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Abstract. Neutrosophic set, proposed by Smarandache considers a truth membership function, an indeterminacy membership

function and a falsity membership function. Soft set, proposed by Molodtsov is a mathematical framework which has the

ability of independency of parameterizations inadequacy, syndrome of fuzzy set, rough set, probability. Those concepts have

been utilized successfully to model uncertainty in several areas of application such as control, reasoning, game theory, pattern

recognition, and computer vision. Nonetheless, there are many problems in real-world applications containing indeterminate

and inconsistent information that cannot be effectively handled by the neutrosophic set and soft set. In this paper, we propose

the notation of bipolar neutrosophic soft sets that combines soft sets and bipolar neutrosophic sets. Some algebraic operations

of the bipolar neutrosophic set such as the complement, union, intersection are examined. We then propose an aggregation

bipolar neutrosophic soft operator of a bipolar neutrosophic soft set and develop a decision making algorithm based on bipolar

neutrosophic soft sets. Numerical examples are given to show the feasibility and effectiveness of the developed approach.
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1. Introduction

To handle uncertainty, Zadeh [34] proposed fuzzy

set which is characterized by a membership degree

with range in the unit interval [0, 1]. From several

decades, this novel concept is utilized successfully to

model uncertainty in several areas of application such

as control, reasoning, game theory, pattern recog-

nition, and computer vision. Fuzzy sets, especially,

become an important area for the research in medi-

cal diagnosis, engineering, social sciences etc. Since

in fuzzy set, the degree of association of an element

is single value in the unit interval [0, 1], it may not

be adequate that the non-association of an element
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is equal to 1 minus the association degree due to the

existence of hesitation degree. Thus Atanassov [4]

coined intuitionistic fuzzy set in 1986 to overcome

this issue by incorporating the hesitation degree so-

called hesitation margin which is define by 1 minus

the sum of association degree and non-association

degree. Consequently the intuitionistic fuzzy set cap-

tured an association degree as well as non-association

degree which became the generalization of fuzzy set.

To judge the human decision making ability based

on positive and negative effects, Bosc and Pivert

[5] said that bipolarity provides the propensity of

the human mind to reason and make decisions that

depends on positive and negative effects. They argued

that both positive information depicts what is pos-

sible, satisfactory, permitted, desired, or considered

as being acceptable while the negative statements

express what is impossible, restricted, rejected, or
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forbidden and negativity of choices correspond to

constraints, since they particularize that what kind

of values or objects have to be rejected (i.e., those

that do not satisfy the constraints or totally opposite),

whereas positive preferences correspond to wishes,

as they specify which objects are more desirable

than others (i.e., satisfy user wishes) without reject-

ing those that do not meet the wishes. To utilize

this idea, Lee [24, 25] defined bipolar fuzzy sets

which generalizes the concept fuzzy sets. Kang and

Kang [23] applied the bipolar fuzzy set theory to

sub-semigroups with operators in semigroups.

Smarandache [32] in 1998, introduced neutro-

sophic set and neutrosophic logic by considering a

truth membership function, an indeterminacy mem-

bership function and a falsity membership function.

Neutrosophic set has the ability to generalize classical

sets, fuzzy sets, intuitionistic fuzzy sets. Smaran-

dache [32] and Wang et al. [33] further developed

single valued neutrosophic sets in order to use them

in an easy way in scientific and engineering fields.

Then, Deli et al. [16] developed bipolar neutrosophic

sets and study their application in decicion mak-

ing. Ali et al. [2] proposed neutrosophic cubic set

with application in pattern recognition. Broumi et al.

[36, 37] introduced Bipolar Single Valued Neutro-

sophic Graph theory and its Shortest Path problem.

Recently, Ali and Smarandache [1] define complex

neutrosophic set to represent the uncertain. Some

more literature on neutrosophic set and applications

can be found in [7, 8, 17–20, 38–58].

Molodtsov [29] proposed soft set to handle

uncertainty in a parameterized way. Soft set is a

mathematical framework which has the ability of

independency of parameterizations inadequacy, syn-

drome of fuzzy set, rough set, probability etc.. Soft

set applied successfully in several fields to tackle

the issues and problems such as smoothness of

functions, game theory, operation reaserch, Riemann

integration, Perron integration, and probability. Also,

Karaaslan and Karatas [22] Aslam et al. [3] studied

bipolar soft sets and bipolar fuzzy soft sets, respec-

tively. A huge amount of research work on soft set

theory can be seen in [9–12, 14, 21, 26, 30]. Also,

some authors studied concept of neutrosophic soft

set in [6, 13, 15, 27, 28].

This paper is dedicated to propose bipolar neu-

trosophic set which is a hybrid structure of soft set

and bipolar neutrosophic set. Firstly, we introduce the

bipolar neutrosophic soft set and discuss some basic

properties with illustrative examples adopting from

Kang and Kang [23]. Then, we study some algebraic

operations of the bipolar neutrosophic set such as the

complement, union, intersection etc. We then propose

an aggregation bipolar neutrosophic soft operator of

a bipolar neutrosophic soft set and develop a decision

making algorithm based on bipolar neutrosophic soft

sets. Numerical examples are given to show the fea-

sibility and effectiveness of the developed approach.

The organization of this paper is as follows. In Sec-

tion 1, we presented the relevant literature review.

Section 2 is dedicated to the fundamental concepts.

In Section 3, bipolar neutrosophic set has been pre-

sented. We also studied core properties in the same

section. Section 4 is about aggregation bipolar neutro-

sophic soft operator of a bipolar neutrosophic soft set.

In this section the proposed algorithm based on aggre-

gation bipolar neutrosophic soft operator of a bipolar

neutrosophic soft set is presented with a numerical

example. Conclusion is given in Section 5.

2. Preliminary

In this section, we give the basic definitions and

results of neutrosophic set theory [32], soft set the-

ory [29], neutrosophic soft set theory [13], bipolar

fuzzy set [24], bipolar fuzzy soft set [3] and bipolar

neutrosophic set [16] that are useful for subsequent

discussions.

Definition 1. [32] Let U be a universe. A neu-

trosophic sets (NS) K in U is characterized by a

truth-membership function TK, an indeterminacy-

membership function IK and a falsity-membership

function FK. TK(x); IK(x) and FK(x) are real stan-

dard or non-standard elements of ]0−, 1+[. It can be

written as:

K = {< x, (TK(x), IK(x), FK(x)) >: x ∈ U,

TK(x), IK(x), FK(x) ∈]−0, 1[+}.

There is no restriction on the sum of TK(x), IK(x)

and FK(x), so 0− ≤ TK(x) + IK(x) + FK(x) ≤ 3+.

Definition 2. [33] Let E be a universe. A single valued

neutrosophic sets (SVNS) A, which can be used in

real scientific and engineering applications, in E is

characterized by a truth-membership function TA, a

indeterminacy-membership function IA and a falsity-

membership function FA. TA(x), IA(x) and FA(x) are

real standard elements of [0, 1]. It can be written as

A = {< x, (TA(x), IA(x), FA(x)) >: x ∈ E,

TA(x), IA(x), FA(x) ∈ [0, 1]}.
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Definition 3. [29] Let U be a universe, E be a set

of parameters that describe the elements of U, and

A ⊆ E. Then, a soft set FA over U is a set defined by

a set valued function fA representing a mapping

fA : E → P(U) s.t fA(x) = ∅ if x ∈ E − A (1)

where fA is called approximate function of the soft

set FA. In other words, the soft set is a parameterized

family of subsets of the set U, and therefore it can be

written a set of ordered pairs

FA = {(x, fA(x)) : x ∈ E, fA(x) = ∅ if x ∈ E − A}

Definition 4. [13] Let U be a universe, N(U) be the

set of all neutrosophic sets on U, E be a set of param-

eters that are describing the elements of U. Then, a

neutrosophic soft set N over U is a set defined by a

set valued function fN representing a mapping

fN : E → N(U)

where fN is called an approximate function of the

neutrosophic soft set N. For x ∈ E, the set fN (x) is

called x-approximation of the neutrosophic soft set

N which may be arbitrary, some of them may be

empty and some may have a nonempty intersection.

In other words, the neutrosophic soft set is a parame-

terized family of some elements of the set N(U), and

therefore it can be written a set of ordered pairs,

N = {(x, {< u, TfN (x)(u), IfN (x)(u),

FfN (x)(u) >: x ∈ U} : x ∈ E}

where

TfN (x)(u), IfN (x)(u), FfN (x)(u) ∈ [0, 1].

Definition 5. [13] Let N1 and N2 be two neutrosophic

soft sets over neutrosophic soft universes (U, A) and

(U, B), respectively.

1. N1 is said to be neutrosophic soft subset

of N2 if A ⊆ B and TfN1(x) (u) ≤ TfN2(x) (u),

IfN1(x) (u) ≤ IfN2(x) (u), FfN1(x) (u) ≥ FfN2(x) (u),

∀x ∈ A, u ∈ U.

2. N1 and N2 are said to be equal if N1 neutro-

sophic soft subset of N2 and N2 neutrosophic

soft subset of N2.

Definition 6. [13] Let N1 and N2 be two neutrosophic

soft sets. Then,

1. The complement of a neutrosophic soft set N1

denoted by Nc
1 and is defined by

N1
c = {(x, {< u, FfN1(x) (u), 1 − IfN1(x) (u),

TfN1(x) (u) >: x ∈ U} : x ∈ E}

2. The union of N1 and N2 is denoted by N3 =

N1∪̃N2 and is defined by

N3 = {(x, {< u, TfN3(x) (u), IfN3(x) (u),

FfN3(x) (u) >: x ∈ U} : x ∈ E}

where

TfN3(x) (u) = max(TfN1(x) (u), TfN2(x) (u)),

IfN3(x) (u) = min(IfN1(x) (u), IfN2(x) (u)),

FfN3(x) (u) = min(FfN1(x) (u), FfN2(x) (u)).

3. The intersection of N1 and N2 is denoted by

N4 = N1∩̃N2 and is defined by

N4 = {(x, {< u, TfN4(x) (u), IfN4(x) (u),

FfN4(x) (u) >: x ∈ U} : x ∈ E}

where

TfN4(x) (u) = min(TfN1(x) (u), TfN2(x) (u)),

IfN4(x) (u) = max(IfN1(x) (u), IfN2(x) (u)),

FfN4(x) (u) = max(FfN1(x) (u), FfN2(x) (u)).

Definition 7. [24] Let U be a universe. A bipolar

fuzzy set � in U is defined as;

� = {(u, T+(u), T−(u)) : u ∈ U}

where T+ → [0, 1] and T− → [−1, 0]. The posi-

tive membership degree T+(u), denotes the truth

membership corresponding to a bipolar fuzzy set �

and the negative membership degree T−(u) denotes

the truth membership of an element u ∈ U to some

implicit counter-property corresponding to a bipolar-

fuzzy set �.

Definition 8. [3] Let U be a universe and E be a set

of parameters that are describing the elements of U.

A bipolar fuzzy soft set � in U is defined as;

� = {(e, {(u, T+(u), T−(u)) : u ∈ U}) : e ∈ E}

where T+ → [0, 1] and T− → [−1, 0]. The positive

membership degree T+(u), denotes the truth mem-

bership corresponding to a bipolar fuzzy soft set �

and the negative membership degree T−(u) denotes

the truth membership of an element u ∈ U to some

implicit counter-property corresponding to a bipolar
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fuzzy soft set �.

Definition 9. [16] Let U be a universe. A bipolar

neutrosophic set A in U is defined as;

A = {(u, T+(u), I+(u), F+(u),

T−(u), I−(u), F−(u)) : u ∈ U}

where T+, I+, F+ → [0, 1] and T−, I−, F− →

[−1, 0]. The positive membership degree T+(u),

I+(u), F+(u), denotes the truth membership, inde-

terminate membership and false membership of

an element corresponding to a bipolar neutro-

sophic set A and the negative membership degree

T−(u), I−(u), F−(u) denotes the truth membership,

indeterminate membership and false membership of

an element u ∈ U to some implicit counter-property

corresponding to a bipolar neutrosophic set A.

3. Bipolar neutrosophic soft sets

In this section, we propose the concept of neutro-

sophic soft sets and their operations.

Definition 10. Let U be a universe and E be a set of

parameters that are describing the elements of U. A

bipolar neutrosophic soft set B in U is defined as;

B = {(e, {(u, T+(u), I+(u), F+(u), T−(u),

I−(u), F−(u)) : u ∈ U}) : e ∈ E}

where T+, I+, F+ → [0, 1] and T−, I−, F− →

[−1, 0]. The positive membership degree T+(u),

I+(u), F+(u), denotes the truth membership, inde-

terminate membership and false membership of an

element corresponding to a bipolar neutrosophic

soft set B and the negative membership degree

T−(u), I−(u), F−(u) denotes the truth membership,

indeterminate membership and false membership of

an element u ∈ U to some implicit counter-property

corresponding to a bipolar neutrosophic soft set B.

Example 1. Let U = {u1, u2, u3}, E = {e1, e2}.

Then, bipolar neutrosophic soft set B1 and B2 over U

is given as, respectively;

B1 = {(e1, {(u1, 0.5, 0.8, 0.1, −0.5, −0.7, −0.2),

(u2, 0.6, 0.8, 0.7, −0.5, −0.7, −0.2),

(u3, 0.6, 0.8, 0.1, −0.5, −0.8, −0.8)}),

(e2, {(u1, 0.8, 0.8, 0.7, −0.5, −0.7, −0.2),

(u2, 0.4, 0.8, 0.7, −0.5, −0.7, −0.2),

(u3, 0.7, 0.8, 0.1, −0.4, −0.7, −0.4)})

and

B2 = {(e1, {(u1, 0.4, 0.8, 0.5, −0.6, −0.7, −0.2),

(u2, 0.3, 0.6, 0.7, −0.3, −0.7, −0.2),

(u3, 0.6, 0.2, 0.6, −0.5, −0.5, −0.3)}),

(e2, {(u1, 0.1, 0.8, 0.7, −0.2, −0.7, −0.2),

(u2, 0.1, 0.8, 0.7, −0.5, −0.5, −0.5),

(u3, 0.7, 0.6, 0.1, −0.4, −0.7, −0.3)})

Definition 11. An empty bipolar neutrosophic soft

set B
∅ in U is defined as;

B
∅ = {(e, {(u, 0, 0, 1, −1, 0, 0)) : u ∈ U}) : e ∈ E}

Definition 12. An absolute bipolar neutrosophic soft

set B
U in U is defined as;

B
U ={(e, {(u, 1, 1, 0, 0, −1, −1)) : u ∈ U}) : e∈ E}

It is noted that the empty and absolute neutrosophic

soft sets form the unit to the proposed system.

Example 2. Let U = {u1, u2, u3}, E = {e1, e2, e3}.

Then,

1. Empty bipolar neutrosophic soft set B
∅ in U is

given as;

B
∅ = {(e1, {(u1, 0, 0, 1, −1, 0, 0),

(u2, 0, 0, 1, −1, 0, 0),

(u3, 0, 0, 1, −1, 0, 0)}),

(e2, {(u1, 0, 0, 1, −1, 0, 0),

(u2, 0, 0, 1, −1, 0, 0),

(u3, 0, 0, 1, −1, 0, 0)}),

(e3, {(u1, 0, 0, 1, −1, 0, 0),

(u2, 0, 0, 1, −1, 0, 0),

(u3, 0, 0, 1, −1, 0, 0)})}

2. Absolute bipolar neutrosophic soft set B
U in U

is given as;

B
U = {(e1, {(u1, 1, 1, 0, 0, −1, −1),

(u2, 1, 1, 0, 0, −1, −1),

(u3, 1, 1, 0, 0, −1, −1)}),

(e2, {(u1, 1, 1, 0, 0, −1, −1),

(u2, 1, 1, 0, 0, −1, −1),
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(u3, 1, 1, 0, 0, −1, −1)}),

(e3, {(u1, 1, 1, 0, 0, −1, −1),

(u2, 1, 1, 0, 0, −1, −1),

(u3, 1, 1, 0, 0, −1, −1)})}

Definition 13. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} for

i = 1, 2 be two bipolar neutrosophic soft sets over U.

Then, B1 is bipolar neutrosophic soft subset of B2,

is denoted by B1 ⊑ B2, if T+
1 (u) ≤ T+

2 (u), I+
1 (u) ≥

I+
2 (u), F+

1 (u) ≥ F+
2 (u), T−

1 (u) ≥ T−
2 (u), I−

1 (u) ≤

I−
2 (u) and F−

1 (u) ≤ F−
2 (u) for all (e, u) ∈ E × U.

Example 3. Let U = {u1, u2}, E = {e1, e2}. If

B1 = {(e1, {(u1, 0.7, 0.8, 0.2, −0.5, −0.9, −0.3),

(u2, 0.6, 0.8, 0.7, −0.5, −0.7, −0.2)}),

(e2, {(u1, 0.8, 0.8, 0.7, −0.5, −0.7, −0.2),

(u2, 0.4, 0.8, 0.7, −0.5, −0.7, −0.2)})}

and

B2 = {(e1, {(u1, 0.8, 0.1, 0.2, −0.6, −0.8, −0.3),

(u2, 0.9, 0.2, 0.3, −0.9, −0.7, −0.2)}),

(e2, {(u1, 0.9, 0.8, 0.7, −0.5, −0.7, −0.2),

(u2, 0.5, 0.8, 0.7, −0.8, −0.7, −0.1)})}

then, we have B1 ⊑ B2.

Definition 14. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} for

i = 1, 2 be two bipolar neutrosophic soft sets over

U. Then, B1 is bipolar neutrosophic soft equal to B2,

is denoted by B1 = B2, if T+
1 (u) = T+

2 (u), I+
1 (u) =

I+
2 (u), F+

1 (u) = F+
2 (u), T−

1 (u) = T−
2 (u), I−

1 (u) =

I−
2 (u) and F−

1 (u) = F−
2 (u) for all (e, u) ∈ E × U.

Definition 15. Let B be a bipolar neutrosophic soft

sets over U. Then, the complement of a bipolar neu-

trosophic soft set B, is denoted by B
c, is defined

as;

B
c = {(e, {(u, F+(u), 1 − I+(u), T+(u), F−(u),

−1 − I−(u), T−(u)) : u ∈ U}) : e ∈ E}

Example 4. Consider the Example 1. Then,

B
c = {(e1, {(u1, 0.1, 0.2, 0.5, −0.2, −0.3, −0.5),

(u2, 0.7, 0.2, 0.6, −0.2, −0.3, −0.5),

(u3, 0.1, 0.2, 0.6, −0.8, −0.2, −0.5)}),

(e2, (u1, 0.7, 0.2, 0.8, −0.2, −0.3, −0.5),

(u2, 0.7, 0.2, 0.4, −0.2, −0.3, −0.5),

(u3, 0.1, 0.2, 0.7, −0.4, −0.3, −0.4))}

Definition 16. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} for

i = 1, 2 be two bipolar neutrosophic soft sets over U.

Then, the union of B1 and B2, is denoted by B1 ⊔ B2,

is defined as;

B1 ⊔ B2

= {(e, {(u, maxi{T
+
i (u)}, mini{I

+
i (u)},

mini{F
+
i (u)}, mini{T

−
i (u)}, maxi{I

−
i (u)},

maxi{F
−
i (u)}) : u ∈ U}) : e ∈ E, and i= 1, 2}

Example 5. Consider the Example 1. Then,

B1 ⊔ B2

= {(e1, {(u1, 0.5, 0.8, 0.1, −0.6, −0.7, −0.2),

(u2, 0.6, 0.6, 0.7, −0.5, −0.7, −0.2),

(u3, 0.6, 0.2, 0.1, −0.5, −0.5, −0.3)}),

(e2, (u1, 0.8, 0.8, 0.7, −0.5, −0.7, −0.2),

(u2, 0.4, 0.8, 0.7, −0.5, −0.7, −0.2),

(u3, 0.7, 0.6, 0.1, −0.4, −0.7, −0.3))}

Definition 17. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} for

i = 1, 2, ..., n be n bipolar neutrosophic soft sets over

U. Then, the union of n bipolar neutrosophic soft set

Bi, is denoted by ⊔n
i=1Bi, is defined as;

⊔n
i=1Bi

= {(e, {(u, maxi{T
+
i (u)}, mini{I

+
i (u)},

mini{F
+
i (u)}, mini{T

−
i (u)}, maxi{I

−
i (u)},

maxi{F
−
i (u)}) : u ∈ U}) : e ∈ E,

i = 1, 2, ..., n}

Definition 18. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} for

i = 1, 2 be two bipolar neutrosophic soft sets over U.

Then, the intersection of B1 and B2, is denoted by

B1 ⊓ B2, is defined as;

B1 ⊓ B2

= {(e, {(u, mini{T
+
i (u)}, maxi{I

+
i (u)},

maxi{F
+
i (u)}, maxi{T

−
i (u)}, mini{I

−
i (u)},
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mini{F
−
i (u)}) : u ∈ U}) : e ∈ E, i = 1, 2}

Example 6. Consider the Example 1. Then,

B1 ⊓ B2

= {(e1, {(u1, 0.4, 0.8, 0.5, −0.5, −0.7, −0.2),

(u2, 0.3, 0.8, 0.7, −0.3, −0.7, −0.2),

(u3, 0.6, 0.8, 0.6, −0.5, −0.8, −0.8)}),

(e2, (u1, 0.1, 0.8, 0.7, −0.2, −0.7, −0.2),

(u2, 0.1, 0.8, 0.7, −0.5, −0.7, −0.5),

(u3, 0.7, 0.8, 0.1, −0.4, −0.7, −0.4))}

Definition 19. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} for

i = 1, 2, ..., n be n bipolar neutrosophic soft sets over

U. Then, the intersection of n bipolar neutrosophic

soft set Bi, is denoted by ⊓n
i=1Bi, is defined as;

⊓n
i=1Bi = {(e, {(u, mini{T

+
i (u)}, maxi{I

+
i (u)},

maxi{F
+
i (u)}, maxi{T

−
i (u)},

mini{I
−
i (u)}, mini{F

−
i (u)}) : u ∈ U})

: e ∈ E, and i = 1, 2, ..., n}

Proposition 1. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} for

i = 1, 2, 3 be three bipolar neutrosophic soft sets

over U. Then,

1. B1 ⊔ B2 = B2 ⊔ B1

2. B1 ⊓ B2 = B2 ⊓ B1

3. B1 ⊔ (B2 ⊔ B3) = (B1 ⊔ B2) ⊔ B3

4. B1 ⊓ (B2 ⊓ B3) = (B1 ⊓ B2) ⊓ N3

Proof. The proofs can be easily obtained since the

max functions and min functions are commutative

and associative.

Proposition 2. Let B1 = {(e, {(u, T+
1 (u), I+

1 (u),

F+
1 (u), T−

1 (u), I−
1 (u), F−

1 (u)) : u ∈ U}) : e ∈ E} be

a bipolar neutrosophic soft sets over U. Then,

1.
(

B
c
1

)c
= B1

2. (BU)c = B
∅

3. B1 ⊑ B
U

4. B
∅ ⊑ B1

5. B1 ⊑ B1

Proposition 3. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} for

i = 1, 2, 3 be three bipolar neutrosophic soft sets

over U. Then,

1. B1 ⊑ B2 ∧ B2 ⊑ B3 ⇒ B1 ⊑ B3

2. B1 = B2 ∧ B2 = B2 ⇔ B1 = B3

3. B1 ⊑ B2 ∧ B2 ⊑ B1 ⇔ B1 = B2

Proposition 4. Let B1 = {(e, {(u, T+
1 (u), I+

1 (u),

F+
1 (u), T−

1 (u), I−
1 (u), F−

1 (u)) : u ∈ U}) : e ∈ E} be

a bipolar neutrosophic soft sets over U. Then,

1. B1 ⊔ B1 = B1

2. B1 ⊔ B
∅ = B1

3. B1 ⊔ B
U = B

U

Proposition 5. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} be

a bipolar neutrosophic soft sets over U. Then,

1. B1 ⊓ B1 = B1

2. B1 ⊓ B
∅ = B

∅

3. B1 ⊓ B
U = B1

Proposition 6. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} for

i = 1, 2 be two bipolar neutrosophic soft sets over U.

Then, De Morgan’s laws are valid

1. (B1 ⊔ B2)c = B
c
1 ⊓ B

c
2

2. (B1 ⊓ B2)c = B
c
1 ⊔ B

c
2

Proof. i.

(B1 ⊔ B1)c

= {(e, {(u, maxi{T
+
i (u)}, mini{I

+
i (u)},

mini{F
+
i (u)}, mini{T

−
i (u)},

maxi{I
−
i (u)}, maxi{F

−
i (u)}) : u ∈ U})

: e ∈ E, and i = 1, 2}c

= {(e, {(u, mini{F
+
i (u)}, 1 − mini{I

+
i (u)},

maxi{T
+
i (u)}, maxi{F

−
i (u)},

−1 − maxi{I
−
i (u)}, mini{T

−
i (u)}) : u ∈ U})

: e ∈ E, and i = 1, 2}

= {(e, {(u, mini{F
+
i (u)}, maxi{1 − I+

i (u)},

maxi{T
+
i (u)}, maxi{F

−
i (u)},

mini{−1 − I−
i (u)}, mini{T

−
i (u)}) : u ∈ U})

: e ∈ E, and i = 1, 2}{(e, {(u, T+
1 (u),

I+
1 (u), F+

1 (u), T−
1 (u), I−

1 (u),

F−
1 (u)) : u ∈ U}) : e ∈ E}c ⊓

{(e, {(u, T+
2 (u), I+

2 (u), F+
2 (u),

T−
2 (u), I−

2 (u), F−
2 (u)) : u ∈ U}) : e ∈ E}c
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= B
c
1 ⊓ B

c
2

ii.

(B1 ⊓ B1)c

= {(e, {(u, mini{T
+
i (u)}, maxi{I

+
i (u)},

maxi{F
+
i (u)}, maxi{T

−
i (u)},

mini{I
−
i (u)}, mini{F

−
i (u)}) : u ∈ U})

: e ∈ E, and i = 1, 2}c

= {(e, {(u, maxi{F
+
i (u)},

1 − maxi{I
+
i (u)}, mini{T

+
i (u)},

mini{F
−
i (u)}, −1 − mini{I

−
i (u)},

maxi{T
−
i (u)}) : u ∈ U})

: e ∈ E, and i = 1, 2}

= {(e, {(u, maxi{F
+
i (u)},

mini{1 − I+
i (u)}, mini{T

+
i (u)},

mini{F
−
i (u)}, maxi{−1 − I−

i (u)},

maxi{T
−
i (u)}) : u ∈ U})

: e ∈ E, and i = 1, 2}

= {(e, {(u, T+
1 (u), I+

1 (u),

F+
1 (u), T−

1 (u), I−
1 (u), F−

1 (u))

: u ∈ U}) : e ∈ E}c ⊔

{(e, {(u, T+
2 (u), I+

2 (u),

F+
2 (u), T−

2 (u), I−
2 (u), F−

2 (u))

: u ∈ U}) : e ∈ E}c

= B
c
1 ⊔ B

c
2

Proposition 7. Let Bi = {(e, {(u, T+
i (u), I+

i (u),

F+
i (u), T−

i (u), I−
i (u), F−

i (u)) : u ∈ U}) : e ∈ E} for

i = 1, 2, 3 be three bipolar neutrosophic soft sets

over U. Then,

1. B1 ⊓ (B2 ⊔ B3) = (B1 ⊓ B2) ⊔ (B1 ⊓ B3)

2. B1 ⊔ (B2 ⊓ B3) = (B1 ⊔ B2) ⊓ (B1 ⊔ B3)

4. Aggregation bipolar neutrosophic

soft operator

In this section, we propose an aggregation bipolar

neutrosophic soft operator of a bipolar neutrosophic

soft sets. Also, we develope an algorithm based on

bipolar neutrosophic soft sets and give numerical

examples to show the feasibility and effectiveness of

the developed approach.

Definition 20. Let B = {(e, {(u, T+(u), I+(u),

F+(u), T−(u), I−(u), F−(u)) : u ∈ U}) : e ∈ E} =

{{(u, T+
e (u), I+

e (u), F+
e (u), T−

e (u), I−
e (u), F−

e (u)) :

u ∈ U} : e ∈ E} be a bipolar neutrosophic soft sets

over U. Then, aggregation bipolar neutrosophic soft

operator, denoted by Bagg, is defined as;

Bagg = {µB(u)/u : u ∈ U}

µB(u) =
1

2|E × U|

∑

e∈E

(|1 −I+
e (u)(T+

e (u) −F+
e (u))

+I−
e (u)(T−

e (u) − F−
e (u))|)

where |E × U| is the cardinality of E × U.

Now we give a decision algorithm for bipolar neu-

trosophic soft sets.

Algorithm.

1. Construct the bipolar neutrosophic soft set onU.

2. Compute the aggregation bipolar neutrosophic

soft operator.

3. Find an optimum alternative set on U.

Example 7. (It is adopted from [14]) Assume that that

a workplace wants to fill a position. There are 5 can-

didates who fill in a form in order to apply formally

for the position. There is a decision maker (DM), that

is from the department of human resources.

He want to interview the candidates, but it is

very difficult to make it all of them. Therefore, by

using the bipolar neutrosophic soft decision mak-

ing method, the number of candidates are reduced

to a suitable one. Assume that the set of candidates

U = {u1, u2, u3, u4, u5} which may be characterized

by a set of parameters E = {e1, e2, e3} which is

“e1 = experience”, “e2 = technical information”

and “e3 = age”. Now, we can apply the method as

follows:

1. DM constructs a bipolar neutrosophic soft B

over the alternatives set U as;

B = {(e1, {(u1, 0.8, 0.9, 0.4, −0.5, −0.7, −0.6),

(u2, 0.5, 0.4, 0.8, −0.5, −0.7, −0.5),

(u3, 0.5, 0.5, 0.8, −0.5, −0.8, −0.9),

(u4, 0.9, 0.8, 0.3, −0.5, −0.2, −0.7),

(u5, 0.5, 0.5, 0.4, −0.9, −0.8, −0.8)}),

(e2, {(u1, 0.8, 0.4, 0.7, −0.4, −0.2, −0.6),
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(u2, 0.5, 0.3, 0.7, −0.9, −0.7, −0.8),

(u3, 0.5, 0.9, 0.8, −0.5, −0.7, −0.6)),

(u4, 0.5, 0.7, 0.8, −0.9, −0.3, −0.7),

(u5, 0.4, 0.1, 0.8, −0.5, −0.8, −0.9)}),

(e3, {(u1, 0.7, 0.8, 0.6, −0.5, −0.1, −0.8),

(u2, 0.8, 0.9, 0.4, −0.5, −0.4, −0.8),

(u3, 0.2, 0.9, 0.5, −0.1, −0.9, −0.4),

(u4, 0.5, 0.4, 0.2, −0.5, −0.6, −0.9),

(u5, 0.9, 0.8, 0.8, −0.5, −0.7, −0.1)})}

2. DM finds the aggregation bipolar neutrosophic

soft operator Bagg of B as;

Bagg = {0.0793/u1, 0.0923/u2, 0.1010/u3,

0.0797/u4, 0.0983/u5}

3. Finally, DM chooses u3 for the position from

Bagg since it has the maximum degree 0.1010

among the others.

Example 8. (It is adopted from [31]) Let U =

{o1, o2, o3, o4, o5, o6} be the set of objects hav-

ing different colors, sizes and surface texture

features. The parameter set, E = {e1, e2, e3} in

which “e1 = color space”, “e2 = size” and “e3 =

surface texture”. We can apply the algorithm as fol-

lows:

1. DM constructs a bipolar neutrosophic soft B

over the alternatives set U as;

B = {(e1, {(o1, 0.3, 0.4, 0.6, −0.3, −0.5, −0.4),

(o2, 0.3, 0.9, 0.3, −0.6, −0.7, −0.4),

(o3, 0.4, 0.5, 0.8, −0.5, −0.6, −0.7),

(o4, 0.8, 0.2, 0.4, −0.7, −0.3, −0.5),

(o5, 0.7, 0.3, 0.6, −0.7, −0.6, −0.6),

(o6, 0.9, 0.2, 0.4, −0.7, −0.6, −0.6)}),

(e2, {(o1, 0.4, 0.2, 0.8, −0.6, −0.4, −0.8),

(o2, 0.8, 0.6, 0.3, −0.7, −0.5, −0.6),

(o3, 0.6, 0.4, 0.4, −0.3, −0.7, −0.8),

(o4, 0.9, 0.8, 0.2, −0.7, −0.5, −0.6),

(o5, 0.2, 0.1, 0.9, −0.3, −0.6, −0.7),

(o6, 0.3, 0.2, 0.8, −0.3, −0.5, −0.7)}),

(e3, {(o1, 0.3, 0.4, 0.1, −0.7, −0.3, −0.6),

(o2, 0.8, 0.9, 0.4, −0.5, −0.4, −0.8),

(o3, 0.5, 0.6, 0.3, −0.3, −0.7, −0.6),

(o4, 0.7, 0.6, 0.6, −0.3, −0.4, −0.7),

(o5, 0.6, 0.8, 0.5, −0.3, −0.5, −0.3),

(o6, 0.8, 0.7, 0.7, −0.3, −0.5, −0.3)})}

2. DM finds the aggregation bipolar neutrosophic

soft operator Bagg of B as;

Bagg = {0.1007/o1, 0.0803/o2, 0.0773/o3,

0.0750/o4, 0.0927/o5, 0.930/o6}

3. Finally, DM chooses o1 for the position from

Bagg since it has the maximum degree 0.1007

among the others.

Example 9. (It is adopted from [27]) We con-

sider the problem to select the most suitable house

which Mr. X is going to choose on the basis of

his m number of parameters out of n number of

houses (we choose n = 5 and m = 5). Let U =

{h1, h2, h3, h4, h5} be the set of houses having

different features E = {e1, e2, e3, e4, e5} in which

in which “e1 = beautiful”, “e2 = cheap”, “e3 =

in good repairing”, “e4 = moderate” and “e5 =

wooden”. We can apply the algorithm as follow:

1. DM constructs a bipolar neutrosophic soft B

over the alternatives set U as;

B = {(e1, {(h1, 0.6, 0.3, 0.8, −0.5, −0.7, −0.6),

(h2, 0.7, 0.2, 0.6, −0.5, −0.7, −0.5),

(h3, 0.8, 0.3, 0.4, −0.5, −0.8, −0.9),

(h4, 0.7, 0.5, 0.6, −0.5, −0.2, −0.7),

(h5, 0.8, 0.6, 0.7, −0.9, −0.8, −0.8)}),

(e2, {(h1, 0.5, 0.2, 0.6, −0.4, −0.2, −0.6),

(h2, 0.6, 0.3, 0.7, −0.9, −0.7, −0.8),

(h3, 0.8, 0.5, 0.1, −0.6, −0.8, −0.6)),

(h4, 0.6, 0.8, 0.7, −0.9, −0.3, −0.7),

(h5, 0.5, 0.6, 0.8, −0.5, −0.8, −0.9)}),

(e3, {(h1, 0.7, 0.3, 0.4, −0.5, −0.1, −0.8),

(h2, 0.7, 0.5, 0.6, −0.5, −0.4, −0.8),

(h3, 0.3, 0.5, 0.6, −0.1, −0.9, −0.4),

(h4, 0.7, 0.6, 0.8, −0.5, −0.6, −0.9),

(h5, 0.8, 0.7, 0.6, −0.5, −0.7, −0.1)}),
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(e4, {(h1, 0.8, 0.5, 0.6, −0.5, −0.1, −0.8),

(h2, 0.6, 0.8, 0.3, −0.5, −0.4, −0.8),

(h3, 0.7, 0.2, 0.1, −0.1, −0.9, −0.4),

(h4, 0.8, 0.3, 0.6, −0.5, −0.6, −0.9),

(h5, 0.7, 0.8, 0.3, −0.5, −0.7, −0.1)}),

(e5, {(h1, 0.6, 0.7, 0.2, −0.5, −0.1, −0.8),

(h2, 0.8, 0.1, 0.8, −0.5, −0.4, −0.8),

(h3, 0.7, 0.2, 0.6, −0.1, −0.9, −0.4),

(h4, 0.8, 0.3, 0.8, −0.5, −0.6, −0.9),

(h5, 0.7, 0.2, 0.6, −0.5, −0.7, −0.1)})}

2. DM finds the aggregation bipolar neutrosophic

soft operator Bagg of B as;

Bagg = {0.1470/h1, 0.1477/h2, 0.1137/h3,

0.1443/h4, 0.1747/h5}

3. Finally, DM chooses h5 for the position from

Bagg since it has the maximum degree 0.1747

among the others.

It has been observed in Examples 7–9 that the pro-

posed method requires less steps of computation than

the relevant works in [14, 27, 31] whilst provides

more information on membership degrees (positive

and negative) for decision.

5. Conclusion

In this paper, we introduced the bipolar neutro-

sophic soft set that combines soft sets and bipolar

neutrosophic sets. Some new operations on bipolar

neutrosophic soft sets were designed. We developed

a decision making method based on bipolar neu-

trosophic soft sets. Numerical examples taken from

the existing works [14, 27, 31] were performed to

show the feasibility and electiveness of the developed

approach. For further study, we will apply our work

to real world problems with realistic data and extend

proposed algorithm to other decision making models

with vagueness and uncertainty. An extension from

Bipolar to Tripolar Neutrosophic Soft Sets and even

Multipolar Neutrosophic Soft Sets as inspired in [35]

will be our next targets.
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