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We demonstrate spectral shaping of entangled photons in the telecom band with a programmable, fiber-based op-
tical filter. The fine-resolution spectral control permits implementation of length-40 Hadamard codes, through
which we are able to verify frequency anticorrelation with a 20-fold increase in total counts over that permitted
by the equivalent pair of monochromators at the same input flux. By programming the complex spectral transmis-
sion function corresponding to a Mach–Zehnder interferometer, we also construct variations on Franson interfer-
ometers that are free frommechanical instabilities, demonstrating spectral phase independence in the slow-detector
limit, in which all temporal features are unobservable. Our configuration furnishes a single, compact arrangement
for manipulating telecom biphotons and characterizing their quality. © 2013 Optical Society of America
OCIS codes: (270.5565) Quantum communications; (320.5540) Pulse shaping.
http://dx.doi.org/10.1364/OL.38.004652

Entangled photons have proven themselves indispen-
sable in the experimental realization of quantummechan-
ics. Not only have they found use in testing quantum
paradoxes such as Bell’s inequality [1], they have also as-
sumed central roles in quantum key distribution and
quantum teleportation [2]. Independently, Fourier pulse
shaping has engendered unparalleled control of classical
optical waveforms, with applications ranging from coher-
ent control of light-matter interactions to radio-frequency
photonics [3]. And although initial work in pulse shaping
was concerned with coherent classical sources, it has
also been applied to manipulate the electric field cross-
correlation of incoherent classical light [4] and more
recently to shape the correlation function of entangled
photons [5]. Since then, there have been relatively few
experiments exploring biphoton shaping with spatial
light modulators (e.g., [6–8]), and thus there remains
much untapped potential. In this work, we demonstrate
spectral shaping of entangled photons in the telecommu-
nications band around 1550 nm, which to our knowledge
represents the first time biphotons of this frequency have
been shaped by spatial light modulators. Our configura-
tion integrates into existing fiber-based systems and
therefore proves valuable for photon sources used in
quantum communication over optical fiber.
Our entangled photons are generated via spontaneous

parametric downconversion (SPDC) [9,10], in which a
high-frequency pump photon decays into two daughter
photons; individually, each generated photon can be
extremely broadband, yet the sum of their two measured
frequencies must equal that of the pump. The nonlinear
mediumwe employ is a highly efficient periodically poled
lithium niobate (PPLN) waveguide [11–13]. Figure 1(a)
shows the experimental setup. We couple a continu-
ous-wave pump laser into a PPLN waveguide heated
to 140°C. At this temperature, degenerate downconver-
sion is phase-matched for a pump wavelength of
∼774 nm. After passing through colored glass filters to
remove residual pump light, the entangled photons gen-
erated around 1548 nm are then coupled into optical fiber
and sent through a pulse shaper. We use the commercial

Finisar WaveShaper 4000S/X, which offers independent
amplitude and phase control at 20 GHz resolution over
the band from 1527 to 1600 nm—corresponding in total
to 450 resolvable spectral regions—in addition to the
capability to send each frequency to one of four output
ports. This allows us to split the two photons by wave-
length, with the high-frequency “signal” photon exiting
one output port and the corresponding “idler” leaving an-
other. Similar wavelength splitting of entangled photons
has been demonstrated previously with a wavelength-
selective switch [14]; here we augment this capacity with
the inclusion of programmable pulse shaping. After
wavelength demultiplexing, the photons are then de-
tected on a pair of gated InGaAs single-photon avalanche
photodiodes (Aurea SPD_AT_M2), operated at 20% quan-
tum efficiency and with a 10 ns gate clocked at 1.25 MHz.
The photon arrivals are tagged by an event timer
(HydraHarp 400), with coincidences defined as detec-
tions within 1 ns of each other.

With approximately 10 mW of pump light in the wave-
guide, we couple about 80 nW of SPDC photons into
optical fiber. The spectrum immediately following the
collimator is shown in Fig. 1(b), acquired at a resolution
of 250 GHz: the SPDC emission has a 3 dB bandwidth of

Fig. 1. (a) Experimental setup. (b) SPDC spectrum after col-
limator, showing signal and idler passbands. The total FWHM is
7.5 THz. (c) Pulse-shaper transmittance for Hadamard codes.
Here code 8 is applied to the idler spectrum and code 30 to
the signal.
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7.5 THz and is nearly flat over the 4 THz band set for
the pulse shaper. For subsequent tests with the InGaAs
detectors, we attenuate the pump beam to minimize
accidentals caused by multipair generation; for the
following experiments, we operate at single detector
count rates around 3500 s−1 for 2 THz signal and idler
passbands and flat phase on the pulse shaper.
To verify spectral entanglement, we exploit a

Hadamard-based approach made possible by the pro-
grammability and fine spectral resolution of our pulse
shaper. Conceptually, the most straightforward way to
demonstrate entanglement would instead be to compare
the coincidences between two narrow slits on a spec-
trometer; only when the slits are evenly spaced about
the entanglement frequency would coincidences be reg-
istered. And indeed, a pulse shaper is well suited for such
a measurement, as the “two slits” can be implemented
simply by programming narrow spectral filters. However,
this technique suffers from a low signal-to-noise ratio,
since the slit width is directly proportional to the prob-
ability that a given photon passes. For example, in an
experiment with N frequency bins, each equal to 1∕N
of the total signal (or idler) bandwidth, coincidences
between symmetric passbands would drop to 1∕Nth
the number of coincidences when all slits are open. As
we show below, we can obtain an N∕2-fold increase in
coincidences at a given spectral resolution and input
flux with an approach analogous to classical Hadamard
spectroscopy [15].
In this work we use modified Walsh–Hadamard codes

as spectral filters. A standard Walsh–Hadamard family
consists of a set of N length-N sequences of 1’s and
−1’s (or equivalently phases of 0 and π), with the property
that any two codes are orthogonal [16]. Since we con-
sider amplitude coding here, we replace all π-phase
elements with zero-transmissivity chips, yielding modi-
fied codes containing 1 and 0’s instead. (As we show
later, our slow detectors are intrinsically insensitive to
any spectral phase modulation.) In this scheme, the
signal photon is encoded with one such amplitude
sequence, and the idler is decoded with another.
Figure 1(c) provides an example code pair. With 80
resolvable spectral elements, these codes possess greatly
increased complexity over previous biphoton phase and
amplitude functions [5–7], made possible here by the
pulse-shaper resolution. Due to signal-idler spectral anti-
correlation, a large number of simultaneous detections
are registered when the codes are matched (perfectly
symmetric about the degeneracy point), since the signal
photon corresponding to a given idler detection is always
passed. On the other hand, when the codes are mis-
matched, only half of the partner signal photons are
passed. Thus pure spectral anticorrelation is verified
by an ideal 2∶1 contrast between matched and mis-
matched codes.
This precise factor of 2 stems from the defining

characteristics of Hadamard codes. In mismatched cases,
one half of the 1’s on one code must multiply 1’s on the
partner, while the other half multiply 0’s. Excluding the
code consisting of all 1’s, each sequence in a Hadamard
family contains precisely N∕2 1’s and N∕2 0’s, and so
matched codes yield a total of N∕2 passed signal-idler
bins, whereas mismatched codes give only N∕4 pair

combinations that are simultaneously open. And since
the equivalent monochromator passes only one bin at a
time, the detected coincidence rate is N∕2 times lower
for a given resolution and input flux. Comparing our
length-40 Hadamard approach to the equivalent two-slit
test, then, we are able to increase the total coincidence
rate 20-fold for our chosen spectral resolution and input
flux. Admittedly, with the ability to raise the biphoton
flux by a factor of N∕2, it would be possible to achieve
the same coincidence rate for matched monochromators
as in our Hadamard approach. However, in addition to
the requirement of adjusting the pump power, which
may be impractical in some circumstances, doing so also
increases the relative probability for accidentals due to
multiple-pair generation, which scales quadratically with
the pair flux [17]. In contrast, our method boosts the
coincidence rate at any given pump power, significantly
improving sensitivity without altering the statistical prop-
erties of the input field. Hadamard coding can thereby be
viewed as a source-independent method to verify spec-
tral entanglement much more efficiently than comparing
the coincidences between two narrowband filters.

The results of this experiment are presented in Fig. 2.
Each point was obtained over a 30 s integration time, and
the average contrast between matched and mismatched
codes is 1.89∶1, compared to the theoretical maximum of
2∶1 for perfectly flat spectra and no accidentals. The rel-
atively low rate of coincidences per idler detection is due
to the optical loss of the system, particularly the approx-
imately 6 dB pulse-shaper insertion loss, which proves to
be the primary limitation of our configuration.

The utility of this pulse-shaper arrangement is further
highlighted by experiments in Franson interferometry. In
the typical Franson setup [Fig. 3(a)], entangled photons
are sent through separate Mach–Zehnder interferometers
(MZIs), identical except for phase shifts in their long
arms, with detectors placed at one of the output ports
of each MZI [18]. When the path-length difference
between MZI arms exceeds the broadband one-photon
coherence length, but is less than that of the pump,

Fig. 2. Coincidence rate as a function of signal-idler Hadamard
codes, normalized to idler detections. Only codes 2 through 40
are shown, as code 1 corresponds to full transmission. When
the codes are matched, approximately twice as many coinci-
dences are registered as when the codes differ, confirming
spectral entanglement.
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the coincidences between the two detectors display
interference even though single-photon interference
is absent. The measured coincidence rate Rc can be
expressed mathematically as

Rc ∝ 1� V cos�Φs �Φi � 2ω0T�; (1)

where Φs and Φi are the phase shifts experienced in the
long arms of the signal and idler MZIs, respectively; 2ω0 is
the pump frequency; T is the relative delay between long
and short arms; and V is the visibility. When the detector
resolution is sufficiently fine to distinguish between
photon arrivals separated in time by an amount T , the
visibility can reach 1, whereas when this is not the case,
the maximum possible value is 0.5 [19].
Since an MZI transforms the input optical field in a

manner that is linear and time-invariant, the field at each
output port can be viewed as the result of applying a com-
plex spectral filter function to the input. This allows us to
use the pulse shaper to emulate each MZI by program-
ming the appropriate spectral phase and amplitude [7].
Omitting an unimportant overall delay, the spectral
transmittance applied to the pulse shaper for the signal
MZI is

T �ω� � cos2
�Φs � ωT

2

�
; (2)

and the spectral phase is

ϕ�ω� �
0
@ �Φs � ωT�∕2 if cos

�
Φs�ωT

2

�
> 0

�Φs � ωT�∕2� π if cos
�
Φs�ωT

2

�
< 0:

(3)

The idler amplitude and phase are obtained by replacing
Φs with Φi. An example filter function for Φs � π∕2,
Φi � 0, and T � 5 ps is given in Fig. 3(b). In replacing
the mirrors and beam splitters of a traditional MZI with
a stand-alone pulse shaper, our implementation offers
enhanced stability over the standard Franson arrange-
ment. Unlike mounted mirrors which destroy interfer-
ence at the slightest mechanical perturbation, this
pulse shaper provides a constant spectral filter indepen-
dent of table vibrations or temperature fluctuations.

Programming T � 5 ps and sweeping the phase
applied to the pulse shaper, we obtain the results of
Fig. 4(a), which reveal an interference visibility of around
0.43. The pulse shaper’s time aperture—or the time
window over which it can accurately reproduce the pro-
grammed waveform—is ∼30 ps, whereas the detector
resolution is ∼200 ps, so 0.5 is the largest visibility pos-
sible in the current arrangement. And if we allow for
the possibility that the long-arm delays of the two MZIs
are not identical but differ by an amount ΔT , the coinci-
dence rate for a flat signal spectrum of widthΔω assumes
the form

Rc ∝ 1� V sinc
�
ΔωΔT

2

�
cos�Φs �Φi � φ�; (4)

where φ is some constant phase offset. Thus our interfer-
ence visibility is expected to reduce like a sinc function.

Fig. 3. (a) Typical Franson interferometer. The signal and id-
ler photons are sent through MZIs with different phase shifts in
the long arms: Φs for the signal and Φi for idler. (b) Spectral
transmittance and phase applied by pulse shaper to emulate a
Franson interferometer. Signal and idler photons are distin-
guished by frequency and sent through spectral filters that
are equivalent to traversing MZIs. In addition to 2π jumps from
wrapping the spectral phase, π discontinuities also occur as the
sinusoidal field transmission function—the square of which
gives the power transmittance—changes sign.

Fig. 4. (a) Experimental coincidence rate for pulse-shaper
Franson interferometer, at matched MZI delays and with a
30 s integration time per point. The detected coincidences show
interference with the applied phase Φs �Φi, possessing a vis-
ibility of 0.43. (b) Reduction in visibility as the MZI delays are
shifted from each other. The theoretical curve is scaled to
match the experimental visibility at zero mismatch, and error
bars represent 95% confidence intervals for the fit parameters.
(c) Coincidence rate for pulse-shaper interferometer with flat
spectral phase, again at a measurement time of 30 s per data
point. The visibility is 0.45.
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The effect of programming delay mismatch between
the two MZIs on the measured visibility is presented in
Fig. 4(b), confirming theoretical considerations.
The pulse shaper also permits the creation of “interfer-

ometers” with no mechanical analogues, an example of
which was examined previously in the phase-sensitive
ultrafast detection regime [7]. Here we extend these
concepts to the slow-detector limit, in which we show
that spectral phase has no effect. For example, if we
apply the spectral amplitude of Fig. 3(b), but instead
impose flat phase, we anticipate the same interference
pattern as with true MZIs. To understand this general
result, consider a biphoton spectrum described by the
complex weight function F�Ω�, where Ω gives the signal
frequency offset from ω0. Signal filter Hs�ω� and idler
filter Hi�ω� are applied to the entangled photons, and
coincidences are measured. In the slow-detector limit,
the measured coincidence rate Rc is given by [14]

Rc ∝
Z

∞

−∞
dΩjF�Ω�Hs�ω0 �Ω�Hi�ω0 − Ω�j2: (5)

Therefore the measured coincidence rate is independent
of spectral phase in this limit. Intuitively, this result
makes sense, for it states that the total coincidence rate
is an integral over all entangled frequency combinations,
with each pair multiplied by the probabilities both
photons are passed. We confirm this phase independence
experimentally by applying the transmission functions of
Eq. (2), but with flat phase instead of Eq. (3); the result is
given in Fig. 4(c). With a visibility of about 0.45, the
coincidence rate is nearly identical to the true MZI sim-
ulator of Fig. 4(a). We emphasize that this independence
on spectral phase is only valid when the detector resolu-
tion τd satisfies τd ≫ T . When τd ≪ T , flat spectral phase
does not produce the unity visibility possible with true
MZI phase.
We have experimentally verified a simple, fiber-

pigtailed pulse-shaping system for the control of
entangled photons in the telecom band, which offers inte-
grability with existing fiber-based quantum systems. Our
arrangement is immediately useful as a programmable

optical simulator to test biphoton sources in a stable,
straightforward configuration.
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