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OPEN

ORIGINAL ARTICLE

Biphasic assembly of the murine intestinal
microbiota during early development

Ida Gisela Pantoja-Feliciano1,2,9, Jose C Clemente3,9, Elizabeth K Costello4, Maria E Perez5,
Martin J Blaser6,7, Rob Knight3,8 and Maria Gloria Dominguez-Bello1,6

1Laboratory of Microbial Ecology, Department of Biology, University of Puerto Rico, San Juan, Puerto Rico;
2Department of Genetics, Harvard Medical School, Boston, MA, USA; 3Department of Chemistry and
Biochemistry, University of Colorado, Boulder, CO, USA; 4Department of Microbiology and Immunology,
Stanford University School of Medicine, Stanford, CA, USA; 5Center of Biostatistics and Bioinformatics,
Department of Mathematics, University of Puerto Rico, San Juan, Puerto Rico; 6Department of Medicine,
New York University School of Medicine, New York, NY, USA; 7Department of Microbiology, New York
University School of Medicine, New York, NY, USA and 8Howard Hughes Medical Institute, Boulder,
CO, USA

The birth canal provides mammals with a primary maternal inoculum, which develops into distinctive
body site-specific microbial communities post-natally. We characterized the distal gut microbiota from
birth to weaning in mice. One-day-old mice had colonic microbiota that resembled maternal vaginal
communities, but at days 3 and 9 of age there was a substantial loss of intestinal bacterial diversity and
dominance of Lactobacillus. By weaning (21 days), diverse intestinal bacteria had established,
including strict anaerobes. Our results are consistent with vertical transmission of maternal microbiota
and demonstrate a nonlinear ecological succession involving an early drop in bacterial diversity and
shift in dominance from Streptococcus to Lactobacillus, followed by an increase in diversity of
anaerobes, after the introduction of solid food. Mammalian newborns are born highly susceptible to
colonization, and lactation may control microbiome assembly during early development.
The ISME Journal (2013) 7, 1112–1115; doi:10.1038/ismej.2013.15; published online 28 March 2013
Subject Category: Microbial population and community ecology
Keywords: community structure; intestinal microbiota; mammal development

Introduction

Mammals are thought to develop in a bacteria-free
environment within the mother’s womb. They are
born through a birth canal densely populated by
lactic acid bacteria (Harrison et al., 1953;
Dominguez-Bello et al., 2010; Ravel et al., 2011)
and, during a substantial period of their early
development, feed exclusively on maternal milk.
These conserved traits may be important for the
nutrition and protection of the newborn (Sela and
Mills, 2010). In this work, we characterized the
mouse intestinal microbiota from the early stages of
development until weaning.

Materials and methods

Six Friend leukemia virus B (FVB) female mice, 4–5
weeks old, were bred with males, and the intestinal

contents of litters and mothers were sampled
until weaning (Supplementary Figure S1). This
work was approved by the University of Puerto Rico
IACUC (604-2008). Owing to the low fecal yield
in newborn mice, colon contents were collected at
these stages. We confirmed that colon contents
were good proxies for feces (Supplementary
Figures S2–S5), as reported (Peterson et al., 2008;
Turnbaugh et al., 2009).

DNA was extracted from 81 samples using MoBio
PowerSoil Kits (MoBio Laboratories, Carlsbad, CA,
USA) as recommended by the manufacturer, includ-
ing bead beating. Sample DNA was PCR-amplified
from the variable V2 region of the 16S rRNA
gene, then sequenced using 454 pyrosequencing
(Life Sciences Genome Sequencer FLX instru-
ment, Roche, Branford, CT, USA) as described
(Andersson et al., 2008; Fierer et al., 2008),
(Hamady et al., 2008). Sequences were processed
using Quantitative Insights into Microbial Ecology
(QIIME) 1.4 (Caporaso et al., 2010). Rarefaction
analysis was performed based on the number of
operational taxonomic units (OTUs) and the amount
of phylogenetic branch length observed in each
sample (Hamady et al., 2010). Good’s coverage
estimator was also calculated. Beta diversity was
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estimated using the UniFrac metric (Lozupone and
Knight, 2005), and hierarchical clustering was per-
formed using the unweighted pair group method with
arithmetic mean (UPGMA). Analyses of variance
(ANOVA) were made using the statistical program R,
version 2.14.0 (2011-10-31), using the R library.

Results

We obtained 121 893 V2 region 16S rRNA gene
sequences from 81 samples, with a mean of
1505±274 sequences per sample. Sequences were
clustered into 3822 OTUs. Unknown bacteria repre-
sented a total of 3.9% of the 121 893 sequences. The
global estimated coverage was 98.8%, the coverage
values for the offspring at each age were as follows:
day 1¼ 96.2%; day 3¼ 98.5%; day 9¼ 99.3%; day
21¼ 97.3%; adults (older than 21 days)¼ 96.9%.

Adult mothers harbored 61±21.7 fecal OTUs,
with dominance of phyla Firmicutes (52.3%),
Bacteriodetes (42.1%) and unclassified OTUs
(4.8%) (Supplementary Figure S6; Supplementary
Table S1). Bacterial communities of the adults did
not vary significantly with age (Supplementary
Figure S7), gender (Supplementary Figure S8) or
physiological stage associated to parturition
(ANOVA, P¼ 0.124; Supplementary Figure S9).

At day 1 after delivery, the vaginas of the
six mothers harbored B38±11.5 OTUs, with a

dominance of Proteobacteria (80%) and Firmicutes
(17%) (Supplementary Figure 1; Supplementary
Table S2). Colonic bacterial communities in new-
born mice at early ages were closer to maternal
communities in vaginas than to those in feces
(ANOVA, P¼ 0.000), but by age 21 days, they
clustered closer to maternal feces (ANOVA,
Po0.001), as shown by Principal Coordinates
Analysis (Supplementary Figure S10) and UPGMA
clustering (Supplementary Figure S11).

The colonic bacterial diversity decreased consid-
erably at age 3 and 9 days (Figure 1, Supplementary
Figures S12–S15, Supplementary Table S3), from
nearly complete dominance of Streptococcus to
Lactobacillus (Figure 2, Supplementary Figure S16,
Supplementary Table S2). By the time of weaning
(21 days), the fecal diversity had increased to
similar levels to those in the mothers (Figure 1,
Supplementary Figures S13–S15, Supplementary
Table S2), and with nearly complete disappearance
of the Streptococcus species (Figure 2). Procrustes
analysis shows that these results are robust to the
sequence coverage obtained here (Supplementary
Materials), and the decrease in diversity during the
mid-strict lactation period is supported by other
diversity metrics, including phylogenetic diversity
(Supplementary Figure S13), Chao1 (Supplementary
Figure S14) and Shannon entropy (Supplementary
Figure S15).
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Figure 1 Rarefaction curves of observed species from mothers and offspring mice. (a) Maternal vagina, day 1 post delivery; (b), maternal
feces, day 1 post delivery; (c), offspring intestine, day 1 of life; (d), offspring intestine, day 3 of life; (e), offspring intestine, day 9 of life;
(f), offspring intestine, day 21 of life.
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Discussion

Consistent with prior studies in humans (Matsumiya
et al., 2002; Dominguez-Bello et al., 2010), bacterial
communities in the colon of newborn mice resemble
maternal vaginal communities. Site-specific selec-
tive factors exert pressure during development, and
divergence of communities occurs in each body
location. Previous work based on cultivable bacteria
in mice (Schadler, 1973) has shown an initial
colonization by Lactobacilli, followed by coliforms,
and finally by obligate anaerobes. In the present
study, there was an initial bacterial bloom of
Streptococcus immediately after birth, which
decreased after day 3 to be replaced by Lactobacillus
species that are facultative anaerobes that ferment
milk lactose and casein, and produce lactic acid
(Kunji et al., 1996; Jiang and Savaiano, 1997;
Angelakis et al., 2012). Lactate production acidifies
(pHo5.5) the intestinal contents and inhibits the
growth of anaerobes (Soergel, 1994; Jiang and
Savaiano, 1997), including Lachnospiracea, Clostri-
diales and Bacteroidales, whose abundance was
increased by the time of weaning. The introduction
of solids to the milk diet increases the diversity of
substrates for intestinal bacteria, and the strictly
anaerobic colonizers become established with new
pathways of fermentation, leading to the production
of short-chain fatty acids, hydrogen, methane and
CO2 (Ruppin et al., 1980). The importance of select
groups of bacteria including SFB, Clostridium,
Bacteroides, Bifidobacterium and Lactobacillus, in
their role on the host mucosal immune system, has
been recently reviewed (Reading and Kasper, 2011).

Contrary to the proposed developmental choreo-
graphy with steady age-associated increase in
microbiota alpha diversity (Koenig et al., 2011), the
results presented here provide evidence of a bipha-
sic progression toward the adult colonic microbiota,
with an early reduction of diversity during suckling
with dominance by lactate producers, and a second
phase with increased diversity by anaerobes, coin-
ciding with the introduction of solid food.
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Figure 2 Proportions of colonic bacterial families in maternal vagina and feces, and during offspring development. (a) dominating taxa.
(b) low abundance taxa.
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