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Abstract

This paper proposes a model called the gravity-

compensated inverted pendulum mode (G CIPM) to gener-

ate a biped locomotion pattern that is similar to the one

generated by the linear inverted pendulum mode, but ac-

commodates the free leg dynamics based upon its predeter-

mined trajectory. When the biped locomotion based upon

the linear inverted pendulum mode is applied to real biped
robots, the stability of the robot is disturbed due to the fact

that the neglected dynamics offree legs is not actually neg-

ligible, moving the Zh4P (zero moment point) away from

the presumed jixed point. The GCIPM includes the effect

of the dynamics of the free leg in a simple manne~ This pa-

per also presents a control method for biped robots based

upon the computed torque. Simulation results show that the

biped robot is more stable with the walking pattern gener-

ated by the proposed method combined with the controller

than with the one by the inverted pendulum mode.

1 Introduction

In the area of biped robot walking control, one of the
most important research areas is the design of reference

motions of biped robots. One of the methods to gen-
erate dynamic walking pattern for biped robots was pro-

posed [1, 2] based upon so-called the ZMP-equation. How-
ever, since this method solves all the dynamic equations

with some assumptions, it is complicated and thus demand-
ing a substantial computing power of the controller to im-
plement. A simpler method called the linear inverted pen-

dulum mode was also proposed by Kajita and Tani [3, 4].
This method is usually used to generate reference motions
since they are very similar to the human biped locomotion.

It generates the reference motion of the base link under the

assumption that all the masses of the entire biped robot sys-

tem are concentrated at the CG (center of gravity) point of
the base link and that the ground exerts a pushing force
but not a moment at the center of the foot in contact with
it. From the reference motion trajectory of the base, the
trajectories of all the joints of the supporting leg can be
generated.

However, when the trajectory generated by the inverted

pendulum mode is applied to a real biped robot whose legs
have nonzero masses and moments of inertia, the ZMP
(zero moment point) moves away from the presumed fixed
point and the stability of the biped robot is badly compro-
mised by the neglected dynamics of free leg motions [5].
Therefore, we propose a new method called the gravity-
compensated inverted pendulum mode (GCIPM) to design
reference motions of biped robots based on the linear in-
verted pendulum mode, but including the effect the free

leg motion dynamics. This method assumes that the biped
robot consists of two different masses instead of a single
mass as in the inverted pendulum mode. One mass is for

both the base link and the supporting leg, and the other is
for the free leg. By separating the two masses, more “pre-
cise” locomotion can be generated. Since this method as-
sumes that the gravity of the free leg is the most dominant
in its dynamic equation, a simple trajectory of the base link
in a closed form is obtained as in the case of the inverted
pendulum mode.

In Section 2, the dynamic model of the biped robot

is formulated. Section 3 describes the GCIPM and its

application to the design of the reference motion of the
biped robot. Section 4 explains the servo controller design
method based upon the computed torque control method.
In Section 5, the computer simulations of a 7-link biped
robot to compare the performance of the proposed GCIPM
and the linear inverted pendulum mode are explained with

their results. We finally summarize conclusions in Section

6.
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Figure 1: A 7-link biped robot and its coordinates.

2 The Model of Biped Robot

Biped robots have a structure of multiple closed-chain
mechanism. Figure 1 shows the 7-link biped robot used

in this paper, The base coordinate frame is attached to

the moving base link, link O, of the robot [6] rather than
fixed to the ground as the Newtonian frame. The Denavit-

Hartenberg notation is used to describe the kinematics of
the biped robot.

The direct dynamic model of the multiple closed chain
mechanism [6] can be simply extended from a single open
chain mechanism [7]. First, the dynamic equation for the
left and right legs is

where Te, ~r E lR3 are the joint torque vectors for the legs,

qe, qr c R3 me the joint angle vectors, Ht, H, E R3 are
the inertia matrices, w E ~ is the acceleration of the base
link, Nt, N. E R3 are the terms related to the Coriolis
and centripetal accelerations, and the gravity for the links,
and fl, fr E IR3are the external reaction force and moment
vectors from the ground to the feet of the robot. Subscript
’1’ and ‘r-’ denote the left and right leg links and subscript
‘O’ represents the base link (link O).

The couplings among the motions of the left and the

right leg, and the motion of the base link can be expressed
by

[1
o = [Q/ Qr] ~ +Rao+S

[1
+ [Pt p.] ~ . (2)

x

Figure 2: The simple biped robot model to generate a loco-
motion by GCIPM consists of 2 masses.

The kinematic constraint that the foot of the supporting
leg is in contact with the ground is expressed by

O = A,q$ + B3a0 + C.. (3)

All the parameters used in Eq. (1), (2) and (3) can be
computed analytically or numerically. In this paper, they
are numerically computed using the Newton-Euler inverse
dynamics [8].

3 Reference Motion Design of Biped Robot

3.1 Gravity-Compensated Inverted Pendulum
Mode (GCIPM)

The biped locomotion generated by the linear inverted
pendulum mode and a fixed ZMP results in large move-
ments of the ZMP. The range of the ZMP movements de-
termines the degree of the stability of the biped robot. Such
movements of the ZMP is due to the approximation that
all the masses are concentrated at a single point of the
base link. However, all the links have a nonzero mass and
therefore their dynamics influences the motion of the biped
robot. Especially, the disturbance due to the dynamics of
the free leg with nonzero mass significantly disturbs the

balance in the sagittal plane due to its mass and dynamic
motion, and thus moves the ZMP around.

In the GCIPM that we propose in this paper, the biped
robot is considered to be divided into two parts: the free leg
and the rest of the body. By having a slightly more detailed
model of the robot, i.e., two separate parts rather than a sin-
gle mass as in the inverted pendulum mode, more accurate
motion can be applied for higher stability. The GCIPM as-

sumes that the mass of the free leg is concentrated at its foot

and that the mass of the rest of the body is concentrated at
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the base link as in the inverted pendulum mode. Figure 2
shows a simple biped robot model for the GCIPM, which
consists of two parts. In this figure, A4 is the mass of the
biped robot excluding the free leg and m is the mass of the
free leg. From this model, we can easily derive the moment
equation about the ZMP.

Px(MP)= –px(mp)+Px(Mg)+p x(mg)

(4)

where P = [X Y Z]~, p = [z y Z]T, and g =

[0 O – g]~, representing the gravity vector.

In this paper, only the biped motion in the sagittal plane
is considered. Assuming that Y = y = O and Z = HZ =

constant (the height of base link from the ground) and con-
sidering the Y-directional components in Eq. (4),

x – W2X = F(t) (5)

where F’(t) = ~(gz + zx – z2), u = ~ and /3 =
m/MfHZ.

Term B’(t) represents the effect of the free leg dynam-
ics on the CG motion. If the trajectory of the free leg is
known, its influence to the rest of the body and therefore
the inverted pendulum motion of the CG of biped robot can
be computed.

Thus, the trajectory of the free leg (more precisely its
foot) should be decided first. The GCIPM does not assume

a particular set of trajectories for the foot of the free leg. In
this paper, a trajectory that is parabolic in the zz–plane is
used for the foot of the free leg, which is represented by

z(t) = –s Cos(LJft) for O<t <7’ (6)

hf
z(t) = ~ [1 – Cos (2uft)] for O<t<T (7)

where S is the stride, hf is the maximum foot height, T is
the one step period, and the stride frequency wf = TIT.

An example of the foot motion of the free leg with T = 1s,
S = 0.2m and hf = O.lm is shown in Fig. 3.

In addition, if we select T and hf such that hf w; <<g,
F(t) in Eq. (5) becomes a simple function

F(t) = -~gs Cos(uf t) (8)

which means that the dynamics of the free leg is dominated

by its gravity term. Then, the solution of Eq. (5) is

X(t) = Clewt + Cje-wt + q cos(uf t) (9)
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Figure 3: The foot motion of the free leg.

where

(
c1 = ; x(o)+ :x(o) - q

)

(C2= : x(o) - :x(o) -r) )

Variable X(0) and X(0) are the initial position and the ini-
tial velocity, respectively, of the CG of the biped robot.

Notice that from the above GCIPM solution, the mode
is rightly the linear inverted pendulum mode if the free leg
mass m is zero.

3.2 RepeatabilityConditions

For the biped robot to have steady and repeatable walk-
ing pattern, the following repeatability condition should be
satisfied.

X(0) = -X(T) and X(0) = X(T). (lo)

From this, the initial velocity of the CG can be found.

x(o) = +J (x(o) - q)u. (11)

4 Servo Controller Design

Different servo controllers for the left and the right legs
are used based upon the computed torque. For the free (un-
constrained) leg, the computed torque controller is used in a

similar manner to ones for robot manipulators; and for the
supporting (constrained) leg, the controller uses the com-

puted torque so that the error dynamics of the base link

position rather than joint angles becomes stable.
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Since different controllers are used depending whether
alegis ‘free’ or’supporting’, subscript ‘f’ and ‘s’ are used
to denote the free and the supporting legs, respectively, in
the rest of the paper.

4.1 Free Leg Joint Servo Controller

In the case of a single support phase, the free leg is con-
sidered as a robot manipulator. Therefore, the computed
torque joint control law [9] is used for the free leg.

Since the free leg is not in contact with the environment,
the ground force ff is zero. Thus the free leg dynamics in
Eq. (1) can be expressed as

-rf = Hjqf + KfW + Nf. (12)

We can control the free leg to tracking the reference joint
trajectory which is obtained from the reference motion of
CG, the reference motion of free leg tip and numerical in-
verse kinematics [10] of that chain. After all, the free leg
control input torque is calculated from the following equa-
tion.

rj = Hj(qj –Uj) +Kf~ +Nf (13)

where q; is the reference joint acceleration of the free leg,
and Uf is the linear error feedback control signal. In this
paper, a PD controller is used so that

Uf = —Kuef – KPef

where

ef=qf–qf

Then, under the assumption that there exists no parameter
uncertainty in Hf, K f, and Nf of Eq. (13), the error dy-
namics becomes

ef + KfVef + KfPef = O,

and the joint errors are asymptotically stable.

4.2 CG Motion Servo Controller

In order for the base link (the CG of the biped robot) to

track reference base link motions, we need to consider the
dynamic equations for the entire links including the free
leg. Substituting qf in Eq. (12) and q. in Eq. (3) into
Eq. (2), we can get

Rq+P.f. +s=o (14)

where

R = R – Q8AfB, – QfHylKf

S = S + QfH~l~f – Q. A~C.q – QfH;lNf.

Matrix A# denotes the pseudo-inverse matrix of matrix A.
By combining Eq. (3) and the dynamics of the supporting

leg only in Eq, (I), we can obtain a relationship without

the term qs, which then can be substituted into Eq. (14),
resulting in the relation between the base link acceleration

and the control torque for the supporting leg, which is ex-
pressed as

K,ao + N. = ~, (15)

where

K, = K. – H,A~B. – D~P~lR

N, = Ns – H,A~C. – D, Pjl S.

Using Eq. (15), the computed control torque for the sup-
porting leg can be computed such that the base link tracks

its reference motion. Similarly to the computed torque
method for manipulators, the computed torque for the leg
is

T$ = ~~(~d – Us) + Ns (16)

where ~d is the reference acceleration of the base link, and
us is the linear error feedback control signal. A PD con-

troller is used in the paper similarly to the case of the free
leg and thus

us = —KSWeS—KSPeS

where es is the position error vector of the base link, which
can be computed using the measurement of the leg joint an-

gles and the forward kinematics. Then, the error dynamics
of the supporting leg becomes

es + KsVeS + KSVeS = O, (17)

and can be stabilized.

5 Simulations

Simulations of a 7-link biped robot are done in order

to compare the performance of the proposed method and
that of the inverted pendulum mode. The parameters of the

biped robot used in the simulations are shown in Table 1.
The parameters for generating the walking pattern are also
shown in Table 2. In computing ~, the free leg mass con-
centrated at its foot, m, is assumed to be 1, 2, and 3 kg,
which are slightly less than or equal to actual 3 kg, and
A4 to be 13 kg. The reference motions of the base link

generated by the proposed linear GCIPM and the linear in-
verted pendulum mode are shown in Fig. 4, which indicates

that the maximum acceleration of the proposed method is

slightly higher than that of the inverted pendulum mode.
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Table 1: BiDed robot model rmrameters.
I Mass (kg; I Length (m)

Base Link (Link O) ] 10 0

Table 2: Walking pattern parameters
Parameters Symbol Dimension

Step Time T 1 sec

CG Hei~ht H. 0.5 m

0.1

0.C4 -

0.C6-

0.04 -

0.02 - -.
~

;0 -
I.

x 4.02 -

4.04

4,08 -

.0.1
0 01 02 0.3 0,4 0.5 0,6 0.? 0.8 0,9 1

TRW (see)

Stride s I 0.2 m

Maximum Foot Height hf 0.1m

The actual ZMP movements for the left and the right
legs, given the reference motion of the base link, are shown
in Fig. 5. They indicate that motions of the ZMP are almost
periodic except for the starting phase, and that the ZMP
stays closer to zero when the proposed walking pattern is
implemented.

From this, we can conclude that the proposed motion is
more stable even without a separate active ZMP controller.
Figure 6 displays graphic simulation snapshots of the walk-

ing biped robot.

6 Conclusions

In this paper, we constructed a biped robot simulator
and proposed the GCIPM to generate walking patterns,
which is easily applied to any types of biped robots, and
servo controllers based upon the computed torque control
method. And its tracking performance is verified through

simulation.

Simulations are performed for a 7-link biped robot.

Simulation results show that the walking pattern generated
by the proposed GCIPM is superior in terms of the stabil-
ity to that by the inverted pendulum mode. They also show
that the computed torque controllers work very well.
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