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Introduction

Cytokinesis in animal and fungal cells is performed by the con-

certed action of a contractile actomyosin ring (AMR) and tar-

geted membrane deposition coupled with ECM remodeling at 

the division site (Balasubramanian et al., 2004; Strickland and 

Burgess, 2004). The AMR, which consists of myosin II and actin 

�laments, is thought to be the engine that drives the ingression 

of the plasma membrane at the division site during cytokinesis. 

However, important questions regarding the assembly and  

function of the AMR remain unanswered. For example, how is 

myosin II targeted to the division site? How does myosin direct 

actin ring assembly? How does the AMR coordinate with mem-

brane traf�cking during cytokinesis?

The budding yeast Saccharomyces cerevisiae provides an 

excellent system for structure–function analysis of myosin II 

and for determining its role in cytokinesis, as deletion of MYO1, 

the sole myosin II in budding yeast, does not cause cell lethality 

in most strain backgrounds but produces serious defects in  

cytokinesis and cell separation (Bi et al., 1998; Schmidt et al., 

2002), permitting the in vivo analysis of a variety of myo1 mu-

tations. However, the structure of Myo1 is not known. In this 

study, we show by rotary-shadowing electron microscopy (EM) 

that Myo1 forms a dimer with a kink in its tail, similar to myo-

sin IIs in other eukaryotic cells.

To understand the function of a myosin II in cytokinesis, 

it is important to understand how it is targeted to the division 

site. Studies in multiple systems indicate that the targeting sig-

nals for cleavage-furrow localization reside in the tails of myo-

sin IIs (Sabry et al., 1997; Motegi et al., 2004; Lord et al., 2005; 

Lister et al., 2006; Beach and Egelhoff, 2009; Ronen and Ravid, 

2009). In addition, some proteins, such as Mid1, an anillin- 

related protein in �ssion yeast (Motegi et al., 2004; Wu et al., 

2006; Huang et al., 2008), and the septins, a family of GTP-

binding, �lament-forming proteins (Longtine and Bi, 2003; Joo 

et al., 2005) in budding yeast (Bi et al., 1998; Lippincott and Li, 

1998) and mammalian cells (Joo et al., 2007), have been impli-

cated in myosin localization during cytokinesis. However, clear 

mechanisms that account for the entire myosin localization at 

the division site have not been elucidated in any organism.

In budding yeast, septins play important roles in Myo1 local-

ization (Bi et al., 1998; Lippincott and Li, 1998). However, how 
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To determine whether the Myo1 tail is suf�cient for  

dimerization in vitro, Myo1 tail lacking the TD2 region was 

fused to maltose-binding protein (MBP), a known globular pro-

tein. MBP-Myo1-tail-TD2 was puri�ed from Escherichia coli  

(Fig. 1 B) and its structure was visualized by rotary-shadowing 

EM. Again, MBP-Myo1-tail-TD2 molecules formed a “two-

headed” structure with a kinked tail (Fig. 1 B).

Together, these data demonstrate that Myo1 is a two-headed 

myosin II, resembling “conventional” myosins in other eukary-

otes. In addition, Myo1 has a clear kink in its tail, similar to 

myosin IIs from Dictyostelium, Acanthamoeba, smooth muscle, 

and nonmuscle cells (Trybus, 1991).

Myo1 tail contains two temporally distinct 

targeting domains

To identify potential targeting domains in Myo1, we constructed 

functional N- and C-terminally GFP-tagged MYO1 alleles and 

used them to make internal or terminal deletions of MYO1, 

leading to the identi�cation of two distinct targeting domains, 

mTD1 (minimal targeting domain 1) and TD2 (targeting  

domain 2), in Myo1 tail (Fig. 1 C). Myo1 head or any other re-

gion of Myo1 tail did not localize to the division site in myo1 

cells, suggesting that mTD1 and TD2 are the only targeting  

domains of Myo1. A third region, the putative “assembly do-

main” (AD) allowed localization only in the presence of en-

dogenous Myo1 (Fig. 1 C). Strikingly, mTD1 localized to the 

division site in small- to large-budded cells, whereas TD2 localized 

to the division site only in large-budded cells (Fig. 1 D). Live-

cell imaging further demonstrates that mTD1 and TD2 mediate 

Myo1 localization before and during cytokinesis, respectively 

(see Fig. 4 A). Thus, Myo1 tail contains two temporally distinct 

targeting domains.

Myo1 targeting before cytokinesis depends 

on the septin-binding protein Bni5

Myo1 localization to the bud neck depends on the septins (Bi  

et al., 1998; Lippincott and Li, 1998). In addition, Myo1 tail 

carried on a high-copy plasmid suppressed the growth defect  

of various temperature-sensitive septin mutants (unpublished 

data), suggesting a close functional association of Myo1 with 

the septins. However, in vitro protein-binding assays using  

recombinant Myo1 targeting domains (MBP, MBP-TD1, MBP-

mTD1, and MBP-TD2) and septin complexes (Cdc3, Cdc10, 

Cdc11, and HisX6-Cdc12) failed to detect a convincing inter-

action between Myo1-TDs and the septins, which raises the  

possibility that a “linker protein” may be involved in Myo1–

septin interaction.

Bni5 localizes to the bud neck in a septin-dependent man-

ner from bud emergence in late G1 to spindle disassembly in 

telophase, which coincides with the onset of cytokinesis (Lee  

et al., 2002). In addition, both Bni5 and Myo1 appear to func-

tion in the same genetic pathway (Lee et al., 2002). These ob-

servations raise the possibility that Bni5 may link Myo1 to the 

septins before cytokinesis. To test this possibility, GFP-tagged 

Myo1, mTD1, and TD2 were visualized in wild-type and bni5 

cells. Strikingly, the full-length Myo1 localized to the division 

site only in large-budded bni5 cells, whereas the localization 

the septin hourglass recruits and maintains Myo1 at the divi-

sion site before cytokinesis and how Myo1 is anchored to the 

neck cortex �anked by two septin rings, which result from septin-

hourglass splitting at the onset of mitotic exit (Lippincott et al., 

2001), during cytokinesis remain unanswered. In this study,  

we show that Myo1 is recruited to the division site via a biphasic 

mechanism involving distinct targeting signals in its tail and 

distinct molecular pathways.

AMR contraction and membrane traf�cking are hallmarks 

of animal and fungal cytokinesis (Balasubramanian et al., 2004; 

Strickland and Burgess, 2004). The AMR is thought to generate 

force that powers plasma membrane ingression, whereas tar-

geted membrane deposition is thought to increase cell surface 

area and also to deliver cargo enzymes for ECM remodeling at 

the division site, which results in the formation of chitinous pri-

mary septum (PS) in budding yeast. These processes must co-

ordinate in time and space to achieve robust cytokinesis. However, 

the functional and mechanistic relationships between these pro-

cesses remain poorly understood. In this study, we present evi-

dence to suggest that the AMR functions as a structural unit to 

“guide” membrane traf�cking and ECM remodeling at the divi-

sion site. This guidance role can be largely ful�lled without the 

motor domain of Myo1 in budding yeast, which can explain the 

striking observation made previously that the Myo1 tail is suf�-

cient to support cytokinesis (Lord et al., 2005). The generality 

of the guidance concept and the motor-independent role of the 

AMR in cytokinesis are discussed.

Results

Myo1 is a two-headed myosin with a kink in 

its tail

To determine the structure of full-length Myo1, we puri�ed  

a C-terminally TAP-tagged Myo1 from yeast cells, expressed 

under its own promoter (Fig. 1 A). The TAP-tagged Myo1 con-

struct appears to function normally, as it did not cause any 

defects in cytokinesis and cell separation (unpublished data). 

We determined its structure by rotary-shadowing EM. Myo1 

formed dimers, each with two globular heads and a rod tail  

(Fig. 1 A). The average length of Myo1 tail (1073 aa, residues 

856–1928) was 126 ± 12 nm (n = 41). In addition, 56% of Myo1 

dimers displayed a clear “kink” or “hinge” in their tails, located 

at 46 ± 6 nm from the head–tail junction, which corresponds to 

the predicted helix-breaking region (236 aa, residues 1176–

1411) in Myo1 tail (Fig. S1). To further validate the Myo1 

structure and con�rm the kink position in its tail, a C-terminally 

TAP-tagged Myo1 with a deletion of the TD2 region (174 aa, 

residues 1224–1397; see next section) that contains all seven 

helix-breaking prolines in Myo1 tail (Fig. S1, red bar) was puri-

�ed and its structure was determined. The tail length (118 ± 12 nm, 

n = 39) of Myo1-TD2 was reduced proportionally (Fig. 1 A), and 

the number of Myo1-TD2 dimers with kinked tails was also 

reduced to 31%, with the kink located at 41 ± 10 nm from the 

head–tail junction. The TD2 accounts for only a portion of the 

predicted helix-breaking region, which may explain why dele-

tion of the TD2 reduced, but did not eliminate, the propensity of 

the Myo1 tail to form a kink.

http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
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These results demonstrate that Myo1 targeting before cytokinesis 

completely depends on Bni5.

To determine whether Myo1 and Bni5 interact directly, co-

immunoprecipitation and in vitro protein-binding assays were per-

formed. Myo1 tail fragments containing the mTD1 region (Tail, 

TD1, and mTD1; see Fig. 1 C), but not TD2 or the putative AD, 

interacted with Bni5 in yeast cell lysates (Fig. 2 C). Recombinant 

of mTD1 at the division site was completely eliminated (Fig. 2 A). 

In contrast, the localization of TD2 at the division site was un-

affected by bni5 (Fig. S2 A). Consistently, Bni5 colocalized 

with the full-length Myo1 at the bud neck until the onset of 

Myo1 ring constriction (Fig. 2 B, left; Video 1, left), whereas Bni5 

and the mTD1 colocalized at and co-disappeared from the bud 

neck precisely before cytokinesis (Fig. 2 B, right; Video 1, right). 

Figure 1. Myo1 is a two-headed myosin and 
its tail contains two distinct targeting domains. 
(A) Myo1 heavy chain forms a dimer in yeast. 
Myo1-C-TAP and myo1-TD2-C-TAP were pu-
rified from strains XDY7 and XDY99, respec-
tively (left, silver staining), and observed by 
rotary-shadowing EM (right). (B) Recombinant 
myo1-Tail forms a dimer. MBP-myo1-Tail-TD2 
was purified from E. coli (left, Coomassie blue 
staining) and observed by rotary-shadowing 
EM (right). (C) Summary of localization data 
on Myo1 fragments. mTD1, minimal targeting 
domain 1; TD2, targeting domain 2; AD, as-
sembly domain. (D) Localization of different 
Myo1 fragments during the cell cycle. Yeast 
strains (XDY41, YJL335A, YJL221A, YJL489A, 
YJL222A; see Table II) were used for observa-
tion. Bar, 1 µm.

http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
http://www.jcb.org/cgi/content/full/jcb.201005134/DC1


JCB • VOLUME 191 • NUMBER 7 • 2010 1336

Li, 1998). However, the TD2 still localized to the division site 

when cells were treated with latrunculin A (Fig. S2 B), a drug 

that disrupts all F-actin structures including the actin ring  

(Ayscough et al., 1997), suggesting that the TD2-mediated 

Myo1 targeting may involve proteins other than F-actin.  

A number of cytokinesis proteins such as Mlc1, Iqg1, Hof1, 

Cyk3, Inn1, and Chs2 localize to the division site before or 

around the time of TD2 localization, making them candidates 

for TD2-mediated Myo1 targeting. Strikingly, the TD2-GFP, 

carried on a plasmid, completely failed to localize in mlc1-11 

and iqg1 cells but still localized in other cytokinesis mutants 

MBP-TD1 and MBP-mTD1 interacted directly with recombinant 

GST-Bni5 (Fig. 2 D). In contrast, MBP or MBP-TD2 failed to  

interact with GST-Bni5. As previous results have demonstrated 

that Bni5 binds to the septin Cdc11 (Lee et al., 2002), these data 

establish Bni5 as a direct molecular linker between the septins and 

Myo1 (Septins → Bni5 → Myo1 [mTD1]) before cytokinesis.

Myo1 targeting during cytokinesis depends 

on ELC and IQGAP

The timing of TD2 localization is similar to that of actin ring 

assembly (Epp and Chant, 1997; Bi et al., 1998; Lippincott and 

Figure 2. Myo1 targeting before cytokinesis 
depends on its interaction through mTD1 with 
Bni5. (A) Localization of Myo1 and myo1-
mTD1 in wild-type and bni5 cells. Cells 
carrying MYO1-GFP or myo1-mTD1-GFP in 
wild-type (BNI5) (YXD41 and YJL489A) or 
bni5 (XDY254 and XDY258) backgrounds 
were grown in YPD at 23°C and observed by 
DIC and fluorescence microscopy. (B) Strains 
YEF6321 (MYO1-GFP BNI5-RFP; left) and 
YEF6326 (myo1-mTD1-GFP BNI5-RFP; right) 
were grown in YPD at 23°C and then imaged 
by 3D dual-color time-lapse microscopy at 
23°C with a 2-min interval. Montage images 
of the GFP, RFP, and merged channels from 
the representative time-lapse data are shown 
here. Arrowhead indicates the start of Myo1 
ring constriction. (C) myo1-mTD1 interacts 
with Bni5 in yeast. GFP-tagged Myo1 frag-
ments were immunoprecipitated using anti-
GFP antibody from cell lysates of yeast strains 
(XDY189, XDY190, XDY191, XDY192, and 
XDY194; see Table II). Myo1 fragments (IP) 
and Bni5-3HA (Bound) in the precipitates were  
detected by Western blot analyses using anti-
bodies against GFP and HA, respectively.  
(D) myo1-mTD1 interacts with Bni5 in vitro. 
Equal amounts of MBP, MBP-myo1-TD1, MBP-
myo1-mTD1, and MBP-myo1-TD2 bound to 
amylose beads were mixed individually with 
the same amount of GST-Bni5. The pulled down 
MBP and MBP-myo1 fragments as well as GST-
Bni5 in the bound and input fractions were 
detected by Western blot analyses using anti-
bodies against MBP and GST, respectively.
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contains an APC recognition site (Ko et al., 2007; Tully et al., 

2009) and a CHD (calponin-homology domain; Shannon and 

Li, 1999), was dispensable for TD2 localization (Fig. 3 C). To 

date, we failed to detect a convincing interaction between dif-

ferent Iqg1 fragments and the TD2 by two-hybrid and in vitro 

protein-binding assays (unpublished data), which may re�ect 

complex regulation of this interaction or an interaction that  

is bridged by other proteins in vivo. Nonetheless, our results, 

together with the previous observation that Mlc1 binds to  

the IQ motifs of Iqg1 and is required for the localization of 

(hof1, cyk3, hof1 cyk3, inn1, and chs2; all these 

strains contain the endogenous MYO1; Fig. 3 A and unpub-

lished data). More importantly, the GFP-tagged full-length 

Myo1 disappeared from the bud neck in mlc1-11 and iqg1 

cells precisely at the time of septin-hourglass splitting (Fig. 3 B; 

Video 2), which coincides with the onset of mitotic exit or  

cytokinesis (Lippincott et al., 2001). Thus, the TD2-mediated 

Myo1 targeting depends on Mlc1 (the ELC [essential light 

chain] for Myo1) and Iqg1 (IQGAP; Shannon and Li, 2000; 

Luo et al., 2004). The N-terminal region of Iqg1, which  

Figure 3. Myo1 targeting during cytokinesis depends on Mlc1 and Iqg1. (A) myo1-TD2 localization depends on Mlc1 and Iqg1. Wild-type (WT) (XDY154), 
mlc1-11 (XDY173), and iqg1 (XDY218) cells carrying plasmid pRS316-MYO1-TD2-GFP were grown in SC-Ura medium at 23°C and then examined for 
myo1-TD2 localization. (B) Full-length Myo1 localization depends on Mlc1 and Iqg1. Strains YEF6179 (mlc1-11 MYO1-GFP CDC3-RFP; left) and YEF6325 
(iqg1 CDC3-RFP, pRS316-MYO1-C-GFP; right) were grown in liquid SC-Leu media at 23°C and then imaged by 3D dual-color time-lapse microscopy at 
23°C with a 1-min interval. Montage images of the GFP, RFP, and merged channels from the representative time-lapse data are shown here. Arrowheads 
indicate the splitting of septin hourglass into two cortical rings, which coincides with mitotic exit and the onset of cytokinesis. (C) myo1-TD2 localization in 
cells containing different iqg1 alleles. Plasmid pRS315 derivatives carrying the indicated iqg1 alleles (see Table III) were transformed into strain XDY218. 
Transformants were grown in SC-Ura-Leu medium at 23°C and then quantified for myo1-TD2 localization. APC, APC/C recognition site; CHD, calponin-
homology domain; IQ, IQ motifs; Ras-GAP, RasGAP-related domain; RasGAP-C, RasGAP C terminus–related domain.

http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
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very few cells containing myo1-TD2-GFP displayed complete 

and symmetric ring constriction (Fig. S3 B; Video 6, middle 

and right). These data indicate that the TD2 is suf�cient for 

Myo1 targeting but not its function during cytokinesis.

In summary, we have established a biphasic targeting 

mechanism for Myo1 during the cell cycle. The early targeting 

mechanism accounts for Myo1 localization from late G1 to 

telophase, which re�ects the localization pattern of Bni5 during 

the cell cycle (Lee et al., 2002; Fig. 2 B). In contrast, the late 

targeting mechanism accounts for Myo1 localization from ana-

phase to the completion of cytokinesis, which re�ects the local-

ization pattern of Iqg1 during the cell cycle (Epp and Chant, 1997; 

Lippincott and Li, 1998). These two targeting events overlap 

from anaphase to telophase when Bni5 and Iqg1 coexist at the 

bud neck.

Myo1 tail is sufficient for directing 

actomyosin ring assembly and primary 

septum formation during cytokinesis

To determine the functional consequences of the distinct  

targeting mechanisms for Myo1, we examined the effects of in-

activating each of the mechanisms on the execution of cytokinesis 

by examining cell cluster formation, which is indicative of a 

failure in cytokinesis and/or cell separation. As observed previ-

ously (Lord et al., 2005), myo1-Tail cells, possessing both target-

ing domains, displayed a mild defect in cytokinesis (Fig. 5 A). 

Similarly, bni5 cells, in which the early targeting of Myo1 is 

eliminated, displayed little defect in cytokinesis, suggesting 

that the late targeting of Myo1 is largely responsible for its role 

in cytokinesis. This conclusion is further supported by the ob-

servation that myo1-TD2 cells, containing only the 174-aa late 

targeting domain, were able to carry out cytokinesis much more 

ef�ciently than myo1 cells did. Surprisingly, myo1-TD2 

cells, in which the mutant myo1 protein disappears invariably 

by the onset of mitotic exit (Fig. 4 A), were also able to carry 

out cytokinesis more ef�ciently than myo1 cells did, although 

much poorly than myo1-tail cells. This result suggests that 

Myo1 localization before the onset of mitotic exit also contrib-

utes to cytokinesis, which is further corroborated by the striking 

observation that the bni5 myo1-TD2 cells, in which both tar-

geting mechanisms are inactivated, displayed a cytokinesis de-

fect similar to that of myo1 cells (Fig. 5 A). These data indicate 

that Myo1 tail is largely suf�cient for cytokinesis, and both tar-

geting mechanisms contribute.

To explore the underlying mechanism for the role of 

Myo1 tail and its targeting domains in cytokinesis, we exam-

ined actin ring assembly in various myo1 mutants. As expected, 

98% of wild-type cells with segregated nuclei formed an actin 

ring, whereas myo1 cells at the similar stage of the cell cycle 

did not (Bi et al., 1998). Remarkably, 92% of the myo1-Tail 

cells assembled an actin ring (Fig. 5 B; Fig. S4 A; Video 7), sug-

gesting that Myo1 tail is suf�cient for promoting actin ring as-

sembly and/or maintaining actin �laments independently of the 

head domain, which contains the only known actin-binding site 

among all myosin IIs. Both targeting domains contribute to  

actin ring assembly, as cells lacking either were compromised  

severely in both the frequency and the quality of actin ring  

Iqg1 to the division site (Shannon and Li, 2000), establish a 

pathway (ELC → IQGAP → Myo1 [TD2]) for Myo1 targeting 

during cytokinesis.

Distinct targeting mechanisms account  

for distinct Myo1 localization patterns  

and dynamics during the cell cycle

To determine how different targeting mechanisms affect Myo1 

localization patterns and dynamics during the cell cycle, we 

performed 3D time-lapse analyses on cells with intact targeting 

mechanisms or with one mechanism selectively inactivated.  

In these experiments, all mutant alleles of MYO1 were the sole 

source of Myo1 in the cell. Although the overall localization 

pattern of Myo1 tail, which contains both targeting signals, was 

similar to that of full-length Myo1 (Fig. 4 A), several differ-

ences were noted. Myo1 tail displayed a 21% decrease in the 

rate of ring “constriction” (Fig. 4 B; Lord et al., 2005; constric-

tion refers to a reduction in the size of Myo1 ring and does not 

imply the involvement of an actomyosin-based contractile 

force), and also a defect in ring disassembly (Fig. 4 A; Fig. S3 A; 

Video 3, compare right to left). Some myo1-Tail cells displayed 

asymmetric or partial ring constriction (Fig. S3 B). These data 

indicate that Myo1 head accounts for about one �fth of the con-

striction rate of the Myo1 ring during cytokinesis and also sug-

gest that Myo1 head contributes to Myo1 disassembly during 

and toward the end of cytokinesis.

To determine the precise timing and dynamics of Myo1 

localization conferred by the early targeting mechanism, we  

examined myo1-TD2-GFP cells where the region suf�cient 

for late targeting of Myo1 is deleted. myo1-TD2-GFP local-

ized to the incipient bud site and the bud neck as full-length 

Myo1-GFP did, but its intensity began to fade 10–15 min  

before and disappeared completely from the division site with-

out any constriction around the time of septin-hourglass split-

ting (Fig. 4, A and B; Video 4), which marks the onset of mitotic 

exit (telophase–G1 transition; Lippincott et al., 2001). As ex-

pected, myo1-TD2-GFP failed to localize to the bud neck in 

bni5 cells throughout the cell cycle (Video 5). These data indi-

cate that the early targeting mechanism of Myo1 is responsible for 

its localization from late G1 to telophase, and this targeting 

event completely depends on Bni5.

To determine the precise timing and dynamics of Myo1 

localization conferred by the late targeting mechanism, we ex-

amined two complementary situations. In bni5 cells where the 

early targeting mechanism is eliminated (Fig. 2, A and B), full-

length Myo1 began to appear at the division site 15 min and 

reached maximal intensity 5 min before septin-hourglass 

splitting, and then Myo1 ring constricted with a decreased rate 

but did not linger around the division site after cytokinesis  

(Fig. 4, A and B; Video 6, left). These data further demonstrate 

the role of Bni5 in the early targeting of Myo1, and suggest that 

the late targeting mechanism of Myo1 is responsible for its  

localization from anaphase to the completion of cytokinesis.

In a complementary experiment, myo1-TD2-GFP alone 

localized to the division site in a pattern that parallels that of 

Myo1 in bni5 cells during the cell cycle (Fig. 4 A). However, 

in contrast to Myo1 tail or full-length Myo1 in bni5 cells, 

http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
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“F-actin cloud” (Fig. S4, A and B). In contrast, 72% of the bni5 

cells formed an actin ring (Fig. S4 A), suggesting a minor  

contribution of Bni5 to this process. These data indicate that 

assembly. Only 33% and 42% of the myo1-TD2 and myo1-

TD2 cells formed abnormal actin structures at the division  

site, which ranged from a smooth actin ring to an amorphous 

Figure 4. Distinct targeting mechanisms impart distinct Myo1 localization dynamics during the cell cycle. (A) Effects of bni5 and myo1 truncations on 
the dynamics of Myo1 localization during the cell cycle. Cells of strains XDY286 (MYO1-GFP; n = 33), XDY287 (MYO1-GFP bni5; n = 38), XDY288 
(myo1-Tail-GFP; n = 88), XDY289 (myo1-TD2-GFP; n = 42), and XDY290 (myo1-TD2-GFP; n = 31) were grown in YPD at 23°C and then imaged by 3D 
dual-color time-lapse microscopy at 23°C with a 1-min interval. Montage images from the representative time-lapse data are shown here. Top row in each 
image panel: Cdc3-RFP (red); middle row: Myo1*-GFP (asterisk indicates Myo1 or its fragment; green); bottom row: merged images of septin-RFP and 
Myo1*-GFP. The merged images were used to determine the symmetry of Myo1*-GFP ring during its localization and/or constriction. Arrowheads indicate 
septin-hourglass splitting. Images within each image panel were processed with the same magnification. (B) Constriction rates of Myo1 and its fragments 
in wild-type and/or bni5 cells. “a” indicates that only cells showing symmetric Myo1 constriction were used for the calculation.
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Figure 5. Motor-independent roles of Myo1 in promoting actin ring assembly and furrow ingression. (A) Cytokinesis defects in bni5 and different myo1 
mutants. Cells of strains listed below were grown in YPD at 23°C and scored for cytokinesis defects as follows: mild cytokinesis defect, cells with 3–4 cell 
bodies linked together; strong cytokinesis defect, cells with more than 4 cell bodies linked together. The number of cells scored for each strain was 500. 
The strains were XDY41 (MYO1-GFP), XDY254 (MYO1-GFP bni5), YJL335A (myo1-Tail-GFP), YJL222A (myo1-TD2-GFP), YJL488A (myo1-TD2-GFP), 
YEF6322 (myo1-TD2-GFP bni5), and YEF1804 (myo1). (B) Myo1 tail is sufficient for promoting actin ring assembly. Cells of the strains YEF6307 
(MYO1-GFP NUP57-GFP; top) and YEF6309 (myo1-Tail-GFP NUP57-GFP; bottom) were grown in SC-Ura media at 23°C, fixed, and stained for actin, and 
then imaged by spinning-disk confocal microscopy along the Z-axis with a 0.1-µm increment (71 and 46 Z-sections for wild-type and myo1-Tail cells, respec-
tively). For clear visualization of the actin ring, images of a single focal plane near the middle of the cell were presented (see Video 7 for 3D construction 
of the actin ring in a myo1-Tail cell). Myo1*-GFP indicates GFP-tagged Myo1 or its tail. (C) AMR constriction (marked by Myo1-RFP) is spatiotemporally 

http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
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Both Myo1 and actin filaments are involved 

in guiding primary septum formation  

during cytokinesis

The functionality of Myo1 tail in cytokinesis appears to be cor-

related with its ability to direct actin ring assembly. This raises 

an interesting possibility that Myo1 tail may simply help actin 

�laments organize into a ring structure at the division site, and 

it is the actin �laments that actually direct traf�cking and PS 

formation by capturing and distributing post-Golgi vesicles 

around the circumference of the division site. The vesicles are 

delivered to the division site from the Golgi by the myosin V 

Myo2 along actin cables (Pruyne et al., 1998; Moseley and 

Goode, 2006). Thus, the actin �laments in actin cables and actin 

ring, both of which are nucleated by formins (Vallen et al., 

2000; Evangelista et al., 2002; Sagot et al., 2002; Tolliday et al., 

2002), may function as a “relay team” to control membrane 

traf�cking and ECM remodeling during cytokinesis. To test this 

hypothesis, we attempted to selectively eliminate actin ring as-

sembly while leaving actin cables intact. This was achieved by 

deleting the calponin-homology domain (CHD) in Iqg1. As shown 

previously (Shannon and Li, 1999), the CHD is required for  

actin ring assembly (Fig. 6 A). 73% of the IQG1 cells (n = 60) with 

segregated nuclei formed an actin ring, in contrast to only 9% of 

the iqg1-CHD cells (n = 43). In addition, Myo1-GFP ring 

showed no or little constriction before disassembling several 

minutes after mitotic exit in iqg1-CHD cells (n = 12), in con-

trast to the normal constriction and disassembly in IQG1 cells 

(n = 15; Fig. 6 B; Video 10, compare right to left). 100% of 

the IQG1 and iqg1-CHD cells with any septal materials at  

Myo1 tail is suf�cient for actin ring assembly, and again, both 

targeting domains contribute.

How does the “headless” AMR assembled by Myo1 tail 

drive cytokinesis? In wild-type cells, AMR constriction (marked 

by Myo1-RFP) and membrane traf�cking (marked by myosin V 

Myo2-GFP) or traf�cking-dependent PS formation (marked by 

chitin synthase Chs2-GFP) are spatiotemporally coupled during 

cytokinesis (Fig. 5 C; Video 8). Both Myo2 and Chs2 arrive at 

the division site around septin-hourglass splitting (Fig. S4 C; 

Video 9), which coincides with the onset of AMR contraction. 

The AMR has been suggested to guide PS formation and/or cell 

surface growth in budding yeast (Vallen et al., 2000; Bi, 2001). 

We tested the possibility that the headless AMR may retain the 

“guiding role” even in the absence of its motor domain by ex-

amining PS formation in various myo1 mutants using transmis-

sion EM (Fig. 5 D; Table I). As expected, wild-type cells formed 

the PS with high ef�ciency (100% of the large-budded cells 

with any septal materials at the division site had a PS) and a 

sharp orientation (perpendicular to the mother–daughter axis), 

whereas myo1 cells formed asymmetric and/or grossly mis-

oriented PS with low ef�ciency (66%). Remarkably, myo1-tail 

cells formed PS with high ef�ciency (100%) and an orientation 

close to wild-type cells. Thus, the headless AMR is able to 

guide PS formation. When either targeting domain was deleted 

such as in myo1-TD2 and myo1-TD2 cells, the ef�ciency and 

the orientation of PS formation were severely compromised 

(Fig. 5 D; Table I). Together, these data demonstrate that Myo1 

tail is suf�cient for directing AMR assembly and PS formation 

during cytokinesis.

coupled with membrane trafficking (marked by Myo2-GFP) and PS formation (marked by Chs2-GFP). Cells of strains YKT662 (MYO2-GFP) and YEF5762 
(CHS2-GFP) carrying pRS316-MYO1-mCherry were grown in YPD at 23°C and then imaged by time-lapse microscopy at 23°C with a 1-min interval. 
Representative montage images of the time-lapse data are shown here. Arrowheads indicate the start of Myo1 ring constriction. (D) Septum morphology 
in wild-type and different myo1 mutants. The indicated strains listed in A were processed to visualize septum formation by transmission EM (left) and the 
orientation of the PS in different strains was measured (diagram; see footnote of Table I for details) and plotted. CW, cell wall; PM, plasma membrane; 
SS, secondary septum.

 

Table I. PS formation in different myo1 mutantsa

PS morphological trait MYO1-GFP  
(XDY41)

myo1-Tail-GFP 
(YJL335A)

myo1-TD2-GFP 
(YJL222A)

myo1-TD2-GFP 
(YJL488A)

myo1  
(YEF1804)

No PS (= only SS) 0 0 6 12 23

1 PSb 57 37 21 30 20

2 PSs 11 25 28 20 14

3 PSs 0 5 10 6 6

4 PSs 0 0 2 0 5

5 PSs 0 1 1 0 0

Total 68 68 68 68 68

PS indexc (%) 100 100 91 82 66

Neck-spanning indexd (%) 84 76 23 21 7

PS anglese (mean ± SD) 8 ± 5 15 ± 11 36 ± 41 20 ± 24 49 ± 42

aOnly cells with any sign of septum formation, regardless of its types (PS, primary septum; SS, secondary septum), and with no visible division scars were scored.  
The latter is to minimize possible mis-scoring of structures from previously formed septa.
bAn electron-translucent stripe originated from the bud–neck region was defined as one PS.
cNumber of cells with any PS divided by number of cells with any septum (PS or SS).
dNumber of cells with a PS spanning the entire bud neck divided by number of cells with any PS.
eThe angle between two lines starting from the base of a given PS was measured: one line is perpendicular to the mother–bud axis and the other connects to a site 
along the PS that yields the biggest angle (it could be at the tip or in the middle of the PS). Only cells with one or two PSs that extended at least one quarter of the 
bud–neck width were used for measurement (see also Fig. 5 D).

http://www.jcb.org/cgi/content/full/jcb.201005134/DC1
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Figure 6. Actin ring plays a role in guiding PS formation. (A) Actin ring assembly in iqg1-CHD mutant. Cells of strains RNY2594 (iqg1 MYO1-GFP, 
pRS315-IQG1-GST) and RNY2595 (iqg1 MYO1-GFP, pRS315-IQG1[2-411]-GST) were grown in SC-Leu media at 23°C and then fixed and stained for 
actin and DNA. (B) Abnormal constriction of the Myo1-GFP ring in iqg1-CHD mutant. Cells of the strains RNY2596 (iqg1 MYO1-GFP CDC3-mCherry, 
pRS315-IQG1-GST) and RNY2597 (iqg1 MYO1-GFP CDC3-mCherry, pRS315-IQG1[2-411]-GST) were grown in SC-Leu media at 23°C and then  
imaged by time-lapse microscopy at 23°C with a 1-min interval. Arrowheads indicate septin-hourglass splitting. (C) PS formation in iqg1-CHD mutant. PS of 
the strains listed in A were visualized by transmission EM and the orientation of the PS was quantified as in Fig. 5 D.
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Lister et al., 2006; Beach and Egelhoff, 2009). However,  

it has not been clear what interactions recruit and/or maintain 

myosins at the division site. We demonstrate here that Myo1 

undergoes biphasic targeting through distinct molecular path-

ways during the cell cycle. Such a mechanism may be generally 

applicable to the targeting of myosin II to the cleavage furrow  

in other organisms.

The �rst-phase targeting accounts for Myo1 localization 

at the bud neck before cytokinesis. At this stage of the cell cycle, 

Myo1 may facilitate the retrograde �ow of actin cables nucle-

ated at the bud cortex in a motor-dependent manner as described 

previously (Huckaba et al., 2006; Fig. 7 A). Targeting at this 

stage requires the function of a molecular pathway (septins → 

Bni5 → Myo1). Basically, Bni5 interacts directly with the septin 

Cdc11 (Lee et al., 2002) and with the mTD1 of Myo1, thereby 

targeting Myo1 to the bud neck before cytokinesis. This may be 

conceptually similar to the initial targeting of the myosin II Myo2 

in �ssion yeast, which requires Mid1, an anillin-related protein 

that is important for the selection of division plane as well as for 

ef�cient AMR assembly (Motegi et al., 2004; Wu et al., 2006; 

Huang et al., 2008). In both cases, the initial targeting mecha-

nism acts before cytokinesis and requires some proteins that 

are not well conserved throughout evolution, such as Bni5 and 

Mid1. Thus, the initial targeting mechanism may have evolved 

to accommodate the unique life style of a particular organism.

The second-phase targeting accounts for Myo1 localiza-

tion at the bud neck during cytokinesis. This targeting requires 

the function of a distinct molecular pathway (Mlc1 → Iqg1 → 

Myo1). Mlc1 and Iqg1 are the sole ELC and IQGAP in budding 

yeast. Mlc1 interacts with Iqg1 and is required for Iqg1 local-

ization to the bud neck (Boyne et al., 2000; Shannon and Li, 

2000). We show here that Myo1 targeting during cytokinesis 

depends on Mlc1 and Iqg1 and this targeting is mediated through 

the TD2 of Myo1. Importantly, this targeting pathway is cou-

pled with AMR assembly during cytokinesis, as all three com-

ponents of the pathway are required for actin ring assembly 

(Epp and Chant, 1997; Bi et al., 1998; Shannon and Li, 2000). 

One possibility is that the rod-shaped Myo1 tail, after being re-

cruited to the division site by Iqg1, serves as a “template” for 

actin ring assembly. For example, Myo1 tail could assemble 

into a higher-order structure that enables Iqg1 and other ring 

components to distribute more evenly along the circumference 

of the division site. Alternatively, Myo1 tail may activate Iqg1 

to bind to actin �laments via its CHD (Shannon and Li, 1999), 

thereby promoting actin ring assembly.

In �ssion yeast, Myo2 can still localize to the cell cortex 

and promote AMR assembly in mid1 cells in which the early 

targeting mechanism is inactivated (Motegi et al., 2004; Wu  

et al., 2006; Huang et al., 2008), suggesting the existence of a 

Mid1-independent Myo2 targeting mechanism. This second 

mechanism likely involves Cdc4, the ELC in �ssion yeast, as 

Cdc4 is required for Myo2 localization at the division site whereas 

Myo2 is not required for Cdc4 localization (Naqvi et al., 1999). 

Currently, it is not known whether Rng2, the IQGAP in �ssion 

yeast, is required for the second-phase targeting by acting in a 

linear pathway between Cdc4 and Myo2, as Iqg1 does in bud-

ding yeast. Importantly, Rng2 is also required for actin ring  

the division site formed one or more PS, but the mutant cells 

were defective in the orientation of the PS (Fig. 6 C). These data 

suggest that the absence of actin �laments in the AMR causes a 

slight delay in the initiation of PS formation (as manifested by 

the lack of Myo1 ring constriction) and a defect in PS guidance. 

However, the iqg1-CHD cells showed much a milder defect in 

PS orientation than the myo1 cells did (compare to Fig. 5 D), 

suggesting that Myo1 plays a major role in PS guidance inde-

pendently of the actin ring. Together, these results indicate that 

both Myo1 and actin �laments in the AMR are involved in guid-

ing PS formation during cytokinesis.

Discussion

The kink region of Myo1 tail is required  

for its targeting to the division site  

during cytokinesis

In this study, we have shown that full-length Myo1 puri�ed 

from yeast cells forms a two-headed structure, resembling “con-

ventional” myosins from animal cells. This �nding is consistent 

with the conserved nature of this family of motor proteins, and 

refutes the speculation that Myo1 might be a single-headed  

myosin (Bezanilla and Pollard, 2000). It also differs from a pre-

vious observation showing that a Myo1 fragment (residues 

1044–1569) forms trimers and oligomers but not dimers (Lister 

et al., 2006). This discrepancy could simply re�ect different in 

vitro biochemical behaviors exhibited by a full-length protein 

versus its fragments. Whether and how Myo1 is assembled into 

higher-order structures such as mini- and/or thick �laments and 

whether this assembly is required for cytokinesis will be investi-

gated in the future.

Myosin IIs from Dictyostelium, Acanthamoeba, smooth 

muscle, and nonmuscle cells all display a “kink” or “hinge” in 

their tails (Trybus, 1991), which may correspond to a region 

that is predicted to break the helical structure (Fig. S1). The 

kink is thought to mediate the formation of an auto-inhibitory 

loop by individual myosin molecules, which can be opened by 

regulatory light-chain or heavy-chain phosphorylation for myo-

sin activation and higher-order assembly (Trybus, 1991). Myo1 

clearly forms a kink in its tail that corresponds to the predicted 

helix-breaking region, including the TD2 (Fig. S1). The TD2, 

which was called the putative hinge in a previous study, was re-

ported to be essential for Myo1 contraction (Lister et al., 2006). 

The underlying assumption was that Myo1 lacking the TD2 

could still localize to the division site but fail to contract during 

cytokinesis. However, here we showed that the TD2 is actually 

required for Myo1 localization during cytokinesis, as opposed 

to being required for Myo1 contraction, per se. The difference 

is that no cell cycle marker for cytokinesis was used in the pre-

vious study. These results suggest that the kink region of a myo-

sin II may play important roles in its localization.

Biphasic targeting of Myo1 during the 

cell cycle: a general feature of myosin II 

targeting mechanisms?

The tail of a myosin II is responsible for its targeting to the divi-

sion site (Sabry et al., 1997; Motegi et al., 2004; Lord et al., 2005; 
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presumably by interacting with an unknown protein. It would 

be intriguing to determine whether ELC and IQGAP are involved 

in myosin II targeting during cytokinesis in Dictyostelium as 

well as in mammalian cells. Interestingly, the tail of the non-

muscle myosin II in mammalian cells is also able to enrich actin 

�laments at the division site (Beach and Egelhoff, 2009), sug-

gesting that myosin tail–mediated actin assembly at the division 

site is not restricted to budding yeast. Taken together, our study 

and the existing literature suggest that the second-phase target-

ing mechanism may function to couple myosin localization 

with AMR assembly during cytokinesis in yeast and beyond.

Actomyosin ring guides membrane 

deposition and ECM remodeling  

during cytokinesis

How can a headless AMR assembled by Myo1 tail achieve cyto-

kinesis with reasonable ef�ciency? To answer this question, we must  

consider the forces acting at the division site during cytokinesis.

There are two main forces acting at the division site to 

power plasma membrane ingression during cytokinesis (Fig. 7 B). 

First, the contractile force generated by the sliding of myosin 

motor on actin �laments, which depends on the actin-binding 

and ATPase activities of the myosin head; this force is tradition-

ally thought to be the most important. Second, the force gener-

ated by new membrane deposition coupled with centripetal PS 

formation in yeast and ECM remodeling in animal cells. In bud-

ding yeast, PS formation is essential for plasma membrane in-

gression and thus cytokinesis (Bi, 2001; Schmidt et al., 2002; 

VerPlank and Li, 2005). In Caenorhabditis elegans and mice, 

the synthesis of the ECM component chondroitin proteoglycan 

is essential for embryonic cytokinesis (Mizuguchi et al., 2003; 

Izumikawa et al., 2010).

The two driving forces for membrane closure during  

cytokinesis must be coordinated in time and space to achieve  

ef�ciency and spatial precision. Increasing evidence suggests 

that AMR assembly and/or contraction and membrane deposi-

tion appear to be interdependent in fungal and animal cells  

(Balasubramanian et al., 2004; Strickland and Burgess, 2004). 

In budding yeast, the AMR is thought to “guide” membrane de-

position and PS formation (Vallen et al., 2000; Bi, 2001), which 

requires a major contribution from Myo1 and a minor contribu-

tion from the actin ring (Figs. 5 and 6). How Myo1 ful�lls its 

guidance role independently of the actin ring remains unknown. 

The actin ring may ful�ll its guidance role as part of a “relay 

team” with the actin cables (Fig. 7 B). Once post-Golgi vesicles 

are transported by myosin V along actin cables to the division 

site (Pruyne et al., 1998), this vesicle–motor system switches to 

the actin �laments in the AMR, leading to a more even distribu-

tion of the vesicles and/or their cargoes such as Chs2 along the 

division site so that membrane deposition and/or PS formation 

can occur at a sharply de�ned position and correct timing, lead-

ing to ef�cient furrowing during cytokinesis. Alternatively, the 

actin ring may affect PS formation indirectly via its potential 

role in regulating Myo1 dynamics during cytokinesis. The relay 

mechanism may also operate during animal cytokinesis, except 

in this case it involves the switching of vesicle/cargo from a  

microtubule-based long-range transport system to an actin-based 










assembly (Eng et al., 1998; Takaine et al., 2009). Thus, the  

second-phase targeting mechanism in both organisms acts  

during cytokinesis and appears to involve the conserved pro-

teins ELC and IQGAP. In Dictyostelium, the tail-mediated  

myosin II targeting to the division site depends on its higher- 

order assembly (Zang and Spudich, 1998; Shu et al., 2003). 

However, how the assembled myosin II �laments �nd the cell 

middle remains unknown. In mammalian cells (Beach and 

Egelhoff, 2009), the tail of a nonmuscle myosin II localizes  

to the cleavage furrow independently of its assembly domain 

Figure 7. Biphasic targeting of Myo1 and the guiding role of the actomy-
osin ring in membrane deposition and ECM remodeling during cytokinesis. 
(A) A model for the biphasic targeting of Myo1 during the cell cycle. Myo1 
targeting before cytokinesis is mediated solely by the septin-binding pro-
tein Bni5. Myo1 targeting during cytokinesis depends on Mlc1 and Iqg1. 
Iqg1, Myo1, and actin filaments at the bud neck likely define the minimal 
components of the AMR. (B) A model for the guiding role of the AMR in 
PS formation. In addition to force generation, the AMR may function as a 
“compass” to guide membrane deposition and ECM remodeling (PS for-
mation in yeast) during cytokinesis by capturing and distributing vesicles 
and their cargoes along the division site. This motor-independent guidance 
role of the AMR is sufficient to ensure membrane closure during cytokinesis 
for small cells such as budding yeast, but not for the larger ones such as 
fission yeast and animal cells.
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of Pennsylvania (Philadelphia, PA). Sequencing of constructs was performed 
at the DNA Sequencing Facility, University of Pennsylvania.

Similar to the construction of plasmid pRS316-N-MYO1-GFP,  
which contains MYO1 under its own promoter control and carries a NotI  
GFPF64L/S65T/V163A cassette inserted immediately after the start codon of 
MYO1 (Caviston et al., 2003), plasmid pRS316-MYO1-C-GFP was con-
structed by inserting the same NotI-GFP cassette right before the stop  
codon of MYO1. Both plasmids were used as templates in PCR-mediated 
mutagenesis to generate plasmids containing different myo1 deletion al-
leles presented in Fig. 1 C.

Plasmid pRS316-MYO1-mCherry and YIp211-CDC3-mCherry were 
constructed by replacing the NotI-GFP cassette in pRS316-MYO1-C-GFP and 
YIp211-CDC3-GFP (Caviston et al., 2003), respectively, with the NotI-mCherry 
cassette in the plasmid YIp128-CDC3-mCherry (Gao et al., 2007).

Plasmid pUG23-MYO1 was constructed by PCR-amplifying the 
MYO1 ORF from YCp50-MYO1 (Vallen et al., 2000) and gap-repairing 
into EcoRI-digested pUG23 (provided by J. Hedgemann, Heinrich- 
Heine-Universität, Düsseldorf, Germany), generating N-terminally tagged  
GFP-MYO1 that is under MET25 promoter control. GFP-Myo1 expressed 
from this plasmid was able to fully complement the cytokinesis defects  
of the myo1 cells even when the cells were grown in standard synthetic 
media, which contains some methionine that normally represses the  
MET25 promoter.

Plasmid pFA6a-mCherry-KanMX6 was constructed by replacing  
the PacI–AscI fragment carrying GFP in plasmid pFA6a-GFP-KanMX6 
(Longtine et al., 1998) with the PacI–AscI fragment carrying mCherry from 
pKT355 (or pFA6a-link-mCherry-His3MX6), provided by K. Thorn (University 
of California, San Francisco, San Francisco, CA).

Plasmids carrying C-terminally TAP-tagged myo1 alleles were made 
in several steps. First, a C-terminal TAP tag (CBP-TEV-ProtA) was PCR-amplified 
from plasmid pBS1479 (Puig et al., 2001), generating a 588-bp TAP frag-
ment flanked by symmetrical restriction sites that were introduced in the 
PCR primers, HindIII–NotI–TAP–NotI–HindIII. This fragment was then di-
gested by HindIII and subscloned into pUC18 (Life Technologies Co.) at the 
HindIII site, yielding the plasmid pUC18-C-TAP. The correctness of the plas-
mid was confirmed by restriction-enzyme digestion and sequencing. Plasmids 
pRS316-MYO1-C-TAP and pRS316-MYO1-TD2-C-TAP were constructed by 
replacing the NotI-GFP cassette in plasmids pRS316-MYO1-C-GFP and 
pRS316-MYO1-TD2-C-GFP (see above) with the NotI-TAP cassette iso-
lated from plasmid pUC18-C-TAP.

Plasmids pMAL-MYO1-TD1, pMAL-MYO1-mTD1, and pMAL-MYO1-
TD2, which express MBP-tagged Myo1 fragments, were constructed by 
PCR amplifying myo1 fragments (myo1-TD1, myo1-mTD1, and myo1-
TD2) from the derivatives of pRS316-MYO1-C-GFP described above 
and subcloning as SalI–PstI fragments (SalI and PstI sites were intro-
duced in the forward and reverse primers, respectively) into SalI- and 
PstI-digested pMAL-c2 (New England Biolabs, Inc.). Plasmid pGEX-5X-
BNI5, which expresses GST-tagged Bni5, was constructed by first PCR 
amplifying and gap repairing BNI5 ORF into the EcoRI site of plasmid 
pJG-4-5 (Gyuris et al., 1993), and then subcloning a BamHI–XhoI frag-
ment carrying BNI5 ORF from pJG4-5-BNI5 into the corresponding sites 
of pGEX-5X-1 (GE Healthcare).

Plasmid pRS315-IQG1 was constructed by cloning a 7-kb SacI–SalI 
IQG1 fragment from p1868 into SacI–SalI-digested pRS315 (Korinek et al., 
2000). Plasmid pRS315-IQG1-GST, which expresses C-terminally GST-
tagged Iqg1, was constructed by PCR amplifying GST-His3MX6 from 
pFA6a-GST-His3MX6 (Longtine et al., 1998) and transforming the PCR 
product into yeast cells carrying pRS315-IQG1. Candidate plasmids were 
rescued from yeast cells and transformed into Escherichia coli for confirma-
tion by colony PCR and then further confirmed by sequencing. Plasmid 
pRS315-IQG1(1–697)-GST was constructed in a similar way except that 
the PCR-amplified GST-His3MX6 was inserted in-frame after amino acid 
697 of Iqg1, resulting in the deletion of residues 698–1495 from Iqg1. 
Plasmid pRS315-IQG1(2-411)-GST was constructed by a PCR-based 
method using appropriate mutagenic primers that resulted in the removal 
of residues 2–411 from Iqg1.

Precise replacement of the endogenous MYO1 with different myo1 alleles
We developed a genetic system in which the endogenous MYO1 can be 
precisely replaced by any myo1 allele containing truncation(s) or point 
mutation(s) without leaving any undesired nucleotides at the MYO1  
locus. Recipient strain Masa1243 [a myo1::URA3-KanMX6 (pUG23-
MYO1)] was constructed by first using a URA3 PCR fragment containing 
300-bp upstream sequences and 150-bp downstream sequences of 
URA3 to replace MYO1 ORF in the wild-type strain YEF473A carrying 
plasmid pUG23-MYO1, and then inserting KanMX6, which was PCR 

short-range transport system. A similar mechanism has been 

hypothesized for cargo transport in nondividing mammalian 

cells (Ross et al., 2008). Myo1 is also capable of guiding PS 

formation independently of the actin ring (Fig. 6), suggesting that 

Myo1 may interact directly with some of the components in-

volved in PS formation (Nishihama et al., 2009). Together, our 

data indicate that the AMR functions as a structural unit to guide 

membrane deposition and PS formation during cytokinesis.

In cells carrying Myo1 tail only, the motor domain– 

dependent force is eliminated while the force generated by mem-

brane deposition and ECM remodeling remains effective, as Myo1 

tail is still capable of directing the assembly of a headless AMR that 

can largely guide PS formation (Fig. 5), which explains, at least in 

part, why cytokinesis can still occur without the motor domain.

Why is the motor activity of myosin II 

differentially required for cytokinesis in 

different organisms?

Why is the motor activity of myosin II not required for cyto-

kinesis in budding yeast but required in �ssion yeast (Lord et al., 

2005) and animal cells (Straight et al., 2003)? The answer may 

lie in the cell dimension at the division site. The diameter of  

the division site varies tremendously depending on organisms 

and cell types, from 1 µm in budding yeast (Bi et al., 1998;  

Lippincott and Li, 1998) to 3.5 µm in �ssion yeast (Mitchison, 

1957), to more than 15–20 µm in animal cells (Carvalho et al., 

2009). However, all these organisms or cell types must com-

plete cytokinesis within a similar period of time. Assuming that 

there is no AMR contraction, for budding yeast, it requires only 

50 post-Golgi vesicles (the average diameter is 100 nm) for 

membrane closure during cytokinesis, but would require 613 

vesicles for �ssion yeast and 20,000 vesicles for an animal 

cell of 20 µm diameter to achieve the same feat during the same 

period of time. Thus, even in the complete absence of the AMR 

such as in myo1 cells, cytokinesis can still occur in budding 

yeast (Bi et al., 1998; Schmidt et al., 2002), presumably due to 

inef�cient and AMR-independent vesicle fusion (and septum 

formation) at the division site. However, for cells with a large 

division diameter, the motor activity of the myosin II is presumably 

required to power the invagination of the plasma membrane in 

order to reduce membrane requirement and achieve ef�cient 

cytokinesis within a given period of time. Thus, the basic forces 

and mechanisms governing cytokinesis are likely the same in 

yeast and animal cells, but the proportionality of each force in 

driving cytokinesis to completion may vary depending on the 

dimension of the division site for each organism or cell type.

Materials and methods

Yeast strains, growth media, and genetic methods
Yeast strains used in this study are listed in Table II. Standard culture media 
and genetic methods were used throughout this study (Guthrie and Fink, 
1991). Where noted, 1 mg/ml 5-fluoroorotic acid (5-FOA; Research Prod-
ucts International) was added to medium to select for the loss of URA3- 
containing plasmids.

Plasmids
Plasmids used in this study are listed in Table III. All primers were purchased 
from Integrated DNA Technologies through the Cell Center at the University 
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Table II. S. cerevisiae strains used in this study

Strain Genotype Reference or source

YEF473A a his3 leu2 lys2 trp1 ura3 (Bi and Pringle, 1996)

YEF1820 a/ his3/his3 leu2/leu2 lys2/lys2 trp1/trp1 ura3/ura3 myo1::KanMX6/myo1::HIS3 (Bi et al., 1998)

YEF1804 As YEF473A except myo1::KanMX6 (Bi et al., 1998)

YEF5762 As YEF473A except CHS2-GFP:His3MX6 This studya

YEF5804 As YEF473A except CDC3-mCherry:LEU2 This studyb

YEF5874 As YEF473A except CHS2-GFP:His3MX6 CDC3-mCherry:LEU2 This studyc

YEF5986 As YEF473A except MYO2-GFP:His3 CDC3-mCherry:LEU2 This studyc

YEF6179 a mlc1-11 MYO1-GFP:KanMX6 CDC3-mCherry:LEU2 This studyd

YEF6113 a MYO1-GFP:His3MX6 NUP57-GFP:URA3 his3 leu2 lys2 ura3 This studye

YEF6307 a MYO1-GFP NUP57-GFP:URA3 This studyf

YEF6308 a myo1-TD2-GFP NUP57-GFP:URA3 This studyf

YEF6309 a myo1-Tail-GFP NUP57-GFP:URA3 This studyf

YEF6310 a myo1-TD2-GFP NUP57-GFP:URA3 This studyf

YEF6316 a bni5::His3MX6 MYO1-GFP NUP57-GFP:URA3 This studyf

YEF6321 a MYO1-GFP BNI5-mCherry:KanMX6 This studyg

YEF6322 a bni5::His3MX6 myo1-TD2-GFP This studyh

YEF6323 a bni5::His3MX6 myo1-TD2-GFP CDC3-mCherry:LEU2 This studyh

YEF6325 a iqg1::His3MX6 CDC3-mCherry:LEU2 [pRS316-MYO1-C-GFP] This studyi

YEF6326 a myo1-mTD1-GFP BNI5-mCherry:KanMX6 This studyj

Y5005-8D As YEF473A except mlc1-11 (Luo et al., 2004)

YKT520 As YEF473A except MYO2-GFP:HIS3 K. Tanaka

YKT662 As YEF473A except MYO2-GFP:TRP1 K. Tanaka

RNY970 As YEF473A except iqg1::His3MX6 [YCp50-IQG1] J.R. Pringle

RNY2594 As YEF473A except iqg1::His3MX6 MYO1-GFP:KanMX6 [pRS315-IQG1-GST] This studyk

RNY2595 As YEF473A except iqg1::His3MX6 MYO1-GFP:KanMX6 [pRS315-IQG1(2-411)-GST] This studyk

RNY2596 As YEF473A except iqg1::His3MX6 MYO1-GFP:KanMX6 CDC3-mCherry:URA3  
[pRS315-IQG1-GST]

This studyl

RNY2597 As YEF473A except iqg1::His3MX6 MYO1-GFP:KanMX6 CDC3-mCherry:URA3  
[pRS315-IQG1(2-411)-GST]

This studyl

Masa1243 As YEF473A except myo1::URA3-KanMX6 [pUG23-MYO1] See text

YJL221A As YEF473A except myo1-TD1-GFP See text

YJL222A As YEF473A except myo1-TD2-GFP See text

YJL335A As YEF473A except myo1-Tail-GFP See text

YJL376A As YEF473A except myo1-AD-GFP See text

YJL488A As YEF473A except myo1-TD2-GFP See text

YJL489A As YEF473A except myo1-mTD1-GFP See text

XDY7 YEF1820 [pRS316-MYO1-C-TAP] This study

XDY41 As YEF473A except MYO1-GFP See text

XDY99 YEF1820 [pRS316-MYO1-TD2-C-TAP] This study

XDY154 YEF473A [pRS316-MYO1-TD2-GFP] This studym

XDY173 a mlc1-11 [pRS316-MYO1-TD2-GFP] This studym

XDY189 a myo1-mTD1-GFP BNI5-3HA:His3MX6 This studyn

XDY190 a myo1-Tail-GFP BNI5-3HA:His3MX6 This studyn

XDY191 a myo1-TD1-GFP BNI5-3HA:His3MX6 This studyn

XDY192 a myo1-TD2-GFP BNI5-3HA:His3MX6 This studyn

XDY194 a myo1-AD-GFP BNI5-3HA:His3MX6 This studyn

XDY211 a myo1-mTD1-GFP BNI5-mCherry:KanMX6 [pRS316-N-NotI-MYO1] This studyo
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amplified from pFA6a-KanMX6 (Longtine et al., 1998), after the URA3 at 
the myo1 locus.

Plasmids pRS316-N-MYO1-GFP and pRS316-MYO1-C-GFP and 
their derivatives carrying different myo1 alleles were digested with SalI 
and ClaI, and then transformed into Masa1243. The transformation mix-
tures were plated out on SC-His plates and incubated at 25°C for 2 d. After 
cells were grown to confluency on SC-His plates, the cells were replicated 
onto SC-His+ 5-FOA plates to select for Ura cells, and then screened for 
G418 sensitivity on YPD+G418 plates to get Ura Kans cells in which the 
URA3-KanMX6 cassette at the myo1 locus was replaced by the incoming 
myo1 allele. The resulting colonies were then grown in non-selective YPD 
medium to lose the plasmid pUG23-MYO1.

Table II. S. cerevisiae strains used in this study (Continued)

Strain Genotype Reference or source

XDY218 a iqg1::His3MX6 [pRS316-MYO1-TD2-GFP] This studyp

XDY254 a MYO1-GFP bni5::His3MX6 This studyn

XDY257 a myo1-TD2-GFP bni5::His3MX6 This studyn

XDY258 a myo1-mTD1-GFP bni5::His3MX6 This studyn

XDY286 a MYO1-GFP CDC3-mCherry:LEU2 This studyq

XDY287 a bni5::His3MX6 MYO1-GFP CDC3-mCherry:LEU2 This studyq

XDY288 a myo1-Tail-GFP CDC3-mCherry:LEU2 This studyq

XDY289 a myo1-TD2-GFP CDC3-mCherry:LEU2 This studyq

XDY290 a myo1-TD2-GFP CDC3-mCherry:LEU2 This studyq

XDY295 a iqg1::His3MX6 [pRS316-MYO1-TD2-GFP] [pRS315-IQG1-GST] This studyp

XDY296 a iqg1::His3MX6 [pRS316-MYO1-TD2-GFP] [pRS315-IQG1(1-697)-GST] This studyp

XDY300 a iqg1::His3MX6 [pRS316-MYO1-TD2-GFP] [pRS315-IQG1(2-411)-GST] This studyp

aConstructed by a PCR-based method (Longtine et al., 1998).

bConstructed by transforming BglII-digested YIp128-CDC3-mCherry (Gao et al., 2007) into YEF473A and integrating at the CDC3 locus.

cConstructed by PCR-amplifying CHS2-GFP:HIS3MX6 and MYO2-GFP:HIS3 fragments from YEF5762 and YKT520, respectively, and transforming  
into YEF5804.

dConstructed by transforming Y5005-8D with a MYO1-GFP:KanMX6 fragment that was PCR-amplified from YEF2293 (Luo et al., 2004), followed by 
integration of BglII-digested YIp128-CDC3-mCherry at the CDC3 locus.

eConstructed by a PCR-based method(Longtine et al., 1998) using plasmids pFA6a-GFP-His3MX6 (Longtine et al., 1998) and pFA6a-GFP-URA3 (pro-
vided by C. Burd, University of Pennsylvania, Philadelphia, PA) as templates for tagging MYO1 and NUP57, respectively. The PCR fragments containing 
MYO1-GFP:His3MX6 and NUP57-GFP:URA3 were transformed sequentially into strain RLY1 (Winter et al., 1999).

fConstructed by transforming PCR-amplified NUP57-GFP:URA3 from YEF6113 into strains XDY41, YJL488A, YJL335A, YJL222A, and XDY254, respectively.

gConstructed by transforming PCR-amplified BNI5-mCherry:KanMX6 from XDY211 into XDY41.

hConstructed by transforming PCR-amplified bni5::His3MX6 from XDY254 into YJL448A and XDY289, respectively.

iStrain XDY218 was first transformed by BglII-digested YIp128-CDC3-mCherry and then streaked on a SC-Leu + 5-FOA plate to select for the loss of plas-
mid pRS316-MYO1-TD2-GFP. The resulting strain was then transformed with plasmid pRS316-MYO1-C-GFP.

jConstructed by streaking XDY211 on a SC + 5-FOA plate to select for the loss of plasmid pRS316-N-NotI-MYO1.

kStrain RNY1264 (iqg1::His3MX6 MYO1-GFP:KanMX6 [YCp50-IQG1]) was transformed with pRS315-IQG1-GST or pRS315-IQG1(2-411)-GST, and 
the resulting strains were streaked on a SC-Leu + 5-FOA plate to eliminate YCp50-IQG1.

lConstructed by transforming BglII-digested YIp211-CDC3-mCherry into strains RNY2594 and RNY2595 and integrating at the CDC3 locus.

mConstructed by transforming the plasmid into YEF473A and Y5005-8D, respectively.

nStrains carrying different myo1 alleles were transformed with plasmid pRS316-MYO1. The resulting strains were either 3HA-tagged or deleted  
for BNI5 using a PCR-based method (Longtine et al., 1998), and then selected for the loss of the MYO1 plasmid by growing cells in non-selective 
YPD medium.

oConstructed by transforming a BNI5-mCherry:KanMX6 fragment that was PCR-amplified from plasmid pFA6a-mCherry-KanMX6 into YJL489A carrying 
plasmid pRS316-N-NotI-MYO1 (Caviston et al., 2003).

pStrain RNY970 (shown in the table) was streaked from a SC-His plate onto a SC-His + 5-FOA plate; the resulting single colonies were checked by PCR 
to confirm the loss of the IQG1 plasmid. The resulting iqg1::His3MX6 strain was then transformed with indicated plasmids to generate strains XDY218, 
XDY295, XDY296, and XDY300.

qStrains XDY41, XDY287, YJL335A, YJY222A, and YJY488A were transformed with plasmid pRS316-MYO1. The resulting strains were then trans-
formed with BglII-digested integrative plasmid YIp128-CDC3-mCherry and transformants were selected on SC-Leu plates at 25°C and then grown in 
non-selective YPD medium to lose the MYO1 plasmid.

Purification of TAP-tagged Myo1 from yeast cells
Myo1-C-TAP and Myo1-TD2-C-TAP were purified as described previously 
(Puig et al., 2001), with some modifications. Eight liters of myo1 cells 
carrying pRS316-MYO1-C-TAP or pRS316-MYO1-TD2-C-TAP were grown 
in SC-Ura medium at 23°C to an OD600 = 2.0–3.0, collected by centrifuga-
tion, washed twice with water, resuspended into 40.0 ml cell lysis buffer 
(CLB; 50 mM Hepes-KOH, pH 7.9, 150 mM NaCl, 5 mM MgCl2, 5 mM 
ATP, 0.1% NP-40, and 2 mM Benzamidine), and added 1.0 ml 100x pro-
tease inhibitor cocktail (with stock concentrations of 50 µg/ml leupeptin, 
140 µg/ml pepstatin A, 240 µg/ml chymostatin, 1.7 mg/ml aprotinin, 
0.25 mg/ml antipain, and 35 µg/ml bestatin) and 0.5 ml 100× phospha-
tase inhibitor cocktail I (Sigma-Aldrich). The cell suspension was passed 
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1 µl rabbit polyclonal GFP antibody (Abcam) and 30 µl protein A agarose 
beads (Life Technologies Co.). After incubation at 4°C for 12–16 h, beads 
were washed five times each with 200 µl lysis buffer without protease and 
phosphatase inhibitors, and proteins bound to the beads were boiled with 
100 µl SDS-sample buffer. The precipitated Myo1-GFP variants, the total 
Bni5-HA in cell lysates, and the bound fractions of Bni5-HA were analyzed 
by SDS-PAGE and blotted with anti-GFP, and anti-HA monoclonal antibodies, 
respectively (Covance).

Production of recombinant proteins and in vitro binding assay
E. coli strain BL21(DE3) containing appropriate constructs for expressing 
recombinant proteins was grown in 30–600 ml LB plus 100 mg/ml ampi-
cillin at 37°C to OD600 ≤ 1.0. Expression of recombinant proteins was  
induced with 1 mM IPTG at 23°C for 3 h. Cells were then collected by  
centrifugation, washed twice with water, resuspended into 5–20 ml cell  
lysis buffer (CLB [the CLB for MBP-tagged proteins: 20 mM Tris-HCl, pH 8.0, 
100 mM NaCl, 5 mM EDTA, 5 mM DTT, 0.1% NP-40, and 2× complete 
protein inhibitor cocktail tablets; Roche Diagnostics Co.; the CLB for GST-
tagged protein: 1x PBS, 5 mM EDTA, 5 mM DTT, 0.1% NP-40, and 2× 
complete protein inhibitor cocktail]). Cells were then broken by sonicating 
for 7 x 15 s with 15-s interval on ice, centrifuged at 15,000 rpm for 20 min 
at 4°C. Supernatant was collected and incubated with prewashed amylose 
beads (New England Biolabs, Inc.) for MBP-tagged proteins or glutathione 
Sepharose 4B beads (GE Healthcare) for GST-tagged proteins at 4°C for  
1 h. Beads were then washed three times each with 5.0 ml corresponding 
CLB buffer. MBP-tagged proteins were resuspended in 1.0 ml CLB. GST-
tagged proteins were eluted five times each with 200 µl elution buffer, 
which is the CLB for MBP-tagged proteins, except containing 10 mM  
reduced glutathione and lacking the protease inhibitors.

The concentrations of the purified recombinant proteins were esti-
mated by comparing the sample proteins to bovine serum albumin (BSA) of 
known concentrations by SDS-PAGE analysis, followed by staining the gel 
with simple blue (Life Technologies Co.). Approximately 40 µg MBP-tagged 
proteins that were still bound on beads were added to different 1.5-ml  
Eppendorf tubes, the amount of beads was normalized by adding more 
prewashed beads, and then incubated with 500 µl 5% BSA at 4°C for 1 h 
to block nonspecific binding by the beads. After a brief centrifugation to 
pellet the beads and remove the supernatant, the beads were mixed with  
10 µg GST-tagged protein. The CLB for MBP-tagged proteins without the 
protease inhibitors was added to the reaction to make the final volume of 
500 µl. The binding reaction was incubated with rotation at 4°C for 1 h, and 

through a French press three times with a pressure ≤ 1,200 psi to break 
down the cells, which was followed by centrifugation at 100,000 g for 
150 min at 4°C to clear the cell lysate. The supernatant was then mixed 
with 500 µl IgG beads (GE Healthcare), which had been prewashed five 
times with 5.0 ml CLB. The mixture was incubated with rotation at 4°C 
overnight. The beads were spun down, washed five times each with 10.0 ml 
CLB, once with 10.0 ml TEV cleavage buffer (10 mM Hepes-KOH, pH 7.9, 
150 mM NaCl, 0.5 mM EDTA, 1 mM DTT, and 0.1% NP-40), resuspended  
in 1.0 ml TEV cleavage buffer plus 150 U AcTEV Protease (Life Technol-
ogies Co.), and then incubated with rotation at 4°C overnight. Approxi-
mately 1.0 ml of supernatant containing Myo1 was separated from IgG 
beads by passing through a column. The column was then washed five 
times each with 2.0 ml calmodulin binding buffer (CBB; 10 mM Hepes-
KOH, pH 7.9, 150 mM NaCl, 1 mM Mg acetate, 1 mM imidazole, 2 mM 
CaCl2, 10 mM 2-mercaptoethnol, and 0.1% NP-40). The supernatant and 
the flow-through from the washes were combined, totaling 11.0 ml in 
volume, to which 10 µl 1.0 M CaCl2 was added. This protein solution was 
mixed with 100 µl Calmodulin Affinity Resin (Agilent Technologies), which 
had been prewashed three times each with 5.0 ml CBB. The mixture was 
incubated with rotation at 4°C for 2 h, and then passed through a column, 
which was followed by three washes each with 10.0 ml CBB. The protein 
was then eluted 10 times each with 200 µl calmodulin elution buffer (10 mM 
Hepes-KOH, pH 7.9, 150 mM NaCl, 1 mM Mg acetate, 1 mM imidazole, 
20 mM EGTA, 10 mM 2-mercaptoethnol, and 0.1% NP-40).

The combined eluents from the experiments above were passed 
through Amicon ultra centrifugal filter devices with suitable MWCO (Milli-
pore) to change the buffer into 2x EM buffer (300 mM KCl, 2 mM MgCl2, 
2 mM EGTA, 2 mM DTT, 20 mM imidazole-HCl, pH 7.0, and 400 µM 
ADP), which was then diluted by equal volume of 100% glycerol to make 
Myo1 preparation in 1x EM buffer for EM observation (see below). The  
final concentrations of Myo1-C-TAP and myo1-TD2-C-TAP in the EM buffer 
were 10 µg/ml.

Coimmunoprecipitation experiments
100 OD600 of yeast cells grown exponentially in SC-His media were dis-
rupted by vortexing with glass beads at 4°C in 500 µl of 1x PBS buffer 
(137 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate dibasic, and  
2 mM potassium phosphate monobasic, pH 7.4) containing 0.1% NP-40 
and a cocktail of protease inhibitors (5x stock) and phosphatase inhibitors 
(5x cocktail-I stock) for yeast (Sigma-Aldrich). After centrifugation to re-
move cell debris, the supernatant was used for immunoprecipitation with  

Table III. Plasmids used in this study

Plasmid Description Reference or source

pUG23-MYO1 CEN, HIS3, pMET25-yEGFP3, MYO1 See text

pRS316-N-MYO1-GFP CEN, URA3, GFP-MYO1 (Caviston et al., 2003)

pRS316-MYO1-C-GFP CEN, URA3, MYO1-GFP See text

pRS316-MYO1-TD2 -GFP CEN, URA3, myo1-TD2-GFP See text

pRS316-MYO1-TD2-GFP CEN, URA3, myo1-TD2-GFP See text

pRS316-MYO1-TD1-GFP CEN, URA3, myo1-TD1-GFP See text

pRS316-MYO1-mTD1-GFP CEN, URA3, myo1-mTD1-GFP See text

pUC18-C-TAP C-TAP See text

pRS316-MYO1-C-TAP CEN, URA3, MYO1-C-TAP See text

pRS316-MYO1-TD2-C-TAP CEN, URA3, MYO1-TD2-C-TAP See text

pRS316-MYO1-mCherry CEN, URA3, MYO1-mCherry See text

pMAL-c2 malE (or N-MBP) New England Biolabs

pMAL-MYO1-TD1 MBP-myo1-TD1 See text

pMAL-MYO1-mTD1 MBP-myo1-mTD1 See text

pMAL-MYO1-TD2 MBP-myo1-TD2 See text

pGEX-5X-BNI5 GST-BNI5 See text

YIplac128-CDC3-mCherry Integrative, LEU2, mCherry (RFP)-CDC3 (Gao et al., 2007)

YIplac211-CDC3-mCherry Integrative, URA3, mCherry (RFP)-CDC3 See text

pRS315-IQG1 CEN, LEU2, IQG1 See text

pRS315-IQG1-GST CEN, LEU2, IQG1-GST See text

pRS315-IQG1-(1-697)-GST CEN, LEU2, iqg1(1-697)-GST See text

pRS315-IQG1(2-411)-GST CEN, LEU2, iqg1(1, 412-1495)-GST See text

YCp50-IQG1 CEN, URA3, IQG1 (Korinek et al., 2000)
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myo1-TD2-GFP localization to the bud neck in bni5 cells. Video 6 shows 
the localization of Myo1 in bni5 cells versus localization of myo1-TD2 
during the cell cycle. Video 7 shows three-dimensional construction of the 
actin ring in a myo1-Tail cell. Video 8 shows the localization of Myo1  
versus Myo2 and Chs2 during the cell cycle. Video 9 shows the localiza-
tion of Myo2 and Chs2 versus Cdc3 during the cell cycle. Video 10 shows 
the constriction patterns of Myo1 ring in the presence of full-length IQG1 
versus iqg1(2-411). Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.201005134/DC1.
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