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Abstract

For a nontrivial connected graph G, a non-empty set S ⊆ V (G) is a bipartite dominating set of graph G, if
the subgraph G[S] induced by S is bipartite and for every vertex not in S is dominated by any vertex in S.
The bipartite domination number denoted by γbip(G) of graph G is the minimum cardinality of a bipartite
dominating set G. In this paper, we determine the exact bipartite domination number of a crown graph and
its mycielski graph as well as the bipartite domination number of the mycielski graph of path and cycle graphs.
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1 Introduction

One of the fast-developing fields in graph theory is the study of domination and its related topics. For instance,
Bachstein et al.,[1] published a study about the bipartite domination in graphs, and they introduced and defined
the concept of bipartite dominating set and bipartite domination number. They investigated the case that S
must induce a bipartite subgraph. Their idea about the bipartite domination came from the published study
entitled ”Bipartite domination and simultaneous matroid covers” [2].

Recently, we published a new parameter in bipartite domination in graphs entitled Bipartite Domination in
Some Classes of Graphs [3], which was inspired by the work of Bachstein et al.,[1]. It presented new approach in
finding the minimum cardinality of a bipartite dominating sets of path and cycle graphs via congruence modulo.
Moreover, possible exact values of the bipartite domination number of some classes of graph are generated.

In this paper, we extended the study of the bipartite domination number in crown graph up to its mycielski
graph, including the mycielski graph of path and cycle.

2 Preliminary Notes

Some definitions of the concepts covered in this study are included below. You may refer on the remaining terms
and definitions in [1], [4], [5], [6], [3], [7].

Definition 2.1. [8] (Total Dominating Set, Total Domination number) A setD ⊆ V is a total dominating
set if every vertex v ∈ V has, at least, a neighbor in D. The total domination number, denoted by γt(G), is the
minimum cardinality among all total dominating sets.

Example 2.1. Consider the cycle graph C5 below.

v1

v2

v3v4

v5C5 :

In the cycle graph illustrated above, the set T = {v2, v3, v4} is a total dominating set and that T is the minimum
total domination number of C5. Thus, γt(C5) = 3.

Definition 2.2. [4] A graph G = (V (G), E(G)) is bipartite if V (G) can be partitioned into two sets U and W
(called partite sets) so that every edge of G joins a vertex of U and a vertex of W .

In this study, we preserved the uniqueness of the partitioning of the bipartite graph, which means that we only
consider the bipartite graph with no isolated vertices.

Definition 2.3. [5] ((Mycielski Graph) Consider a graph G with V (G) = {v1, v2, v3, ..., vn}. Apply the
following steps to the graph G:

i. Take the set of new vertices U = {u1, u2, u3, ..., un} and add edges from each vertex ui of U to the vertices
vj if the corresponding vertex vi is adjacent to vj in G.

ii. Take another new vertex w0 and add edges joining each element in U .

Here, the new graph obtained is the Mycielski graph, denoted by µ(G) of graph G.
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By the definition of Mycielski Graph, its vertex set can be express as follows:

V (µ(G)) = V (G) ∪ G′ ∪ {w0}

where G′ is the set of vertices that are vertex copy of each vertices in G and the set {w0} for which degµ(G)(w0)
= n− 1 for |G| = n. Also, if ∅ 6= S ⊆ V (G) then S′ ⊆ G′ where S′ is the set of vertex that are vertex copy of
each vertex in S.

Example 2.2. Consider the mycielski graph of a path graph P4 below:

u1 u2 u3 u4

v1 v2 v3 v4

w0

µ(P4) :

Observe that V (µ(P4)) = V (P4) ∪ P ′ ∪ {w0} where V (P4) = {u1, u2, u3, u4} and P ′ = {v1, v2, v3, v4}.

Definition 2.4. [5] (Crown Graph) A crown graph G(n, n) is a graph on 2n vertices with two sets of vertices
ui and vj and with an edge from ui to vj whenever i 6= j.

By the definition of Crown Graph, we can observe the following:

V (G(n, n)) = V (X) ∪ V (Y )

such that X and Y are a partite set with |X| = n = |Y |.

Example 2.3. Consider the crown graph G(5, 5) below:

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

G(5, 5) :

Notice that V (G(5, 5)) = X ∪ Y where X = {u1, u2, u3, u4, u5} and Y = {v1, v2, v3, v4, v5}.

Definition 2.5. [3] (Bipartite Dominating Set, Bipartite Domination number)

A dominating set S of a graph G is a bipartite dominating set if the induced subgraph S, G[S], is bipartite graph.
The minimum cardinality of a bipartite dominating set is called bipartite domination number of G, denoted by
γbip(G). A nonempty set S ⊆ V (G) whose cardinality is the γbip(G) is called γbip-set of G.

Example 2.4. Consider the graph G below.
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v1

v2

v3v4

v5

v3

v2 v4

v2

v3

G :

G[B1] : G[B2] :

The possible bipartite dominating sets for the graph G are B1 = {v2, v3, v4} and B2 = {v2, v3}, where B1 can be
partitioned into partite sets U = {v3} and W = {v2, v4}, and B2 can be partitioned into partite sets U = {v2}
and W = {v3}. Notice that B2 consist the minimum cardinality of a bipartite dominating set. Thus, γbip = 2.

The following known result characterized the bipartite graph and will be used in the succeeding results.

Theorem. [9] A graph G is a bipartite graph if and only if it is 2-colorable.

3 Main Results

In this section, the bipartite domination number of crown graph and Mycielski graph of path graph, cycle graph,
and crown graph are determined[10-17].

3.1 Bipartite Domination Number of a Crown Graph, G(n, n) and its Mycielski
Graph, µ(G(n, n))

Theorem 3.1. Let G(n, n) be a crown graph with V (G(n, n)) = V (X) ∪ V (Y ) as define. Then B ⊆ V (G(n, n))
is a bipartite dominating set if and only if B = B1 ∪ B2 where B1 ⊆ V (X) and B2 ⊆ V (Y ) such that |B1| ≥ 2
and |B1| ≥ 2.

Proof. Suppose B is a bipartite dominating set of V (G(n, n)). Let B = B1 ∪ B2 ⊆ V (G(n, n)) where B1 ⊆ V (X)
and B2 ⊆ V (Y ). If |B1| < 2 and |B2| < 2, then B is either a dominating set and G(n, n)[B] is not a bipartite
graph or G(n, n)[B] is a bipartite graph and B is not a dominating set. Hence, in both cases, B is not a
bipartite dominating set. A contradiction to the assumption that B is a bipartite dominating set of G(n, n).
Thus, |B1| ≥ 2 and |B2| ≥ 2.

Conversely, suppose B = B1 ∪ B2 ⊆ V (G(n, n)) where B1 ⊆ V (X) and B2 ⊆ V (Y ) such that |B1| ≥ 2 and
|B1| ≥ 2. Then, N [B] = N [B1] ∪ N [B2] = X ∪ Y = V (G(n, n)). Thus, B is a dominating set in G(n, n).
Figuratively, one can easily see that G(n, n)[B] is a bipartite graph. Thus, B is a bipartite dominating set in
G(n, n).

�

Corollary 3.2. For the crown graph G(n, n) the γbip(G(n, n)) = 4.

Proof. This is immediate from Theorem 3.1, by setting |B1| = 2 and |B2| = 2.
�
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To illustrate the above results, we have the following example.

Example 3.5: Consider the crown graph G(6, 6) below:

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 u7

G(6, 6) :

Observe that V (G(6, 6)) = X ∪ Y where X = {u1, u2, u3, u4, u5, u6} and Y = {v1, v2, v3, v4, v5, v6}. By setting
|B1| = 2 and |B2| = 2 where B1 ⊆ V (X) and B2 ⊆ V (Y ). In this case, B = B1 ∪ B2 such that B1 = {u3, u4}
and B2 = {v3, v4}. It can be easily seen that

N [B] = N [B1] ∪N [B2]

= {v1, v2, v3, v4, v5, v6} ∪ {u3, u4} ∪ {u1, u2, u3, u4, u5, u6} ∪ {v3, v4}
= V (G(6, 6)).

Thus, B is dominating set. Now, it can be seen that G(6, 6)[B] is a bipartite graph, shown below:

u3 u4

v3 v4

G[B] :

Hence, B is a bipartite dominating set of G(6, 6) and that B is the minimum bipartite domination number of
G(6, 6). Thus, γbip(G(6, 6)) = 4.

Theorem 3.3. Let G(n, n) be a crown graph and B ⊆ V (G(n, n)) be a bipartite dominating set of G(n, n).
Then, the set B′ ∪ {w0} is a bipartite dominating set of µ(G(n, n)).

Proof. Let B ⊆ V (G(n, n)) be a bipartite dominating set of G(n, n). Set S ⊆ V (µ(G(n, n))) to be S = B′∪{w0}.
Then,

N [S] = N [B′] ∪N [{w0}]
= [B′ ∪ V (G(n, n)) ∪ {x}] ∪ [G′(n, n) ∪ {w0}]
= V (G(n, n)) ∪G′(n, n) ∪ {w0}
= V (µ(G(n, n))).

Thus, S = B′ ∪ {w0} is a dominating set of µ(G(n, n)). Clearly, µ(G(n, n))[S] = µ(G(n, n))[B′ ∪ {w0}] is a
bipartite graph. Hence, S is bipartite dominating set of µ(G(n, n)).

�

The next results show the bipartite dominating set in the Mycielski graph of the crown graph and its bipartite
domination number.

Theorem 3.4. Let G(n, n) be a crown graph. Then, γbip(µ(G(n, n))) = 5.

Proof. Let B ⊆ V (G(n, n)) be the minimum bipartite dominating set of G(n, n) and let S0 be the γbip − set of
µ(G(n, n)). Choose S = B′ ∪ {w0}. Then, by Theorem 3.4, S is a bipartite dominating set. Thus, |S0| ≤ |S| =
|B′ ∪ {w0}| = |B′|+ |{w0}| = 4 + 1 = 5. It remains to show that |S0| ≥ |S|.
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On the contrary, suppose |S0| < 5. Then, either S0 is a dominating set of µ(G(n, n)) or not a dominating set
of µ(G(n, n)). If S0 is not a dominating set of µ(G(n, n)), then we are done. Now, suppose S0 is a dominating
set. Then, µ(G(n, n))[S0] is either 1-colorable or 2-colorable. If µ(G(n, n))[S0] is 1-colorable then µ(G(n, n))[S0]
is not a bipartite graph. Now, if µ(G(n, n))[S0] is 2-colorable, then µ(G(n, n))[S0] contains isolated vertices.
Hence, the uniqueness of the partitioning is not satisfied. Thus, µ(G(n, n))[S0] is not a bipartite graph and that
S0 is not a bipartite dominating set of µ(G(n, n)). Hence, |S0| ≥ 5 = |S|. Therefore, γbip(µ(G(n, n))) = |S0| = 5.

�

3.2 Bipartite Domination Number of the Mycielski Graph of Path and Cycle
Graph

Theorem 3.5. Let G be a graph with ∆(G) = 2. If ∅ 6= S ⊆ V (G) is a total dominating set of V (G). Then
the set S′ ∪ {w0} = B ⊆ V (µ(G)) is a bipartite dominating set of µ(G).

Proof. Let S ⊆ V (G) be a total dominating set in G and let S′ be the copy of S in G′. Suppose B = S′∪{w0} ⊆
V (G). Then,

N [B] = N [S′ ∪ {w0}]
= Nµ(G)[S

′] ∪Nµ(G)[{w0}]
= (S′ ∪ {w0} ∪ V (G)) ∪ ({w0} ∪G′)

= V (G) ∪G′ ∪ {w0}
= V (µ(G)).

Thus, B is a dominating set. Clearly, µ(G)[B] is a bipartite graph. Therefore, B is a bipartite dominating set
of µ(G).

�

In [8], we have the following results for the total domination number which will be used in the next result.

Theorem 2.9.[8] For n ≥ 3, γt(Pn) = γt(Cn) = bn
2
c+ dn

4
e − bn

4
c. In other words,

γt(Pn) = γt(Cn) =



n
2

if n ≡ 0 (mod 4)

n+1
2

if n ≡ 1, 3 (mod 4)

n+2
2

if n ≡ 2 (mod 4)

Theorem 3.6. Let Pn and Cm be the path graph and cycle graph, respectively, with n ≥ 2 and m ≥ 3. Then,

γbip(µ(Pn)) = γbip(µ(Cm)) =



n+2
2

if n ≡ 0 (mod 4)

n+3
2

if n ≡ 1, 3 (mod 4)

n+4
2

if n ≡ 2 (mod 4)

Proof. For the Path graph Pn. Let V (Pn) = {v1, ..., vn}. Then, V (µ(Pn)) = V (Pn)∪ P ′ ∪ {w0} where P ′ is the
set of vertices that are vertex copy of each vertex in Pn. Let B ⊆ V (µ(Pn)) be γbip-set of µ(Pn). Suppose S is
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a γt-set of Pn. Then, by Theorem 3.5, B0 = S′ ∪ {w0} is a bipartite dominating set of µ(Pn). Thus, |B| ≤ |B0|.
By Theorem 2.9 [8],

|B| ≤ |B0| = |S′|+ |{w0}| = γt(Pn) + 1 =



n+2
2

if n ≡ 0 (mod 4)

n+3
2

if n ≡ 1, 3 (mod 4)

n+4
2

if n ≡ 2 (mod 4)

To show that |B| ≥ |B0|. Suppose |B| < |B0|. Then, either B is a dominating set of µ(Pn) or not a dominating
set of µ(Pn). If B is not a dominating set of µ(Pn) we are done. Now, suppose B is a dominating set, then
µ(Pn)[B] is a 1-colorable graph. Thus, µ(Pn)[B] is not a bipartite graph. Hence, B is not a bipartite dominating
set. A contradiction to the assumption at B. Hence, |B| ≥ |B0|. Therefore,

γbip(Pn) = |B| = |B0| =



n+2
2

if n ≡ 0 (mod 4)

n+3
2

if n ≡ 1, 3 (mod 4)

n+4
2

if n ≡ 2 (mod 4)

Similarly, for the Cycle graph Cm, m ≥ 3.

�

To illustrate Theorem 3.6, we have the following examples.

Example 3.6. Consider the following Mycielski graph of path graph µ(Pn).

For n ≡ 0(mod 4), choose µ(P4), illustrated below.

u1 u2 u3 u4

u′
1 u′

2 u′
3 u′

4

w0

u′
2

w0

u′
3

µ(P4) : µ(P4)[A] :

The set A = {u′
2, u

′
3, w0} ⊆ µ(P4). Clearly, µ(P4)[A] is a bipartite graph of µ(P4). Thus, A is a bipartite

dominating set and also the minimum bipartite dominating set in µ(P4). Hence, γbipµ(P4) = |A| = 4
2

+ 1 = 3.

For n ≡ 1(mod 4), choose µ(P5), illustrated below.
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u1 u2 u3 u4 u5

u′
1 u′

2 u′
3 u′

4 u′
5

w0

u′
2

w0

u′
4u′

3

µ(P5) : µ(P5)[B] :

The set B = {u′
2, u

′
3, u

′
4w0} ⊆ µ(P5). Clearly, µ(P5)[B] is a bipartite graph of µ(P5). Thus, B is a bipartite

dominating set and also the minimum bipartite dominating set µ(P5). Hence, γbipµ(P5) = |B| = 5+1
2

+ 1 = 4.

For n ≡ 3(mod 4), choose µ(P7), illustrated below.

u1 u2 u3 u4 u5 u6 u7

u′
1 u′

2 u′
3 u′

4 u′
5 u′

6 u′
7

w0

u′
3

w0

u′
5u′

4u′
2

µ(P7) : µ(P7)[C] :

The set C = {u′
2, u

′
3, u

′
4, u

′
5, w0} ⊆ µ(P7). Clearly, µ(P7)[C] is a bipartite graph of µ(P7). Thus, C is a bipartite

dominating set and also the minimum bipartite dominating set µ(P7). Hence, γbipµ(P7) = |C| = 7+1
2

+ 1 = 5.

For n ≡ 2(mod 4), choose µ(P6), illustrated below.

u1 u2 u3 u4 u5 u6

u′
1 u′

2 u′
3 u′

4 u′
5 u′

6

w0

u′
2

w0

u′
6u′

5u′
1

µ(P6) : µ(P6)[D] :

The set D = {u′
1, u

′
2, u

′
5, u

′
6, w0} ⊆ µ(P6). Clearly, µ(P6)[D] is a bipartite graph of µ(P6). Thus, D is a bipartite

dominating set and also the minimum bipartite dominating set µ(P6). Hence, γbipµ(P6) = |D| = 6+2
2

+ 1 = 5.

4 Conclusion

This paper presents the findings of the bipartite domination number for both crown graph and its Mycielski
graph, as well as the Mycielski graph of path and cycle graphs. Additionally, the necessary conditions for a
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bipartite dominating set on these graphs have been obtained. Moving forward, there is ample opportunity for
further investigation into various graph families in conjunction with their corresponding Myscielski graph. It
would be intriguing to explore additional results in this area.
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