treatment 

significantly altered the bacterial structure by contributing the expansion of  
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Verrucomicrobia and Proteobacteria and contraction of Actinobacteria and Firmcutes 

versus control group (P < 0.05). However, consumption of resveratrol partially reversed 

this dysbiosis by down-regulation the abundance of Verrucomicrobia from 29.7% to 20.8% 

and Proteobacteria from 11.7% to 3.6% and up-regulation the abundance of Actinobacteria 

from 1.2% to 6.9% (P < 0.05) (Fig. 14C-14E). At the genus level, the aberrant dominance 

of Akkermansia (29.7% of sequences) were observed in DSS group, while it accounted no 

more than 1.5% of whole composition in control and resveratrol group. In contrast, dietary 

resveratrol significantly inhibited the excessively proliferation of Akkermansia (18.8%) in 

DSS-treated mice (P < 0.05) (Fig. 14D-14F). Similarly, resveratrol supplementation 

significantly inhibited the abnormal bloom of Boliphila, Sutterella and Dorea in DSS-fed 

mice (P < 0.05) (Fig. 14D-14F). We also noticed that the consumption of resveratrol 

significantly lifted the Bifidobacterium counts to 8.0% compared to 5.7% in control group 

(P < 0.05). Meanwhile, its relative abundance dropped down to 1.2% in DSS group and 

recovered to control level (6.7%) in DSS-resveratrol group (P < 0.05) (Fig. 14D-14F). 

These results indicated that resveratrol treatment restored the gut microbiota communities 

to compositions resembling those of the healthy control group. 
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Fig. 14 Dietary resveratrol partially rescued gut microbiota dysbiosis in colitic mice. (A) 

α-diversity of gut microbiota with different indices - numbers of OTUs, Shannon index and 

Chao1 (P < 0.05); (B) PCoA plots based on weighted UniFrac distances representing 

changes of gut microbial community among different groups (P<0.01); (C) Gut microbiota 

composition at the phylum level; (E) Cladogram generated from default LEfSe analysis 

showing the most differentially abundant taxa enriched in microbiota among different 

groups (α < 0.1 for factorial Kruskal-Wallis test); (F) LDA scores of the differentially 

abundant taxa (with LDA score >2 and and significance of α < 0.1, determined by Kruskal-

Wallis test); (G) Relative abundance of gut microbiota at the genus level (P < 0.05). Data 

are mean ± SD (n=5). Different letters represent statistically differences. 

4.3.4 Alterations in gut microbiota correlated with aberrant cytokine expression 
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To determine whether alteration of the gut microbiota could be associated with 

abnormal expression of inflammatory cytokines, we examined the correlation between gut 

microbiota phylotypes and colonic cytokines (Fig. 15). As a result, consistent positive 

linkages were detected between potentially pathogenic organisms enriched in DSS group 

and pro-inflammatory cytokines. For example, at the phylum level Proteobacteria were 

significantly positively correlated with GM-CSF, IL-1β, IL-2, IL-6, KC/GRO and TNF-α 

(p < 0.05). Similarly, the abundance of genera Boliphila and Sutterella who belong to 

Proteobacteria positively correlated with pro-inflammatory cytokines, including IL-1β, 

IL-6 and IFN-γ (p < 0.05). We also observed that health promoting gut microbiota were 

negatively correlated with pro-inflammatory cytokines and positively correlated with anti-

inflammatory cytokines. Specifically, Bifidobacterium was highly negatively correlated 

with IL-1β, IL-6, KC/GRO and TNF-α (P < 0.05), and positively correlated with IL-4. 

Same to Lactobacillus, negative correlations were observed with pro-inflammatory 

cytokines (GM-CSF, IFN-γ, IL-1β, KC/GRO, and TNF-α) (P < 0.05). These data suggested 

that mutation in bacterial composition might influence changes in the expression of 

inflammatory cytokines in colon.  
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Fig. 15 Heatmap of correlation between gut microbiota and inflammatory cytokines. 

Positive correlation is in red. Negative corelation is in black. Significant differences are 

indicated: *, P<0.05; * *, P<0.01. 

4.4 Discussion 
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IBD conduct a growing health concern due to increasing incidence worldwide. The 

current notion on pathogenesis of IBD is the involvement of diet, gut microbiome and 

epigentics. Among these factors, diet plays an important role in modulating the gut 

microbiota and influencing epigenetic changes [10]. Therefore, improving diet quality 

could be applied as a prophylactic tool to moderate the disease course. Consequently, many 

phytochemicals enriched diet have been explored as preventive treatments recently [31]. 

The protective effects of resveratrol against acute or chronic colitis in different models 

were demonstrated in previous studies [3, 103, 116, 117]. However, the mechanism of anti-

inflammation effects of resveratrol, especially the role of gut microbiota has not been 

illustrated yet. DSS (a chemical agent) induces colitis by disrupting the epithelial barrier 

and increasing colonic permeability, which is critical for the IBD onset. This impairment 

of gut barrier allows for gut-derived bacteria, disrupts balance of probiotics and pathogens, 

and leads to increased interactions between microbiota and immune system [118]. A 

complex interplay exists among diet, IBD, intestinal epithelium and microbial communities 

in the maintenance of gastrointestinal homeostasis. Therefore, it is of great significance to 

further explore the mechanisms of anti-colitis effects of resveratrol from the gut microbial 

perspective. One previous research studied the impacts of dietary resveratrol on several gut 

bacteria in acute colitis model by traditional counting method [117]. Now 16S rRNA-based 

sequencing allows fully identifying and profiling the structure and composition of gut 

microbiota in our study.  
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In this research, we investigated the interplay between dietary resveratrol, gut 

microbiota and chronic colitis in the in vivo model. The resveratrol dose assayed is 

equivalent to 2 mg/kg/day in humans approximately, which is conveniently achievable 

through dietary supplementation. We found that consumed achievable dose of resveratrol 

significantly inhibited colitis by alleviating the loss of body weight, DAI, colon shortening, 

tissue injury and inflammatory cytokine changes induced by DSS treatment. These results 

agree with former researches [3, 116, 117], which suggested that resveratrol exerts an anti-

inflammatory action in DSS-induced colitis and is capable of preventing DSS induced 

colitis.  

Cytokines play a crucial role in driving and mediating intestinal inflammation. The 

severity of IBD is associated with up-regulation of pro-inflammatory cytokines and down-

regulation of anti-inflammatory cytokines. Hence rebalance levels of these cytokines are 

potential therapies to alleviate IBD [112]. As found in ELISA analysis, seven pro-

inflammatory cytokines (GM-CSF, IFN-γ, IL-1β, IL-2, IL-6, KC/GRO, and TNF-α) were 

overrepresented in DSS-treated group as shown in Fig. 10C. TNF-α is one of the most 

effective proinflammatory cytokines in IBD that can directly disrupted epithelial barrier 

and inducted apoptosis in epithelial cells [119]. IFN-γ is an indispensable proinflammatory 

cytokine in the initiation of DSS colitis with pleiotropic functions including stimulation of 

T and natural killer (NK) cells and modulation chemokines [120]. IL-1β signals are 
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required for the development of severe inflammation in both T cell-mediated and T cell-

independent colitis [121]. Over expression of IL-6 can activate the anti-apoptotic genes 

Bcl-xl, leading to the expansion of T-cell, which further induce the chronic intestinal 

inflammation [122]. In line with previous studies, dietary resveratrol significantly 

mitigated the overexpression of TNF-α, IFN-γ, IL-1β and IL-6 in DSS-treated mice (Fig. 

13C) [1, 103, 123]. The precise role of GM-CSF in the pathogenesis of IBD is contradictory 

now. It is believed that production of GM-CSF is related to a delayed neutrophil apoptosis, 

which contributes to the tissue injury in IBD and an increased secretion of GM-CSF has 

been found in mucosal lesions of mouse model and IBD patients [124, 125]. In contrast, 

some studies indicate that GM-CSF plays a protective role in intestinal infection and 

benefits in overcoming bacteria invasion [27]. Here we for the first-time report that dietary 

resveratrol down-regulated the enhanced GM-CSF production in DSS-induced colitis mice 

model (Fig. 13C). KC/GRO is a CXC chemokine also known as chemokine (C-X-C motif) 

ligand 1 (CXCL1). During inflammation, it is involved in neutrophil activation and 

recruitment [126]. It has been reported that the level of CXCL1 in serum is highly 

correlated with the grade of disease in the IBD patients [126]. We firstly indicate here that 

dietary resveratrol inhibited DSS-induced colitis through CXCL1-mediated pathways (Fig. 

13C). IL-2 is discovered as a key cytokine that supports the proliferation and differentiation 

of regulatory T cells. Subsequently, aberrant expression of IL-2 promotes the imbalance 

between effector T cells and regulatory T cells, which leads to multi-organ autoimmune 
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disease and inflammation [127]. We firstly revealed the expanded expression of IL-2 in 

DSS-induced colitis mice model. More meaningful our result showed that dietary 

resveratrol down-regulated IL-2 to the level of control group in DSS-treated mice (Fig. 

13C). In addition, we also evaluated the expression levels of two anti-inflammatory 

cytokines (IL-4 and IL-10) in colonic mucosa. IL-10 exerts its anti-inflammatory property 

by inhibiting pro-inflammatory cytokines such as IL-1, IL-6, IL-12 and TNF-α as well as 

chemokines [128]. In our study the expression changes of IL-10 showed similar pattern 

with other pro-inflammatory cytokines - augmented in DSS group and cut down in DSS-

resveratrol group (Fig. 13C). This result is contradictory with previous study [129]. We 

speculated the possible cause behind this finding is stressful reaction to extremely severe 

inflammation (overexpress of IL-10 to overcome expansion of seven proinflammatory 

cytokines) [130]. Concentration of IL-4 monitored as well. No significant differences 

existed among groups (data not shown). Above results suggested the potent anti-

inflammatory effects of dietary resveratrol via inhibition of pro-inflammatory mediator’s 

production. 

The impact of dietary resveratrol on relative abundance of the predominant taxa in all 

samples was evaluated based on the following criteria: phylum, class, order, family, and 

genus. In accordance with previous research, the dominant bacterial phyla in healthy adults 

are Firmicutes, Bacteroidetes, and Actinobacteria, normally with lower abundances of 
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Verrucomicrobia and Proteobacteria [131]. Consistently, we found that Firmicutes, 

Bacteroidetes and Actinobacteria accounted more than 95% of the whole gut microbial 

composition in control group. While in DSS group, these three phyla only occupied 56.5%. 

At the meantime, Proteobacteria and Verrucomicrobia increased to 41.4% of the gut 

microbial composition in DSS group (Fig. 14C). At the genus level, a lifted proliferation 

of Lactobacillus and Bifidobacterium was observed in resveratrol group, which suggested 

that dietary resveratrol could promote the enrichment of probiotics (Fig. 14D-14F). In fact, 

several studies have demonstrated a protective effect of Lactobacillus and Bifidobacterium 

in DSS-induced colitis, impacting multiply parameters like proinflammatory cytokines and 

oxidative damage [132]. More meaningfully, we found that resveratrol successfully 

restored the frequencies of Bifidobacterim to control level in DSS-treated mice (Fig. 14D-

14F). From other side, dietary resveratrol also improved the dysbiosis of some potential 

pathogens induced by the colitis, such as Akkermansia, Biliphila and Sutterella (Fig. 14D-

14F). Akkermansia is a Gram-negative mucin-degrading bacterium and the only member 

of Verrucomicrobia phylum identified to date [133]. Seregin et al. concluded that 

Akkermansia acted as a pathobiont to promote colitis in a genetically susceptible host under 

the regulation of nod-like receptor 6 (NLRP6) [134]. Moreover, the enrichment of 

Akkermansia has been reported in faeces of mice with DSS-induced colitis and patients 

suffering from colorectal cancer [135, 136]. Biliphila belonging to phylum of 

Proteobacteria is sulfate-reducing bacteria associated with IBD and appendicitis [137]. 
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Sutterella Wadsworthensis (belonging to genus of Sutterella and phylum of Proteobacteria) 

has been suggested could induce inflammation cascades by occupy the mucus layer [138]. 

Our results revealed that dietary resveratrol strikingly reversed these unfavorable changes 

in DSS-treated mice (Fig. 14D-14F). We also observed significantly differences of Dorea 

(belonging to phylum of Firmicutes)) richness among different groups (Fig. 14F). Limited 

researches on Dorea have been published. One clinical study indicated that Dorea 

represented lower level in IBD patients, suggesting Dorea may act as a probiotic [139]. To 

our best knowledge, this is the first time demonstrate that dietary resveratrol alleviated 

microbial community perturbations by selectively restoring the proliferation of probiotics 

and blunting the expansion of potential pathogens in DSS-induced colitis mice model. 

These findings could suggest a possible prebiotic effect of resveratrol on the microbiota, 

which may influence the host metabolism. Nevertheless, the mechanism of how resveratrol 

affects the gut microbiota remains an important field of future research. 

To better understanding the relationship between dietary resveratrol, inflammatory 

cytokines and gut microbiota, we analyzed the correlation between cytokines and gut 

microbiota. As observed in Fig. 15, pro-inflammatory cytokines (GM-CSF, IFN-γ, IL-1β, 

IL-2, IL-6, KC/GRO, and TNF-α) were significantly positively correlated with potential 

pathogenic gut microbiome (Akkermansia, Bilophila, Parabacteroides, Ruminococcus, and 

Sutterella) and negatively correlated with probiotics (Bifidobacterium, Lactobacillus and 
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Roseburia). Positive correlation between TNF-α with family Ruminococcacease and genus 

Parabacteroides, and negative correlation with family Rikenellaceae, family 

Lachnospiracease and genus Lactobacillus were reported in previous studies [140, 141], 

suggesting a crucial role of gut microbiota in TNF-α production [142]. The protective effect 

of Lactobacillus and Bifidobacterium in DSS-induced colitis by modulating 

proinflammatory cytokines has been discussed [132]. Accordingly, we demonstrated their 

positive correlation with anti-inflammatory cytokine IL-4 and negative correlation with 

potential pathogens (Fig. 15). Here we for the first time systematically report the complex 

correlation between inflammation-associated cytokines and gut microbiota abundance in 

DSS-induced colitis model. These results offer a clue to further investigate the causality 

between these two events and illustrate the pathogenesis of IBD. 

In conclusion, our results reinforced the important role of dietary resveratrol (2 

mg/kg/day) as a multitargeted anti-inflammatory compound. The effects of resveratrol on 

DSS-induced colitis and the gut microbiota were clearly revealed, and the complex 

correlation between inflammatory cytokines and gut microbiota was systematically 

displayed. However, whether the anti-inflammatory effects observed are due exclusively 

to the direct resveratrol action or it is also mediated by the gut microbiota deserves further 

investigation. 
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CHAPTER 5 

EFFECTS OF ALTERED GUT MICROBIOTA ON BIOTRANSFORMATION OF 

RESVERATROL  

5.1 Introduction 

Resveratrol is a phytochemical that can be found in variety of foods and plants, such 

as grapes, peanuts, pistachios, berries, and Japanese knotweed [143]. Resveratrol is 

marketed by many nutritional supplement companies due to its wide range of health 

benefits functions. Resveratrol decreased trimethylamine-N-Oxide levels and increased 

hepatic bile acid neosynthesis, thus potentially attenuated atherosclerosis [115]. Fat storage 

was lowered by resveratrol in obesity mice [144]. Resveratrol also exhibited comparable 

beneficial effects with calorie restriction diet on extending the lifespan of mice and 

Caenorhabditis elegans [145, 146]. In addition, resveratrol may act as an anti-

inflammatory and anti-cancer agent [82].  

Though vast amount of data has become available, the biological effects of resveratrol 

and their underlying mechanism are not fully understood yet. This may partially due to the 

knowledge gap of the metabolic fate of resveratrol. Fully elucidating he metabolic route of 

resveratrol is crucial, because the derived metabolites may have significantly different 

chemical, which will lead to different biological characters. Numerous studies have 
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provided consistent information about the conjugation of resveratrol via intestinal and 

hepatic metabolism [5, 70, 93]. Our recent studies emphasized the critical role of microbial 

metabolites of resveratrol: dihydro-resveratrol (DHR) and lunularin (LUN), not only 

because of their high concentration, but also their stronger chemopreventive effects on anti-

inflammation and anti-proliferation (unpublished data) at achieved tissue levels. These 

innovative results driven our attentions from hepatic and small intestinal to microbial 

biotransformation of resveratrol.  

The microbial biotransformation of dietary polyphenols, including ring fission, 

reduction, demethylation, hydrolyzation glycosides, and dihydroxylation, has been well 

described [13, 14]. On the one hand, significantly interindividual differences exist in gut 

microbial composition, which may lead to different microbial transformation patterns of 

polyphenols. As in the case of production of either equol or O-demethylangolensin and 

dihydrodaidzein from daidzein [15]. On the other hand, gut microbiota composition could 

be dramatically altered in various diseases [16]. Previous study indicated that gut 

microbiota diversity and balance between pathogens and probiotic were significantly 

disturbed in DSS-induced colitic mice (unpublished data).  

Given these complex situations, the first step of our current study was to prove that 

gut microbiota was necessary in the production of DHR and LUN by using antibiotic 

treated mice. Then a human study was performed to elucidate the different interindividual 
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routes of resveratrol transformation by gut microbiota. Lastly, we identified, quantified, 

and compared the distribution of DHR and LUN in DSS-treated colitic mice and healthy 

mice, which had vital implications in biological activities of resveratrol.  Overall, our 

current study for the first time systematically discussed the effects of altered gut microbiota 

on the biotransformation of resveratrol and its important implications in biological 

activities of resveratrol, which should be taken into account during investigation of health-

promoting effects of this polyphenol.  

5.2 Materials and Methods 

5.2.1 Materials  

RES (>99% purity) was purchased from Quality Phytochemicals (Edison, NJ, USA).  

Pinostilbene (PIN) (>98% purity) and DHR (>98% purity) were obtained from Yuanye 

Bio-Technology Co., Ltd (Shanghai, China). LUN (>98% purity) was purchased from 

Aikon Biopharma LLC (Nanjing, China). Sulfatase (type H-1, from Helix pomatia, 

containing sulfatase and β-glucuronidase) was obtained from Sigma-Aldrich (St. Louis, 

MO, USA). Acetonitrile (ACN), methanol (MeOH), acetic acid, and ethyl acetate were 

purchased from Fisher Scientific (Fairlawn, NJ, USA). All these solvents are HPLC grade.  

5.2.2 Animals models, diets and treatments 
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The Institutional Animal Care and Use Committee, University of Massachusetts-

Amherst approved all animal experiments performed. Ten male CD-1 mice (6-week old) 

were obtained from Charles River Laboratory (Wilmington, MA, USA). Mice were housed 

individually in a cage and cage bedding was changed two times per day. After one week 

of diet acclimation, all mice receive resveratrol enriched diet, which contained 0.025% 

(w/w) RES in standard AIN93G diet for five days. From day 6, all mice continuously 

received resveratrol enriched diet but drink antibiotic water (AB), which contained broad-

spectrum antibiotics (ampicillin and neomycin) [147]. At the day 10, all mice were 

sacrificed with CO2 asphyxiation. The urine and fecal samples were collected everyday 

with Labsand (Braintree, MA) for further HPLC-MS analysis.  

Twenty male CD-1 mice (6-week old) were obtained from Charles River Laboratory 

(Wilmington, MA, USA). After one week of diet acclimation, mice were randomly divided 

into two groups. Ten mice in RES group fed standard AIN93G diet containing 0.025% 

(w/w) of RES and normal drinking water. The other ten mice in DSS RES group fed 

standard AIN93G diet enriched with 0.025% (w/w) of RES and received 1.5% DSS water 

(wt/v, dextran sulfate sodium salt) (International Lab, Chicago, IL). 1.5% DSS was 

administered in the drinking tap sterilized water ad libitum for 4 days followed by 7 days 

of pure water for recovery, and this cycle was repeated four times. At the end of the fourth 

cycle of DSS treatment, all mice were sacrificed with CO2 asphyxiation. Heart, liver, spleen, 
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lung, kidney, brain, stomach, small intestine (transversely cut equally into four parts), 

cecum, colon and bile were collected and stored at -80°C for further analysis. Blood 

samples were centrifuged at 3 000g for 15 mins at 4°C to collect serum.  

5.2.3 Sample preparation 

Serum, bile and urine samples were extracted according to Menet et al. [93]. Briefly, 

aliquots of samples were vortex-mixed with ten volume of acidified (2.5% acetic acid) 

ACN and stood at ice for 20 min to precipitate the protein. After centrifugation (14000 rpm, 

10min, 4°C), the supernatant was evaporated to dryness using a Speed Vac Concentrator 

(Savant Thermo Fisher Scientific Inc., Agawam, MA). Tissue and fecal samples were 

prepared according to Juan et al. with modifications [67]. Briefly, aliquots of tissues were 

homogenized with 10 volume of MeOH/water/acetic acid (80:20:2.5) solution using a Bead 

Ruptor Homogenizer (Omni International, Kennesaw, GA). The homogenates were then 

centrifuged at 14000 rpm for 5 min. Specially for kidney samples, the homogenate was 

sonicated for 20 min before centrifugation. The residues were extracted one more time and 

combined methanolic layers were evaporated to dryness under vacuum. All sulfated and 

glucuronide metabolites were measured by enzymatic hydrolysis of the processed samples 

with β-glucuronidase and sulfatase as reference described [74]. The internal standard PIN 

(5 μmol/L) was routinely used in all the samples. The dried extractions were reconstituted 

in 50 μL 50% MeOH for further analysis.  
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5.2.4 Sample analysis with HPLC-MS 

The concentration of RES and its metabolites were quantified by using the Shimadzu 

Model 2020 HPLC-MS (Shimadzu, Kyoto). The metabolites were eluted with a Zorbax 

SB-Aq C18 column (Agilent Technologies, Santa Clara, CA, USA) at flow rate of 0.6 

mL/min. Mobile phase A was 5% acetonitrile/water, mobile phase B was 100% acetonitrile. 

Gradient elution started at 15% solvent B, linear gradient from 15 to 70% solvent B over 

18 min, held at 70% B for 3 min, then followed by washing and reconditioning the column. 

The Mass-spectra conditions were optimized at negative electrospray ionization mode, as 

follows: Heat block temperature 400°C, desolvation line temperature 250°C, interface 

voltage -3.5 kv, and drying gas flow 15 L/min. Data acquisition and processing were 

accomplished using Labsolutions Software (Shimadzu).  

5.2.5 Cell viability assay, colony formation assay, nitric oxide assay and anti-oxidant assay 

We adopted various cell models to investigate the multiple biological activities of RES 

and its metabolites at achieved colon tissue levels, including anti-proliferation of cancer 

cells, anti-inflammation, anti-oxidant and anti-colony formation. All cells were purchased 

from American Type Cell Collection (ATCC, Manassa, VA, USA). HT-29 and HCT-116 

were applied to MTT and colony formation assays as described previously to explore the 

anti-proliferative effects [95-97]. Nitric oxide assay (anti-inflammation) were performed 
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according to Guo et al. in RAW264.7 macrophage model [95, 96]. Caco-2 cells based anti-

oxidant assay consulted with previous reference [148]. 

5.2.6 Statistical analysis 

All data were expression as Mean ± standard deviation (SD). The statistical 

significance was assessed by one-way ANOVA with post hoc Tukey HSD test. P value < 

0.05 was considered as statistically significant.  

5.3 Results and discussion 

5.3.1 DHR, LUN and their conjugates absent in antibiotic treated mice 

Walle et al identified DHR as a major metabolite of resveratrol, that was likely 

produced by the intestinal microbiota for the first time [5]. Later, Slackia equolifaciens, 

Adlercreutzia equolifaciens, and Eggerthella lenta ATCC 43055 were identified as DHR 

producers [74, 75]. LUN was identified as a microbial metabolite of resveratrol in an in 

vitro fermentation study by Bode el al firstly, though the responsible producer was not 

identified [74]. These results indicated that the production of DHR and LUN was 

associated with gut microbiota, but still could not exclude the potential involvement of 

enzymes abundant in liver, kidney and upper gastrointestinal tract, like CYP450 [149]. 

Especially, DHR, LUN and their conjugates were detected in the stomach content and 

tissue in mice (unpublished data). Therefore, broad-spectrum antibiotic was used to wash 
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out the gut microbiota in mice in our study. The metabolites of resveratrol were compared 

before and after antibiotic treatments. Previous studies demonstrated that antibiotics 

treatments significantly decreased diversity, richness and evenness of the fecal microbiota 

[150]. Ampicillin and Neomycin were chosen due to their poor absorption in small intestine, 

which resulted in better target to the commensal microbes [151].  

As shown in Fig. 16A, 16C, all mice could metabolize RES to DHR, while only three 

mice could produce DHR before antibiotic treatment. LUN was a minor metabolite in mice 

#2, which only occupied for 4.59% of the total metabolites. While DHR and its conjugates 

account 84.75% of the metabolites in #2 mice (Fig. 16C). In mice #6 and #8, LUN and its 

conjugates accounted over 50% of the metabolites in the urine. These results could attribute 

to the interindividual differences in gut microbiota. In other five mice, RES-conjugates, 

DHR, and DHR-conjugates were major metabolites of RES. Unmetabolized RES taken up 

to 17.9% of the total derivates (Fig. 16C). These results were consistent with our previous 

studies.    

Strikingly, DHR, LUN and their conjugates were totally disappeared after five days 

antibiotic treatment as shown in Fig. 16B. These results for the first time fully demonstrated 

that DHR and LUN are strictly microbial metabolites of resveratrol. The appearance of 

DHR, LUN and their conjugates in the upper GIT and tissues were due to the reabsorption 

of DHR and LUN in large intestine. These findings provided fundamental information in 
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the metabolic pathway of resveratrol after oral consumption in human.  

 

 

Fig. 16 Metabolites of resveratrol before and after antibiotic treatment in the urine. (A) 

Metabolites of resveratrol in the urine before antibiotic treatment. (B) Metabolites of 

resveratrol in the urine after antibiotic treatment. (C) Relative abundance of resveratrol 

metabolites in the urine before antibiotic treatment. 



82 

 

5.3.2 Biotransformation of RES in DSS-induced colitis mice 

We had observed that the anti-inflammatory and anti-proliferative effects of DHR and 

LUN were significantly stronger than RES at the observed colon tissues levels 

(unpublished data). Dramatically gut microbiota alteration was also announced in our 

previous research (unpublished data). Taken all these observations together, we 

hypothesized that altered gut microbiota in DSS-induced colitis mice would change the 

biotransformation of RES in large intestine and further impact its biological activities.  

The concentrations of RES, DHR, LUN and their conjugates in the colon and cecum 

tissues were compared between heathy mice and DSS-treated colitis mice (Fig. 17). Most 

strikingly, LUN and its conjugates were totally deracinated in the cecum and colon tissues 

in the DSS-treated mice (Fig. 17).  It was also noteworthy that the concentrations of RES 

were 34.39 and 6.49 nmol/g, respectively in the cecum and colon tissues in the DSS-treated 

mice, which were much higher than those in the healthy mice (cecum: 4.32 nmol/g; 

colon:1.32 nmol/g). We speculated that the disappeared LUN and increased RES in the 

large intestine in colitic mice may resulted in different biological effects of RES at the site 

of function. The conjugated RES and DHR in the cecum were higher in colitic mice 

compared with healthy mice, which indicated the weaker deconjugation capacity of gut 

microbiota in the cecum in the colitic mice (Fig. 17).  
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Fig. 17 Concentration of RES metabolites in the cecum and colon tissues in the healthy 

mice (A) and colitic mice (B). 

To further confirm the distinguished metabolism patterns in colitic mice vs healthy 

mice. The distribution of RES metabolites in the bile, liver, kidney, and serum were 

analyzed. Generally, LUN and its conjugation remained unshown in the colitic mice (Fig. 

18), which further supported that LUN was produced by gut microbiota. The 

concentrations of all metabolites were lower in colitic mice compared with healthy mice, 

which may due to the lower food intake and/or impaired gastrointestinal absorption 
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function in colitic mice [152, 153].  

DHR and LUN were reabsorbed from large intestine and concentrated in the bile. We 

consistently observed the absence of LUN and its conjugates in the bile in colitic mice (Fig. 

18). In the bile, the concentration of RES-M was as high as 335.23 μmol/L, which was 

much higher than DHR-M (165.80 μmol/L) and LUN-M (174.66 μmol/L) in healthy mice.  

Among these, quiet amount of unmetabolized RES (10.23 μmol/L), DHR (49.69 μmol/L), 

and LUN (52.07 μmol/L) were observed in healthy mice (Fig. 20). While, in the colitic 

mice RES-M was apparently lower than DHR-M, which may due to the lower food intake 

and/or impaired small and large intestinal function in colitic mice [152, 153]. The 

concentrated DHR and LUN further entered in to the enterohepatic circulation and 

underwent extensive phase II metabolism.  

In the serum, no free formed metabolites were detected in both colitic mice and 

healthy mice. Patel and Brown fed mice with RES-3-O-sulfate and RES-4’-O-sulfate 

proved that conjugated metabolites served as an intracellular pool in the body from which 

RES could be regenerated locally, this could be the same case for DHR and LUN [83]. 

Thus, in the liver and kidney, free formed DHR and LUN were observed. Especially, in 

the kidney free-formed metabolites accounted 67.36% of the total metabolites in healthy 

mice. Our previous study indicated that at the achieved tissue levels, free formed DHR and 

LUN exhibited stronger anti-cancer effects than RES alone in the renal carcinoma cell lines. 
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The lower concentration of free-formed RES and DHR in the kidney in colitic mice may 

compromised these heathy benefits.  

 

Fig. 18 The distribution of RES metabolites in the bile, liver, kidney, and serum in the 

colitic mice vs healthy mice. 

5.3.4 Stronger chemopreventative effects of RES metabolites at concentrations equivalent 

to that found in the colon tissues in the colitic mice vs healthy mice 

we found that DHR, LUN and their combination exerted much stronger chemo-

preventive and anti-inflammatory effects in the colonic tissues, at their concentrations 

achieved in the tissues, suggesting that DHR and LUN may greatly contribute to the 

chemopreventive properties elicited by RES in the colon.  Meanwhile, above data 

indicated that LUN and its metabolites were disappeared in the DSS-treated mice 
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due to the altered gut microbiota. These preliminary data guaranteed the further 

investigations on chemopreventative effects of RES metabolites at the tissue 

relevant levels in the colitic mice. To establish the protective effects of RES and its 

metabolites in a physiologically relevant manner, we deliberately used the concentrations 

measured in the colonic tissues to determine their bioactivities.   

To establish the anti-colitis and anti-colon cancer effects of DHR and LUN in a 

physiologically relevant manner, we determined their inhibitory effects on two widely used 

human colon cancer cell lines (HCT-116 and HT-29) at the concentrations found in the 

mouse colonic tissues. Treatment of 1× stood for concentrations measured in the colonic 

tissue, that was combinations of 1.32 nmol/g of RES, 37.96 nmol/g of DHR and 38.89 

nmol/g of LUN in the healthy mice or 22.07 nmol/g of RES and 41.53 nmol/g of DHR in 

the DSS-treated mice (Fig. 19A). Generally, RES metabolites at the concentrations equal 

to that found in the colitic mice exhibited stronger anti-inflammation and anti-proliferation 

abilities than that found in the healthy mice (Fig. 19 B-D), which explained the anti-colitis 

effects of resveratrol supplementation in DSS-induced colitis mice (unpublished data).  

LPS-stimulated RAW 264.7 macrophages were used to determine the anti-

inflammatory potency of RES metabolites. RES metabolites at concentrations equivalent 

to that in the healthy mice showed a tendency to suppress the production of NO (an 

important inflammatory mediator). While, the inhibitory effects of RES metabolites at  
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Fig. 19 Chemopreventative effects of RES metabolites in the DSS-treated mice vs healthy 

mice. (A) Concentrations of RES metabolites in the colonic tissue in healthy mice vs colitic 

mice. (B) Percentage of inhibition on NO production by RES metabolites in LPS-

stimulated RAW 264.7 cells. (C) Growth inhibitory effects of RES metabolites on HCT-

116 cancer cell line. (D) Anti-proliferative effects of RES metabolites on HT-29 cancer cell 

line. Data presented as mean ± SD (n=3). Statistical differences were indicated as: *, P < 
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0 .05; **, P < 0.01.  

concentrations relevant to that in the colitic mice increased by 12.2, 9.59, 11.44, and 14.08% 

at 0.5, 0.75, 1 and 1.5×, respectively, compared with healthy mice (P < 0.05) (Fig. 19).  

In addition, HCT-116 and HT-29 cell lines were subjected to a series of 

treatments. Generally, HCT-116 cell line was more vulnerable than HT-29 upon the 

treatments of RES metabolites. For example, RES metabolites at the healthy mice 

relevant levels of 1× suppressed 16.95 and 1.86 % of the growth of HCT-116 cell lines 

vs HT-29 cell lines (Fig. 19C, 19D). While at the concentrations equal to that found in 

tDSS-treated mice in the colonic tissue, 26.80 and 13.83% of HCT-116 and HT-29 cells 

were suppressed (Fig. 19C, 19D). The stronger chemopreventative effects of RES 

metabolites at concentrations relevant to that found in the colitic mice than that observed 

in healthy mice may due to the higher concentration of RES in the colitic mice. Our 

previous study demonstrated that RES exhibited stronger chemopreventative effects 

than DHR and LUN at the same concentrations (supplementary figures Fig. S3). These 

results provided a vital scientific basis for understanding the chemopreventative 

mechanisms of RES from the perspective of biotransformation of RES by gut microbiota.  

5.4 Conclusion 

In current study, we systematically and deeply discussed the complex relations 
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among gut microbiota, RES biotransformation and biological activities of RES. The study 

for the first time fully demonstrated that gut microbiota mediated metabolism was the only 

way to bio-transformed RES to DHR and LUN in vivo. Our results further indicated the 

important role of gut microbiota in the pronounced interindividual variations in 

biotransformation of RES. RES in LUN non-producers may have higher bioavailability 

due to the lower urine excretion.  We also firstly reported that in the colitic mice LUN and 

its conjugates were extinct due to the altered gut microbiota compositions and structures. 

More meaningfully, we found that RES metabolites at the concentrations equivalent to that 

observed in the colonic tissues in colitic mice exhibited significantly stronger 

chemopreventative effects than that observed in the healthy mice. These results suggested 

that absence of LUN may resulted in stronger biological activities of RES. Overall, our 

finding provided comprehensive scientific knowledge on the interactions between gut 

microbiota and RES metabolism, and its implications in the biological activities of RES. 
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CHAPTER 6 

CONCLUDING REMARKS 

Over 1 million residents in the USA are estimated to be suffering from 

inflammatory bowel disease, which include Crohn’s disease and ulcerative colitis. One of 

the most important and devastating complications of long-term IBD is colorectal cancer 

development. Epidemiological evidences suggested that diet enriched with fruits and 

vegetables were strongly associated with lower cancer occurrence. Resveratrol has 

attracted much scientific attentions because of its potentially beneficial effects on 

numerous disorders, including colon inflammation and colon cancer.  

The present dissertation for the first time systemically determined the 

biotransformation of RES in mice, with focuses on its metabolic fate in the GIT. Our results 

demonstrated that DHR, LUN and their corresponding conjugates were dominated 

metabolites of RES after sustained oral consumption of RES, rather than RES-sulfates and 

RES-glucuronides. More importantly, we found that DHR, LUN and their combination 

exerted much stronger chemo-preventive and anti-inflammatory effects in the renal and 

colonic tissues, at their concentrations achieved in these tissues, suggesting that DHR and 

LUN may greatly contribute to the chemopreventive properties elicited by RES in the 

kidney and colon.  
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Accumulating evidence indicated that gut microbiota plays important roles in the 

pathogenesis of colitis, and microbiota composition could be modulated by dietary 

components. Herein, we determined the effects of resveratrol on gut microbiota and their 

implication in anti-colonic inflammation in mice with colitis induced by dextran sodium 

sulfate (DSS). Our results reinforce the protective effects of resveratrol in intestinal 

inflammation by alleviating the body weight loss, reducing the disease activity index, 

attenuating tissue damage and modulating inflammatory cytokines. Moreover, dietary 

resveratrol restored the microbial richness and evenness in DSS-treated mice. 

The complex relations among gut microbiota, RES biotransformation and 

biological activities of RES were deeply discussed. Our results demonstrated that gut 

microbiota mediated metabolism was the only way to bio-transformed RES to DHR and 

LUN in vivo. Gut microbiota played an important role in the pronounced interindividual 

variations in biotransformation of RES. RES in LUN non-producers may have higher 

bioavailability due to the lower urine excretion.  We also firstly reported here that in the 

colitic mice LUN and its conjugates were extinct due to the altered gut microbiota 

compositions and structures. More meaningfully, we found that RES metabolites at the 

concentrations equivalent to that observed in the colonic tissues in colitic mice exhibited 

significantly stronger chemopreventative effects than that observed in the healthy mice. 

These results suggested that absence of LUN may resulted in stronger biological activities 
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of RES. Overall, the findings presented in this dissertation provided a solid scientific basis 

for understanding the chemopreventive mechanisms of RES from the perspective of 

biotransformation and are of great value for future research on RES in prevention and 

treatment of colonic diseases in humans. 
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APPENDIX 

THE FIGURES 

 

 

Fig. 20 Mass spectra of RES metabolites at negative mode. 
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Fig. 21 Anti-proliferative effects of RES, DHR and LUN on normal human colon CCD-

18Co cell lines. 

 

Fig. 22 Percentage of inhibition on NO production by RES, DHR, LUN in LPS-stimulated 

RAW 264.7 cells at concentrations of 10 μM, 20 μM, and 40 μM. 
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