
1564 WWW.CROPS.ORG CROP SCIENCE, VOL. 49, SEPTEMBER–OCTOBER 2009

SCIENTIFIC PERSPECTIVES

A large amount of literature on the use of biplot analysis for 
studying genotype × environment interaction (GE) has recently 

appeared. Such biplot analyses are based on one or another of several 
diff erent linear-bilinear models all of which conform to the frame-
work of the general linear-bilinear model (GLBM) (e.g., Cornelius 
and Seyedsadr, 1997). The additive main eff ects and multiplica-
tive interaction (AMMI) model and the genotype main eff ects and 
genotype × environment interaction eff ects (GGE) model (fi tted to 
residuals after removal of environment main eff ects) have been the 
two most commonly used models for the biplot analysis. The GGE 
model is sometimes called the Sites Regression (SREG) model 
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(Crossa and Cornelius, 1997). Several recent reviews have 
exhaustively compared and contrasted AMMI and GGE 
with respect to their suitability for GE analysis (Gauch, 
2006; Yan and Tinker, 2006; Yan et al., 2007; Gauch et al., 
2008). Basic principles and methodology as well as applica-
tions have been described in books on AMMI by Gauch 
(1992) and on GGE by Yan and Kang (2002).

While there is no denial that the AMMI or GGE 
biplot analysis is very useful for quick visualization and 
exploration of patterns inherent in the complex GE two-
way table, we have developed a concern with the utility 
and interpretations of such biplot analyses beyond their 
functionality and capability. Because of widespread dis-
tribution of user-friendly software for AMMI and GGE 
analyses, it is worrisome if any inadvertent use of the soft-
ware may lead to dubious results and conclusions. Recent 
reviews (Gauch, 2006; Yan and Tinker, 2006; Yan et al., 
2007; Gauch et al., 2008) focused on what each of the 
AMMI and GGE biplot analyses can do and on which 
analysis is better than the other in handling diff erent sit-
uations. In this paper, we will instead examine the key 
issues regarding the limitations of both AMMI and GGE 
biplot analyses as descriptive and visualization tools and 
discuss the consequences of ignoring them these limita-
tions. These issues are critical because they are inherently 
related to the validity and scope of the functionalities and 
capabilities claimed by proponents of the AMMI or GGE 
biplot analysis.

BACKGROUND THEORY 
OF BIPLOT ANALYSIS
Before embarking on such a description and discussion, we 
will fi rst provide a brief overview of theory and principles 
underlying the biplot analyses. Consider a set of multi-
environment trials (MET) where g genotypes are tested 
in each of e environments each with r replications. The 
phenotypic values of individual genotypes are averaged 
across r replications within each environment, resulting in 
the g × e GE cell means arranged as a two-way table. Such 
a two-way table may be analyzed through the joint use of 
analysis of variance (ANOVA) and singular value decom-
position (SVD) which is also known as principal compo-
nent analysis (PCA). The analysis is performed using a 
GLBM (e.g., Cornelius and Seyedsadr, 1997; Cornelius et 
al., 2001), the general form of which can be written as
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and environments, respectively; ε
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 is the residual error 

assumed to be NID (0, σ2/r) with σ2 being the pooled 
within-environment error variance.

AMMI and GGE are just the two special cases of the 
GLBM. The AMMI model is expressed as

 
 1

ty i j k ik jk ijkij
= + + + +∑ =μ τ δ λ α γ ε   [2]

where μ is the overall mean, τ
i
 is the eff ect of the ith geno-

type, d
j
 is the eff ect of the jth environment and the mul-

tiplicative terms in the sum are the same as defi ned in Eq. 
[1]. The GGE model is expressed as

 1
ty kij j k ik jk ij

= + + +∑ =μ δ λ α γ ε .  [3]

The maximum number of multiplicative terms in the sum 
is t = min(g – 1, e – 1) for the full AMMI model and 
t = min(g, e – 1) for the full GGE model. In the AMMI 
model, only the GE interaction is modeled by the bilinear 
terms, whereas in the GGE or SREG model, the bilinear 
terms model the main eff ects of genotypes (G) plus the GE 
interaction. To present results of fi tting Eq. [1] in a biplot, 
the singular value λ

k
 is often absorbed by the vectors of 

genotypic and environmental scores, that is, * f
ik ikk=α λ α

and 1- f*
jk jkk=γ λ γ , with 0 ≤ f ≤ 1. Obviously, the full models 

in Eq. [2] and [3] are unparsimonious because all t mul-
tiplicative terms in the sum are retained. In most biplot 
applications, a reduced model with only the fi rst two mul-
tiplicative terms being retained is often used, i.e.,
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and

* * * * *
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= − − ≈ + +μ δ α γ α γ ε   [5]

for AMMI and GGE, respectively, where the approxima-
tion indicated in Eq. [4] and Eq. [5] refl ects the constraint 
that the third singular value and all subsequent singular val-
ues are zero, i.e., * * 0

3
t

ik jkk∑ == α γ . If such approximation 
is inadequate, then more multiplicative terms should be 
included. In general, the number of PCs for the AMMI and 
GGE models can be indicated by attaching that number as 
a suffi  x to the model name. For example, three commonly 
used models for the biplot analysis are AMMI1 (the AMMI 
model with one PC), GGE2 (the GGE model with two 
PCs) and AMMI2 (the AMMI model with two PCs).
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An angle of less than 90° or larger than 270° between a 
genotypic vector and an environmental vector indicates 
that the genotype has a positive response at that environ-
ment. A negative genotypic response is indicated if the 
angle is between 90° and 270°. The cosine of the angle 
between two environments (or genotypes) approximates 
the phenotypic correlation of the two environments (or 
genotypes) with an angle of zero indicating a correlation 
of +1, an angle of 90° (or –90°) a correlation of 0, and 
an angle of 180° a correlation of –1. A full description of 
the interpretation of the biplots of multiplicative models is 
given in Gower and Hand (1996).

Beginning with Yan et al. (2000), GGE2 biplots have 
often been used to identify “which-wins-where” patterns. 
Specifi cally, lines are drawn to connect the markers of the 
furthest genotypes in the biplot such that they are the cor-
ners (i.e., vertices) of an irregular polygon and, for each 
side of the polygon, drawing a line segment perpendicular 
to that side of the polygon so as to pass through (or, more 
commonly, to stop at) the origin. These line segments 
subdivide the polygon into sectors involving diff erent sub-
sets of environments and genotypes. The genotype, the 
marker for which is at the corner of one sector, is the best 
performer in the environments included in that sector. 
Environments, the markers for which are located far away 
from the origin, discriminate the genotypes more than 
those near the origin. Recently there has been an ongo-
ing debate on merits and demerits of AMMI2 vs. GGE2 
biplots for genotype and environment identifi cations (Yan 
et al., 2007; Gauch et al., 2008).

Rank-One Biplots
Rank-one biplots are the second kind of biplots. One of 
the commonly used biplots in this category is an AMMI1-
based scatter plot where main genotypic and environmen-
tal eff ects are provided for the abscissas and PC1 scores 
from SVD of the empirical interactions (i.e., deviations 
of cell means from additive main eff ects of genotypes and 
environments) are the ordinates (Zobel et al., 1988). The 
AMMI1 biplot enables a simultaneous view of the mean 
performance and the stability of the genotypes. Similarly, 
in the GGE1 (or SREG1) model, predicted responses 
(ŷ

ij
 = μ̂ + δ̂

j
 + α̂

il
*γ̂

j1
) are plotted against the environmental 

scores (γ̂
j1
) as shown in Crossa and Cornelius (1997). The 

plotted points for a given genotype do not necessarily fall 
on a straight line, but are connected with line segments to 
form an overlaid set of broken-line graphs, one for each 
genotype. These broken line graphs help assess whether 
crossover GE interactions (COIs) are present. The absence 
of COIs (i.e., the broken lines will not cross one another 
within the region of plotted points) is indicated if the γ̂

j1 

are all of like sign, but the presence of COIs (the broken 
lines will cross over at one or more points) is not indicated 
if the γ̂
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are given in Denis and Gower (1994, 1996) and Denis and 
Pazman (1999). These authors have constructed asymp-
totic confi dence regions for genotypic and environmental 
scores. While the above parametric approach to construct-
ing confi dence regions for genotypic and environmental 
scores certainly helps to make more reliable decisions on 
genotype selection and cultivar recommendation, it is not 
easily implemented for models with more than two bilin-
ear terms, and furthermore requires restrictive assump-
tions such as asymptotic normality. It is also unclear how 
the confi dence regions constructed under the strictly 
fi xed-eff ects model can be extended under a mixed-eff ects 
model. Here we advocate the use of bootstrapping, a non-
parametric resampling technique (Efron, 1982; Yang et 
al., 1996; Timmerman et al., 2007), for constructing con-
fi dence regions for genotypic and environmental scores. 
Bootstrapping operates by drawing random samples of the 
same size as the original sample from that sample with 
replacement and these bootstrap samples are used to con-
struct empirical distributions of estimated genotypic and 
environmental scores. This non-parametric approach is 
more fl exible, requires no distributional assumption con-
cerning the estimates, and can be used for both fi xed- and 
mixed-eff ects models. More details will be given later in 
the context of discussion of needs for statistical testing for 
these scores in a particular example.

BIPLOT TECHNIQUES

Rank-Two Biplots
A biplot is a scatter plot that graphically displays a point or 
score for each genotype and each environment (Gabriel, 
1971; Kempton, 1984). Recent reviews (Yan and Tinker, 
2006; Gauch, 2006; Yan et al., 2007; Gauch et al., 2008) 
have described in detail two kinds of biplots for the analy-
sis of a two-way GE matrix from the MET data. The fi rst 
kind includes AMMI2, GGE2, or any other rank-two 
biplots. A GGE2 biplot graphs scores of environments and 
genotypes in the fi rst two PCs from SVD of the devia-
tions of cell means from additive environment means with 
PC1 for its abscissa and PC2 for its ordinate. An AMMI2 
biplot graphs scores of environments and genotypes in 
the fi rst two PCs from SVD of the empirical interactions 
(i.e., deviations of cell means from additive main eff ects of 
genotypes and environments). As described above, GGE 
applies SVD to the environment-centered two-way data 
containing G and GE but AMMI applies SVD to the dou-
bly-centered two-way data containing GE only.

The interpretation of GGE2 and AMMI2 biplots is 
similar. Briefl y, the genotypic and environmental scores 
are represented as vectors in a two-dimensional space. The 
genotypic and environmental vectors are drawn from the 
origin (0,0) to the end points determined by their scores. 
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The rank-one biplot analysis is very similar to the 
classic joint-regression analysis or its variants where the 
observed performance is fi tted to a linear regression of 
the environmental mean so that the plots of predicted 
responses vs. environmental means are all straight lines 
(Yates and Cochran, 1938; Finlay and Wilkinson, 1963; 
Eberhart and Russell, 1966; Perkins and Jinks, 1968). Sig-
nifi cant heterogeneity of slopes of individual lines indicates 
the presence of GE, but it does not tell whether or not the 
GE interactions involve COIs. In other words, individual 
lines may not be paralleled (i.e., diff erent slopes) but they 
may not be crossed-over to each other either.

ISSUES OF BIPLOT ANALYSIS
Here we identify and briefl y discuss six key issues con-
cerning the use of biplot analysis as a descriptive statistical 
tool. The list of issues is by no means exhaustive and is 
probably biased toward our own experiences and work on 
the subject over the years. Nevertheless, it is our belief that 
these issues critically aff ect the validity of such analysis, 
but they are generally ignored by the current biplot litera-
ture. We now provide a brief discussion on each of them 
in the hope that this discussion will raise the awareness 
of readers of this and other agricultural journals where 
the biplot analysis articles are frequently published with 
respect to these issues.

Issue 1: Is Rank-Two 
Approximation Adequate?
Most applications of the biplot analysis have focused on 
the use of rank-two approximation, that is, any biplot is 
constructed using the scores derived from the fi rst two 
bilinear terms (the fi rst two PCs) to approximate the 
information content of the two-way GE table. The fi rst 
two PCs of the two-way GE table are the largest contribu-
tors to the total variability in the table; however, unless 
they can completely explain the total variability, the ques-
tion of whether this rank-two approximation is adequate 
would naturally arise.

Yan and Tinker (2006) considered this issue and 
reviewed several strategies to determine an appropriate 
number of bilinear terms to be retained. These strategies 
include judgment from the size of singular values (or their 
squares) associated with individual PCs and use of cross-
validation methods. These authors further suggested that 
if three or more PCs are required to capture an adequate 
amount of the total variability in the GE table, either 3D 
plots simultaneously involving three PCs or multiple 2D 
biplots can be used. There are two adverse eff ects if these 
suggestions are followed. First, inclusion of more than two 
PCs increases the number of mega-environments recog-
nized (Gauch et al., 2008). As an example, Gauch et al. 
(2008) considered the Ontario winter wheat (Triticum aes-
tivum L.) data (Table 1; Yan et al. 2007). The AMMI1 

model identifi es two mega-environments that are the 
same as those of GGE2 identifi cation by Yan et al. (2007). 
Moreover, AMMI2 to AMMI8 partitions the nine loca-
tions into three to six mega-environments, depending on 
model choice. This immediately raises the question of how 
many mega-environments really exist for a given MET 
data set. Second, despite the possibility of including more 
than two PCs for multiple biplots or high-dimensional 
plots, practical applications of biplot analysis have rarely 
gone beyond the fi rst two PCs. The converse side of the 
issue is that if the fi rst two PCs are used uncritically in 
a GGE biplot for delineating mega-environments when 
there is lack of any GE pattern, then a breeding region/
zone may be subdivided into several mega-environments, 
when, in fact, no subdivision is warranted. In this regard, 
we agree with Gauch et al.’s (2008) warning that such a 
“mistake increases eff ort and cost while it decreases accu-
racy and benefi t.”

When the fi rst two PCs capture only a small percent-
age of the total variability but are nevertheless used for a 
biplot, the patterns identifi ed may be inaccurate or unreli-
able. To the best of our knowledge, the agricultural biplot 
literature provides no guidance concerning how much of 
the total variability accounted for by the fi rst two PCs 
is considered adequate. To illustrate why such guidance 
is important, we take the relevant results from Navabi et 
al. (2006) for the SREG (GGE) analysis of yield data of 
472 regional hard-red spring wheat cultivar trials across 
Alberta from 1981 to 2002 (Table 2). As shown in Table 
2, the fi rst two PCs capture a wide range of percentages 
of the total variability due to the sum of genotype (G) and 
genotype × location (GL) eff ects (G + GL), from 45% for 
the trials in 1993 to 83% in 2002. With almost two-fold 
diff erence in the contributions of PC1 and PC2 over years, 
the biplots based on these PCs are certainly not equally 
informative from year to year. The results in the last col-
umn of Table 2 present yet another but related problem: 
of three eff ects, location (L), genotype (G), and genotype 
× location (GL) interaction, the combined (G + GL) eff ect 
is much smaller than the L eff ect and the (G + GL) contri-
bution can be as little as 2% to the total variability. Since 
AMMI models involve only the GL interaction eff ect, the 
contribution of this interaction eff ect to the total vari-
ability is even smaller. If a small amount of (G + GL) 
variation is left after removal of the L eff ect, there may be 
insuffi  cient resolution for genotype evaluation and identi-
fi cation. Thus, guidance is also needed to determine how 
large the combined (G + GL) eff ect should be, relative to 
the total variability (L + G + GL), to ensure a meaningful 
biplot on the basis of PC1 and PC2.

Diff erent statistical tests including the usual Gollob’s 
F-test (Zobel et al., 1988) or modifi ed F-tests known as 
the F

GH
 test and F

R
 test (Cornelius et al., 1996) are devised 

to determine how many PCs should be retained for a 
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desired precision (to be discussed below) but are insensi-
tive to the question of how much of the total variability 
the fi rst two PCs should capture before claiming the use-
fulness of biplots. It is clear from Table 2 that PC1 and 
PC2 are signifi cant across all years despite (i) the wide 
range of percentages of total variability that they capture 
and (ii) a small percentage of the total variability (L + G + 
GL) that is accounted for by the combined (G + GL) eff ect 
in some years (only 2% in 1985). Thus, before some defi -
nite theoretical criteria can be developed, some empirical 
thresholds may be helpful for the practical evaluation of 
biplots. For example, if the long-term average as shown in 
Table 2 is used to provide a rule of thumb, then we may 
recommend that the fi rst two PCs should account for > 
60% of the (G + GL) variability and the combined (G + 
GL) eff ect should account for >10% of the (L + G + GL) 
variability before claiming the usefulness of biplots. More 
research is certainly needed to substantiate such a claim.

When a rank-two approximation is confi rmed to be 
inadequate, AMMI2 and GGE2 biplots would not be very 
useful for delineating mega-environments and evaluating 
genotypes. The focus should then be shifted to identify 
appropriate higher-order AMMI or GGE models that 
allows for gaining more accuracy by separating a parsi-
monious and signal-rich model from a noise-rich residual. 
The cell means in a two-way table that are predicted by 
an AMMI or GGE model should be more accurate than 
the simple arithmetic cell means over actual replications 
because the AMMI or GGE model consider the entire 
data set to be relevant in predicting future performance 
by fi tting a multiplicative model. The actual MET data 
comprise a mixture of signal and noise with predictive 
accuracy increasing with the fi rst few PCs being included, 
but declining with more PCs being added, a phenomenon 
known as “Ockham’s hill” (Gauch, 2006; Gauch et al., 
2008). The best and usually parsimonious model strikes a 
balance to avoid the models that underfi t signal or over-
fi t noise. Criteria other than predictive success for deter-
mining the number of signifi cant multiplicative terms in 
AMMI, GGE (SREG), and other linear-bilinear models 
include Gollob’s F-test (Zobel et al., 1988) or the F

GH
 test 

and F
R
 test (Cornelius et al., 1996), Akaike information 

criterion (AIC), or Bayesian information criterion (BIC) 
(Casanoves et al., 2005), and various schemes for cross 
validation and model choice (e.g., Gauch, 1988; Cornelius 
and Crossa, 1999; Dias and Krzanowski, 2003).

Issue 2: Can Biplots Be More than 
a Simple Descriptive Graphic Tool?
The original intent of a biplot was to reduce the data dimen-
sionality and to enable the data analysts and researchers to 
have a quick look at relationships among genotypes, among 
environments, or interactions between genotypes and envi-
ronments. Thus, biplots were simply a descriptive graphic 

tool for a quick view. However, many recent applications of 
biplot analysis have gone beyond the boundary of its lim-
ited functionality. As repeatedly claimed in recent review 
papers (Yan and Tinker, 2006; Gauch, 2006; Yan et al., 
2007; Gauch et al., 2008), AMMI or GGE biplot analysis 
allows for mega-environment delineation, genotypic eval-
uation, and test environment evaluation. All of these claims 
are based solely on simple visualization of biplots without 
any statistical hypothesis testing. This raises a serious con-
cern about the credibility of these claims.

Given that any two-way GE table is a ‘sample’ data 
set, the singular values and scores (singular vectors) for 
genotypes and environments used in the biplot are the 
point estimates of the corresponding parameter values. 
The asymptotic variances and covariances of these point 
estimates along with elliptic confi dence regions are given 
in Denis and Gower (1994, 1996) and Denis and Pazman 
(1999). As illustrated from the analysis of a rye-grass trial 
by Denis and Gower (1996), confi dence ellipses for each 
and every genotype and environment must be constructed 
and imposed on the biplot before a defi nite conclusion can 
be reached concerning mega-environment delineation, 
genotype evaluation, and test environment evaluation.

As already pointed out earlier, it remains unclear how 
the parametric approach by Denis and others to the con-
struction of confi dence regions can be implemented under 
diff erent linear-bilinear models and its statistical inference 
relies on restrictive assumptions (e.g., asymptotic normal-
ity of individual genotypic and environmental scores). 
Here we illustrate through the analysis of an example 
how the non-parametric bootstrapping technique can be 
used to construct confi dence regions on the basis of the 
empirical distributions of estimated parameters. Once 
again, we use the Ontario winter wheat example which 
consists of the yield data of 18 winter wheat genotypes 
(G1 to G18) tested at nine Ontario locations (E1 to E9). As 
in the usual GGE biplot analysis, we calculate the devia-
tions of cell means for all 162 (18 × 9) genotype–location 
combinations from location means (Table 1). The strate-
gies for drawing bootstrap samples for genotype-focused 
and environment-focused GGE biplots are diff erent. For 
the genotype-focused GGE biplot ( f = 1), the genotypic 
and environmental scores are α*

ik
 = λ

k
α

ik
 and γ*

jk
 = γ

jk
, 

respectively. On the other hand, for the environment-
focused GGE biplot ( f = 0), the genotypic and environ-
mental scores are α*

ik
 = α

ik
 and γ*

jk
 = λ

k 
γ

jk 
, respectively. 

A direct application of bootstrapping would require that 
each bootstrap sample is drawn at random with replace-
ment from the 162 GE cell means. Since the resampling 
with replacement means that some of the original 162 val-
ues will not appear in a bootstrap sample, whereas some 
others may appear many times, the two-way GE data from 
the bootstrap sample is obviously unbalanced. Because 
SVD needs to be done on a balanced data set, we propose 
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an alternative sampling strategy. Rather than randomizing 
individual cell means in the two-way table, we randomize 
only either columns or rows (but not both), keeping rows 
or columns unchanged. Thus, for the genotype-focused 
GGE biplot, each bootstrap sample consists of 18 random 
draws (with replacement) from 18 genotypes while keep-
ing nine locations unchanged. This resampling process is 
repeated 10,000 times to obtain 10,000 bootstrap samples. 
The estimates of genotypic and environmental scores from 
the singular value decomposition are computed directly 
from the original data and from each of 10,000 bootstrap 
samples. From the bootstrap distribution, we found an 
approximate 95% confi dence interval (CI) for each score 
examined (Table 1). The CIs for the genotypic scores are 
generally much larger than those for the environmental 
scores. This is likely a fair refl ection of much larger envi-
ronment-to-environment variation than genotype-to-
genotype variation (the environmental eff ect accounts for 
73.2% of the total variability whereas the genotypic eff ect 
accounts for only 13.7%).

Yan and Tinker (2006), Yan et al. (2007), and Gauch et 
al. (2008) have all used the same data set as given in Table 

1 to provide detailed descriptions of mega-environment 
delineation, genotype evaluation and test-environment 
evaluation based on GGE or AMMI biplots. Of many 
results on patterns of relationships and diff erences among 
genotypes and environments claimed by these studies, two 
have repeatedly been identifi ed as successful uses of biplots. 
The fi rst result is that “the nine test environments fell into 
two apparent groups: E7 and E5 formed one group, and 
the remaining environments formed another” (Yan and 
Tinker, 2006, p. 630). The second result is that “G18 had 
higher yield in E5 and E7 whereas G8 had higher yield in 
other environments. This is a clear example of a “cross-
over” interaction” (Yan and Tinker, 2006, p. 634). Let 
us now examine these two specifi c results in light of CIs 
for individual genotypic and environmental scores cor-
responding to PC1 and PC2 developed by bootstrapping 
in Table 1. It is visually evident from Fig. 1 [and also from 
Figure 2 of Yan and Tinker (2006) and Fig. 1 of Yan et 
al. (2007)] that there is little diff erence among environ-
ments on the PC1 axis and that the diff erence between 
“the two apparent groups” as stated in the fi rst claim must 
be due to the diff erence between the group on the PC2 

Table 1. Deviations of mean yield (Mg ha–1) of 18 winter wheat cultivar (G1 to G18) tested at nine environments (E1 to E9) from 

the corresponding environmental means. Genotype and environment scores corresponding to the fi rst and second principal 

components (PC1 and PC2) and their 95% confi dence limits generated by bootstrapping.

Environments

Genotype E1 E2 E3 E4 E5 E6 E7 E8 E9 Mean PC1
Lower 
limit

Upper 
limit

PC2
Lower 
limit

Upper 
limit

G1 0.10 –0.29 –0.29 –0.41 0.26 –0.61 0.11 –0.32 –0.23 4.00 –0.31 –0.98 0.39 –0.74 –1.07 0.57

G2 0.06 0.33 –0.23 0.02 0.02 0.09 0.72 0.03 0.04 4.31 0.38 –0.32 0.99 –0.37 –0.73 0.60

G3 0.31 0.14 –0.04 –0.03 0.39 –0.03 0.49 –0.46 –0.28 4.24 0.42 –0.44 1.06 –0.69 –1.00 0.74

G4 0.37 0.31 0.24 0.41 0.54 0.28 –0.01 0.53 0.55 4.54 0.96 0.24 1.54 0.53 –0.29 0.85

G5 0.03 0.16 0.37 0.36 0.09 0.36 0.91 –0.26 –0.07 4.40 0.72 –0.02 1.33 –0.39 –0.79 0.74

G6 0.82 0.04 –0.15 0.28 0.90 –0.01 –0.25 –0.09 –0.12 4.34 0.71 0.02 1.31 –0.13 –1.05 0.89

G7 –0.98 –0.26 –0.40 –0.33 –0.34 –0.79 –0.08 –0.30 –0.87 3.70 –1.34 –1.91 –0.55 –0.85 –1.52 0.42

G8 0.49 0.22 1.29 0.46 –0.14 0.77 –0.07 0.70 0.67 4.67 1.14 0.21 1.78 1.33 –1.04 1.63

G9 0.68 0.30 0.37 –0.05 0.28 –0.20 0.74 0.15 –0.04 4.43 0.89 0.16 1.48 –0.38 –0.73 0.61

G10 0.84 0.22 0.46 0.27 0.26 0.29 –0.34 0.09 0.40 4.46 0.83 0.17 1.42 0.65 –0.61 0.99

G11 –0.07 0.09 –0.38 –0.07 0.46 0.19 0.62 –0.22 0.25 4.28 0.39 –0.43 1.00 –0.55 –0.89 0.67

G12 –1.21 –1.40 –0.75 –1.14 –1.45 –0.80 –0.86 –0.29 –0.80 3.22 –3.01 –3.34 –2.29 –0.30 –1.35 0.50

G13 –0.26 –0.56 –0.84 0.23 –1.12 0.09 –1.64 0.60 –0.01 3.80 –1.64 –2.45 –0.87 1.45 –1.72 1.76

G14 –1.02 –0.59 –0.72 –0.71 –1.05 0.03 –0.96 –0.44 –0.34 3.54 –2.10 –2.41 –1.40 0.18 –1.07 0.66

G15 0.02 0.26 0.52 0.10 0.51 0.08 –0.31 –0.15 0.03 4.30 0.45 –0.02 1.01 0.10 –0.39 0.43

G16 0.58 0.26 –0.19 0.41 0.38 0.27 0.06 –0.06 0.13 4.39 0.68 0.06 1.25 0.09 –0.50 0.56

G17 –0.57 0.53 0.24 –0.14 –0.91 0.24 0.08 0.50 0.48 4.24 –0.24 –0.97 0.48 0.72 –1.20 1.40

G18 –0.12 0.21 0.47 0.42 0.96 –0.23 0.77 0.00 0.21 4.48 1.08 0.18 1.66 –0.63 –0.97 0.87

Mean 4.36 4.44 3.14 3.49 5.68 5.06 4.24 4.36 2.9 4.19

PC1 0.43 0.34 0.34 0.30 0.49 0.20 0.38 0.08 0.24

Lower limit 0.21 0.13 0.20 0.01 0.17 –0.02 –0.01 –0.21 0.01

Upper limit 0.58 0.41 0.52 0.37 0.62 0.38 0.67 0.29 0.39

PC2 0.14 0.05 0.19 0.21 –0.36 0.37 –0.57 0.43 0.35

Lower limit –0.38 –0.14 –0.32 –0.09 –0.61 –0.25 –0.78 –0.35 –0.24

Upper limit 0.54 0.37 0.55 0.41 0.62 0.45 0.77 0.52 0.48
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axis. However, the CIs of individual environmental scores 
on either PC1 or PC2 axis all overlapped, suggesting that 
group one (E5 and E7) would not be statistically diff erent 
from group two (the remaining seven environments). On 
the second result, once again, it is visually clear from Fig. 
1 [and Figure 11 of Yan and Tinker (2006)] that the diff er-
ence between the two genotypes (G8 and G18) is virtu-
ally the diff erence on the PC2 axis, but the CIs for PC2 
scores of these two genotypes overlapped, (–1.04, 1.63) for 
G8 and (–0.97, 0.87) for G18. Therefore, both results are 
based merely on visual observations but are not supported 
by statistical tests. While the development of 2D confi -
dence ellipses of individual genotypic and environmental 
scores imposed on the biplots would generally facilitate 
the statistical inference, it is not particularly necessary 
here because the environmental and genotypic diff erences 
involved in evaluating the two results are essentially one 
dimensional (on the PC2 axis).

The above discussion on the use of CIs for evaluat-
ing visually observed claims serves to emphasize that the 
use of uncertainty measures for genotypic and environ-
mental scores may lead to the diff erent results and conclu-
sions that are drawn from the point estimates of individual 
scores based on the biplots. Thus, it is our opinion that 
acceptance of any future submissions to Crop Science or 
other agricultural science journals should be conditional 
on whether or not appropriate statistical assessment of the 
biplots is provided. At a minimum, when the uncertainty 

around genotypic and environmental scores is not mea-
sured, the authors need to acknowledge explicitly in their 
manuscripts that the biplot results should be interpreted 
with caution.

Issue 3: How Realistic Is a “Which-Won-
Where” Pattern from a Biplot?
The proudest contribution that the biplot (particularly GGE-
based biplot) literature has claimed is its ability to identify 
the which-won-where pattern through an extended use of 
the inner-product property of the biplot. In addition to the 
usual scatter plot of genotypic and environmental scores in 
a biplot, such identifi cation requires two more steps: (i) a 
polygon is fi rst drawn to connect the scores of the geno-
types that are furthest from the origin (0,0) with the scores 
of all remaining genotypes lying within the polygon; (ii) 
a perpendicular line to each side of the polygon is drawn 
from the origin. With these two additional steps, the fol-
lowing new interpretation arises. The perpendicular lines 
to the polygon sides divide the biplot into sectors, each hav-
ing its own winning cultivar, viz., the marker for which is 
at the polygon vertex formed by those two polygon sides. 
The marker for the winning cultivar for a sector is posi-
tioned within its winning sector.

The concept of such biplot-based identifi cation is def-
initely very appealing due to its simplicity and straight-
forwardness. However, the validity of the interpretation 
depends critically on the key assumption that the genotypic 

and environmental scores for 
polygon construction are the 
“true” values with no error. 
There are at least two sources 
of error with the genotypic and 
environmental scores. First, 
as mentioned above, the GE 
two-way table is a sample data 
set and all genotypic and envi-
ronmental scores are simply 
point estimates with sampling 
errors. In other words, the so-
called wining cultivar identi-
fi ed in a particular sector may 
not diff er signifi cantly from 
the adjacent, non-wining cul-
tivars if the confi dence regions 
are imposed. Thus any which-
won-where pattern based on 
initial inspection of biplots is 
simply a curious visual obser-
vation only and must be subject 
to subsequent statistical tests 
before being defi nitely rec-
ommended for practical util-
ity. Second, the year-to-year 

Figure 1. Biplot of the fi rst two latent factors of factor analytic model [FA(2)] based on the two-way 

GE data in Table 1 with 18 genotypes being identifi ed by numbers 1 to 18 and nine environments 

being identifi ed by E1 to E9.
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variation in yield performance for regional cultivar 
trials inevitably causes yearly fl uctuations in geno-
typic and environmental scores, thereby trivializ-
ing and obscuring any which-won-where pattern 
that is identifi ed in a single year. Unfortunately, 
many so-called which-won-where patterns have 
been based on 1-yr data where g genotypes were 
tested over e locations. Strictly speaking, the result-
ing pattern is one realization among many possible 
outcomes, and its repeatability in the realization of 
future years is quite unknown. A repeatable which-
won-where pattern over years is the necessary and 
suffi  cient condition for mega-environment delin-
eation (Yan et al., 2007).

In carrying out SREG (GGE) biplot analyses 
of the Alberta hard-red spring wheat regional tri-
als from 1981 to 2002 as described earlier, Navabi 
et al. (2006) did not fi nd repeatable which-won-
where patterns over years and concluded that lack 
of repeatability of such patterns over years did 
not allow for further subdivision of spring wheat 
growing areas in Alberta into distinct mega-envi-
ronments. Similar observations of unrepeatable 
which-won-where patterns across years were also 
made for long-term regional trials of three other 
major crops [barley (Hordeum vulgare L.), canola 
(Brassica napus L.), and fi eld pea (Pisum sativum L.)] in 
the Canadian Prairies (R.-C. Yang, unpublished). 
Since unpredictable year-to-year weather fl uctua-
tion typical in the Canadian Prairies contributes 
signifi cantly to yield variation and site instability, 
Yang et al. (2005, 2006) suggested a normalized 
procedure to fi lter out much of the random varia-
tion among years so that clustering locations would 
be based on more accurate estimates of location 
averages. However, it remains largely unknown as to the 
eff ectiveness of such a normalization as a general proce-
dure because it depends on the level of imbalance in year 
× location × genotype combinations and on yearly diff er-
ences in location × genotype cell means. Thus, it is clear 
from these discussions that any hasty recommendation 
regarding the which-won-where pattern on the basis of 
biplots of one realized set of genotypic and environmental 
scores without statistical testing may be highly unreliable 
and misleading.

Furthermore, as Yan et al. (2001) pointed out, the 
which-won-where patterns are identifi able only if the 
target mega-environment is adequately sampled and if 
the correlation between the genotypic PC1 scores and 
the genotype main eff ects is positive and almost perfect 
(>0.95). Ideally, winning genotypes with high and stable 
performance should have high PC1 scores but negligible 
PC2 scores. Similarly, a good test environment should 
have high PC1 scores and negligible PC2 scores so that 

it allows for more discrimination among genotypes and is 
more representative of an average environment. However, 
a near-perfect correlation is not always possible, particu-
larly when the multi-year data are analyzed. Lack of high 
correlations limits the ability of GGE2 biplot to identify 
the which-won-where patterns.

Issue 4: What if Genotypes or 
Environments or Both Are Random Effects?
The AMMI or GGE biplot analysis is based on a strictly 
fi xed-eff ects model with (additive) main eff ects for geno-
types and environments and multiplicative eff ects for the 
interaction all being fi xed. The discussion from recent 
works suggests, however, that either genotypic or envi-
ronmental eff ects (or thus interaction eff ects) should be 
random (Baker, 1996; Piepho, 1998; Smith et al., 2005; 
Yang 2007). The determination of whether an eff ect is 
fi xed or random in GE studies is not always easy and has 
been debated in the literature. Some statisticians have 
made a pragmatic suggestion that there should be enough 

Table 2. Partitioning of the total variability due to the sum of genotype 

(G) and genotype × location (GL) effects (G + GL) into the fi rst two prin-

cipal components (PC1 and PC2) and the remainder based on princi-

pal component analysis (PCA) for the Alberta hard-red spring wheat 

regional trials during the years 1981 to 2002.

Number of 
genotypes

Number of 
locations

PCA partitioning of G + GL† SS 
G + GL

SS 
L + G + GL

‡

Year PC1 PC2 Remainder

————–—–  n ————–—– ——————–——–——––—–  % ————–——–——–——–—– 

1981 15 28 43 19 37 13

1982 14 23 63 16 22 12

1983 13 22 47 15 38 17

1984 11 14 52 19 30 33

1985 11 24 46 15 39 2

1986 8 29 49 26 25 5

1987 10 32 50 17 33 6

1988 10 30 49 17 34 15

1989 12 31 38 25 37 6

1990 13 32 38 22 40 5

1991 17 30 30 26 44 8

1992 17 18 47 15 38 8

1993 16 26 28 17 55 11

1994 15 14 44 19 37 11

1995 17 13 29 28 43 10

1996 15 14 34 23 42 6

1997 17 16 39 20 41 11

1998 18 17 45 15 40 6

1999 22 19 49 14 37 8

2000 19 20 42 17 41 11

2001 22 13 45 18 37 14

2002 20 7 61 23 17 22

Average 15 21 44 19 37 11

†PC1 and PC2 are all signifi cant at P < 0.01 except that PC2 in 1985 is signifi cant at P < 0.05, 

according to F
GH

 test of Cornelius et al. (1996).

‡SS
G+GL

 is the sum of squares due to G + GL and SS
L+G+GL

 is the sum of squares due to L + G + GL.
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information in the data to estimate variance and covari-
ance parameters of random eff ects with suffi  cient preci-
sion. For example, Stroup and Mulitze (1991) suggested 
that a factor (genotype or environment) should have more 
than 10 levels before it is considered random. Smith et 
al. (2005) argued that genotypic eff ects should be random 
because selection of best lines or cultivars through rank-
ings rather than comparisons is the main goal either in the 
early “breeding” phase or in advanced “evaluation” phase. 
Plant breeders would usually consider that years and their 
interactions with genotypes are random but debate con-
siderably about how locations should be viewed. Part of 
the location eff ect would be “fi xed” because it represents 
known physical properties (e.g., soil type of a location) or 
long-term average (e.g., precipitation or other agro-cli-
matic patterns) of the same location at some future time. 
However, the goal of most crop improvement programs is 
to infer about future performance at many untested loca-
tions. Thus, it is our opinion that location eff ects and their 
interactions with genotypes should be random as well.

Despite diff erent biological considerations, the only 
criterion used in modern linear model theory (e.g., Lit-
tell et al., 2002) for distinguishing fi xed and random 
eff ects is as follows. If the eff ect levels reasonably represent 
a probability distribution, then the eff ect is random; if, 
on the other hand, they do not represent a probability 
distribution, then the eff ect is fi xed. For random eff ects, 
the major focus is always on modeling and estimating 
variance-covariance GE structure. However, interest may 
sometimes be in estimation and statistical inference about 
specifi c levels of a random factor such as breeding values 
of randomly chosen bulls for milking ability in dairy cat-
tle. This approach pioneered by Henderson (1984) pres-
ents two new features in analyzing the MET data. First, 
test statistics and CIs for random eff ects need to be con-
structed. Second, when specifi c levels of a random eff ect 
(e.g., genetic merits of individual cultivars) are of interest, 
then best linear unbiased prediction (BLUP) rather than 
calculation of sample means should be used. The BLUP is 
also known as a shrinkage estimator because the estimate 
of a random eff ect is shrunk to adjust for uncertainty aris-
ing from its probability distribution (Yang, 2007). The 
BLUP is devised to maximize the correlation between 
estimates of the realized values of the random eff ects and 
the “true” realized values of the random eff ects.

Numerous studies have continued the use of AMMI 
or GGE biplot analysis even when such an analysis based 
on the strictly fi xed-eff ects model is obviously inappropri-
ate because either genotypic or environmental eff ects (and 
thus interaction eff ects) should be random. Fortunately, 
a mixed-model analog of the biplot analysis has recently 
been developed using the factor analytic (FA) model for 
approximating the variance-covariance GE structure 
(Piepho 1998; Smith et al., 2002). Further research work 

done by Crossa et al. (2006) and Burgueño et al. (2008) 
have described how to model the variance-covariance 
GE structure but also the possible covariances between 
genotypes expressed in the pedigree information. These 
authors have used mixed linear models for incorporating 
the additive (relationship A) matrix and additive × addi-
tive covariance matrix into the FA model, and for mod-
eling GE and GGE interactions. Burgueño et al. (2008) 
has also described the equivalence between SREG2 and 
FA(2) for fi nding subsets of genotypes and environments 
without COI.

In the FA model, the random eff ect of the ith genotype 
in the jth environment (g

ij
) is expressed as a linear function 

of latent variables x
ik 

with coeffi  cients δ
jk
 for k = 1, 2 … t,

plus a residual, η
ij
, i.e.,  

t
g xij j ijik jk

k 1
∑= + +
=

μ δ η , so

that the ijth cell mean can be written as y
ij
 = g

ij
  + ε

ij
. With 

only the fi rst two latent factors being retained, g
ij
 is approxi-

mated by g
ij 
≈ μ

j
 + x

i1
 δ

j1
 + x

i2
 δ

j2
 + η

ij
. As clearly explained 

by Burgueño et al. (2008), SREG2 can be perceived as 
consisting of a set of multiple regression equations, one for 
each environment, each regression equation consisting of 
an environmental mean or environmental eff ect as inter-
cept plus two terms for regression on two genotypic regres-
sor variables, α

i1
 and α

i2 
(either observed or latent) with γ

j1
 

and γ
j2
 as the regression coeffi  cients. Thus, there is a clear 

connection between the SREG2 and the FA(2) models. A 
similar connection between AMMI2 and FA(2) models was 
also established in Smith et al. (2002).

The interpretation of the loadings and scores of the 
fi rst two components of FA(2) is the same as that obtained 
by the SREG2 fi xed-eff ect model. Under the principal 
component rotation, the directions and projections of the 
vectors of FA(2) and SREG2 in the biplot are the same. 
Therefore, the SREG-based properties that the fi rst prin-
cipal component of SREG2 accounts for non-COI and 
the second principal component of SREG2 is due to COI 
variability should hold for FA(2) as well. The FA(2) biplot 
for the winter wheat example (Fig. 1) shows essentially 
the same groupings of environments and genotypes as 
the GGE2(SREG2) biplot as shown in Fig. 1 of Yan et 
al. (2007). To recognize the similarity between the two 
biplots, it should be noted from the FA(2) biplot that (i) the 
genotypic scores are not scaled and (ii) the scores under 
PC2 include both positive and negative values. However, 
the absolute values of genotypic and environmental scores 
under FA(2) and SREG2 models may not necessarily be 
the same because shrinkage is involved in BLUPs of ran-
dom eff ects in the FA(2) model but not in least squares 
estimates of fi xed eff ects in the SREG2 model. Further-
more, the standard errors of the estimable functions of 
fi xed eff ects under the SREG2 diff er from those of pre-
dictable functions of a mixture of fi xed and random eff ects 
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under FA(2). It should be noted that the FA models are 
more fl exible in handling unbalanced data. The relevance 
of FA(2) and SREG2 biplots to detection of COIs will be 
discussed when addressing Issue 6 later.

With the coexistence of FA(2) based on a mixed-eff ects 
model and SREG2 or AMMI2 based on a fi xed-eff ects 
model, the question naturally arises as to which model 
should be used in practical crop improvement programs. 
In the early phase of the breeding programs, hundreds 
or thousands of breeding lines need to be evaluated. The 
large number of breeding lines is considered as a random 
sample from a breeding population. It is thus reasonable to 
assume that genotypic and GE eff ects are random. After 
several cycles of selection, however, the number of lines is 
considerably reduced and these lines are now ready for a 
comparison with standard “check” cultivars. At this stage, 
the breeding lines or cultivars may be reasonably consid-
ered as fi xed [but as discussed earlier, Smith et al. (2005) 
argued against this consideration]. Thus, FA(2) biplot is 
preferred at the early stage of breeding programs whereas 
the SREG2 or AMMI2 biplots may be useful at the late 
stage of breeding programs.

Issue 5: How Relevant Is the 
Biplot Analysis to Understanding 
of Nature and Causes of Interaction?
Descriptions of two-way tables of MET data through 
biplot or other descriptive statistical analyses are just the 
very fi rst step toward more in-depth understanding of GE 
variability. In other words, mere descriptions of GE inter-
actions are of limited value if no further analysis is per-
formed to determine which underlying biological factors 
cause the observed environmental diff erentiation (Baker, 
1996). In an attempt to address this defi ciency, Yan and 
Tinker (2005) recently suggested a covariate-eff ect biplot 
which is generated from the fi rst two PCs of SVD of cor-
relations of target trait (say yield) with every other trait 
in each of the test environments. Yan and Tinker (2005) 
argued that the covariate-eff ect biplot would enable one 
to determine if GE for yield can be exploited by indi-
rect selection for the other traits. These other explana-
tory traits may be replaced or augmented by other genetic 
covariables, such as quantifi cations of pedigree informa-
tion, presence/absence of QTLs, or gene expression pro-
fi les in a microarray. However, this covariate-eff ect biplot 
focuses only on inclusion of phenotypic and genetic cova-
riables and ignores the presence of GE interactions in the 
explanatory traits. More importantly, the covariate-eff ect 
biplot, like its predecessor, remains merely a descriptive 
graphic tool and provides no functional relationship and 
predictability with explanatory covariables necessary 
for any understanding of underlying biological causes 
of GE interactions. To examine eff ects of both genetic 
and environmental covariables and to develop functional 

relationships and predictability with explanatory covari-
ables, factorial regression or partial least squares analysis 
(e.g., Vargas et al., 1999; Brancourt-Hulmel and Lecomte, 
2003; van Eeuwijk et al., 2005) may be more useful. These 
analyses are particularly useful in obtaining more parsi-
monious models for predicting the GE variability. Thus, 
initial biplot or any other descriptive statistical analyses 
should generally be followed up by the development of 
prediction models that allow for identifying causative fac-
tors of GE variability.

The linearity assumption required for the above analy-
sis of the response to genotypic and environmental cova-
riables may not be warranted as most physiological and 
developmental processes during plant growth and produc-
tion proceed in a nonlinear fashion (Baker, 1988a; Wu et 
al., 2004; van Eeuwijk et al., 2005). Classical nonlinear 
response functions include yield-density curves, sigmoid 
curves, and asymptotic curves (Baker 1988a). Yield-density 
functions are needed to describe the relationship between 
crop yield and seeding density; sigmoid functions (e.g., 
logistic curve) are often used to model diff erent patterns of 
vegetative growth; and asymptotic functions are useful for 
specifying the relationships between yield and amount of 
fertilizer application. More elaborated response functions 
are also described in Wu et al. (2004) and van Eeuwijk et 
al. (2005). As acknowledged in Yan and Tinker (2006), the 
biplot analysis is PCA-based, using only linear correlations 
among genotypes or environments, and thus it is not capa-
ble of detecting the nonlinear relationships such as those 
described above. In this case, nonlinear biplots based on 
Euclidean or non–Euclidean dissimilarity measures (Gower 
and Hand, 1996, Chapter 6) may be useful for exploiting 
nonlinear relationships among genotypes or environments.

Issue 6: Can the Biplot Analysis Contribute 
to Detection of Crossover Interaction?
Geneticists and plant breeders (e.g., Haldane, 1947; Gre-
gorius and Namkoong, 1986; Baker, 1988b, 1996; Corne-
lius et al., 1993) have long recognized that GE is of little 
consequence in selection programs unless COIs are pre-
dominant. In the absence of COIs, GE is simply caused by 
diff erences in scales, and the best genotype in one environ-
ment remains the best in all other environments. Statistical 
tests for COIs have been described under the fi xed-eff ect 
model (Baker, 1988b; Cornelius et al., 1992), random-
eff ect model (Yang, 2002), and mixed-eff ect model (Yang, 
2007). However, the usual AMMI2 or GGE2 biplot anal-
ysis does not distinguish if interactions are COIs or non-
COIs. Thus, it is important to determine whether the GE 
variability captured in the biplots is relevant to predicting 
the presence of COIs. Zobel et al. (1988) fi rst popularized 
the AMMI1 biplot which allows for simultaneous views 
of the main performance of genotypes and their stability 
(interaction) as characterized by AMMI PC1 scores. In 
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other words, such a biplot can identify some genotypes 
with diff erent main performance but little interaction, or 
others with little main diff erence but large interaction. 
However, once again it is unknown whether or not such 
interaction involves COIs. The use of a SREG1 (or GGE1) 
biplot based on a constrained SVD non-COI PC1 solu-
tion (e.g., Crossa and Cornelius, 1997) has been made to 
predict the absence of COIs based on the earlier work of 
rank-one shifted multiplicative model (SHMM1) by Cor-
nelius et al. (1992). If the SHMM1 model is an adequate 
approximation to the two-way GE data, and primary 
eff ects of the environments (i.e., PC1 scores) are either all 
non-positive or non-negative, then the SHMM1 model 
has the two proportionality properties. First, diff erences 
between genotypes in any single environment are propor-
tional to genotypic diff erences in any other environment. 
Second, diff erences between environments in terms of the 
performance of any single genotype are proportional to 
those in terms of the performance of any other genotype. 
The second proportionality restriction is not required for 
assessing genotypic non-COI status and is thus removed 
in the SREG1 model. The SHMM1 or SREG1 biplot 
portrays the graph consisting of a set of regression lines, 
one for each genotype, all concurring at a point either 
at the boundary or outside of the region containing the 
plotted points. If, on the other hand, the PC1 scores are 
of diff erent signs, the SHMM1 and SREG1 biplots show 
the presence of COIs (i.e., the regression lines intersect at 
a point within the region containing the plotted points).

More recently, Crossa et al. (2002) pointed out that if 
the PC1 scores of environments from SREG2 or SHMM2 
models are of the same sign, then the interaction varia-
tion of the PC1 is due largely to the presence of few or no 
COIs and the variation accounted for by the PC2 is due 
to COI; if, on the other hand, the PC1 scores of environ-
ments are of diff erent signs, then the interaction variation 
is due largely to the presence of numerous COIs. In other 
words, the SHMM2 and SREG2 biplots of the fi rst two 
PCs would represent the graph of non-COI variation (PC1) 
vs. COI variation (PC2). This is possible only if the envi-
ronment scores of PC1 are all of the same sign or if the 
environment scores of PC1 are of diff erent signs but a con-
strained SHMM2 or SREG2 solution ensures that the fi rst 
multiplicative term should show a non-COI pattern. Thus, 
COIs should be negligible in the winter wheat example 
(Table 1) because the environmental PC1 scores are of the 
same sign. This is confi rmed from statistical tests for COIs 
(Baker, 1988b; Cornelius et al., 1992; Yang, 2007). In the 
winter wheat example, the total number of 2 × 2 interac-
tion contrasts (quadruples) for COI evaluation is 5508 (18 
× 17 × 9 × 8/4). With four replications and the error mean 
square of 0.067 with 483 degrees of freedom as obtained 
from Table 2 of Yan et al. (2000), the percentages of the 
quadruples with signifi cant COIs ranged from 3.9% for 

the original Azzalini-Cox test (the most conservative test) 
to 12.2% for the most sensitive interaction-wise test (Cor-
nelius et al., 1992). All of these tests are performed under 
the fi xed-eff ects model. The COI frequency would be fur-
ther reduced under the mixed- and random-eff ects models 
(Yang, 2007). These discussions serve to emphasize that a 
display of a biplot alone is not suffi  cient to determine the 
presence of COIs. The use of the proportionality proper-
ties along with a constrained SHMM or SREG solution for 
non-COIs must be made. Previous research (e.g., Cornelius 
et al., 1993; Crossa et al., 1995; Crossa and Cornelius, 1997; 
Crossa et al., 2004) has used the proportionality properties 
and constrained SHMM and SREG solutions for subsetting 
groups of environments or genotypes within which COIs 
are negligible. The use of FA(2) model for subsetting geno-
types and environments in the winter wheat data on the 
basis of the approach of Burgueño et al. (2008) shows that 
there are only 30 signifi cant COIs, which represents 0.54% 
of the total quadruples. In other words, the majority of the 
interactions are due to changes in scale.

FUTURE OUTLOOK
There is no doubt that a biplot, whether it is based on AMMI, 
GGE, or any other linear-bilinear model, is a useful visu-
alization technique to quickly explore patterns of similar-
ity or dissimilarity among genotypes or environments, and 
extract useful information from complex GE data. As dem-
onstrated constantly in recent reviews (e.g., Yan and Tinker, 
2006; Gauch, 2006; Yan et al., 2007; Gauch et al., 2008), 
visual information displayed in a given biplot is indeed eas-
ier and faster to convey and grasp than tabular numerical 
information, thereby facilitating appropriate interpretation 
of complex GE data sets. However, like any other statistical 
method used for elucidating GE patterns in MET data, the 
biplot analysis is not without its limitations. In this paper, 
we are particularly concerned with the utility and interpre-
tations of such a biplot analysis beyond its functionalities 
and capabilities. Specifi cally, we discuss the six key issues 
concerning possible misuse or overutilization of AMMI or 
GGE biplot analysis and raise questions about the valid-
ity and scope of the functionalities and capabilities if such 
inadvertent applications of the biplot analysis are allowed. 
To raise these issues is not necessarily meant to discredit the 
usefulness of the biplot analysis. In fact, we believe the reso-
lutions to these and other issues will help enhance the value 
that is already captured by the biplot analysis. For example, 
inclusion of the FA(2) biplot would expand the functional-
ities and capabilities of a biplot from a strictly fi xed-eff ects 
model to a mixed-eff ects model, thereby allowing for the 
use of biplot analysis for modeling variance-covariance GE 
structure or incorporating pedigree information on rela-
tionships between relatives. However, proponents and users 
of the biplot analysis must recognize and acknowledge its 
fundamental limitations.
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We off er two take-home messages for future endeav-
ors with biplot analyses. First, a biplot is simply a descrip-
tive, graphical tool and cannot be used for hypothesis 
testing because there is no uncertainty measure. Selection 
of superior genotypes during breeding or recommenda-
tion of best cultivars from MET data are critical deci-
sions that plant breeders, agronomists, or crop producers 
have to make but which require sound scientifi c bases 
rather than based merely on subjective judgment calls 
from visualization. The parametric approach (Denis and 
Gower, 1994, 1996) as well as our bootstrapping non-
parametric approach to obtaining uncertainty measures 
for genotypic and environmental scores will both defi -
nitely help put those critical decisions on sound statistical 
and scientifi c bases. The development and application of 
these parametric and non-parametric approaches should 
be a focus of future research to add statistical inference 
capability to the biplot analysis. This is analogous to the 
usual diff erence between descriptive vs. inferential sta-
tistics. Descriptive statistics focus on collecting, organiz-
ing, summarizing, presenting, and analyzing data, but 
without drawing any conclusion or inference. On the 
other hand, inferential statistics is the science of decision 
making in the face of uncertainty. The biplot analysis 
alone is like descriptive statistics in that it is insuffi  cient 
to test hypotheses and draw sound, defi nitive conclu-
sions. Second, biplots alone are not suffi  cient for fully 
assessing the complex GE structure. More complete 
understanding of the GE structure requires important 
supplementary information such as adequacy of the 
number of multiplicative terms being retained, features 
of diff erent biplots, genetic and environmental covari-
ables, constrained bilinear solutions for non-COIs, and 
complete assessment of the genetic correlation among 
environments and relationship between genotypes.

Finally, while this paper focuses on a critical evalu-
ation of the biplot analysis as a statistical tool, it should 
not be forgotten that the biplot analysis is only one of 
many perspectives in the long and rich GE literature and 
the recent overemphasis on visual description and char-
acterization of GE interaction by biplot proponents has 
sidetracked other important perspectives centering around 
impacts of GE on selection response and breeding strat-
egy (e.g., Atlin et al., 2000; Piepho and Mohring, 2005). 
Thus, the major future research eff ort should be directed 
toward reinstalling those other perspectives, including 
(i) defi nition and delineation of the target population of 
environments for optimal selection response, (ii) incorpo-
ration of GE and multiple traits in marker-assisted selec-
tion and genomic selection, (iii) use of mixed-model and 
empirical Bayesian approaches for ranking genotypes in 
the presence of random GE eff ects, and (iv) development 
of linear and nonlinear models for predicting response to 
environmental and genetic covariables.
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