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A theory of bipolaron states in quantum wires with a parabolic potential well is developed applying the
Feynman variational principle. The basic parameters of the bipolaron ground state~the binding energy, the
number of phonons in the bipolaron cloud, the effective mass, and the bipolaron radius! are studied as a
function of sizes of the potential well. Two cases are considered in detail: a cylindrical quantum wire and a
planar quantum wire. Analytical expressions for the bipolaron parameters are obtained at large and small sizes
of the quantum well. It is shown that atR@1 @whereR means the radius~half width! of a cylindrical~planar!
quantum wire, expressed in Feynman units#, the influence of confinement on the bipolaron binding energy is
described by the function;1/R2 for both cases, while at small sizes this influence is different in each case. In
quantum wires, the bipolaron binding energyW(R) increases logarithmically with decreasing radius. The
shapes and the sizes of a nanostructure, which are favorable for observation of stable bipolaron states, are
determined.
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I. INTRODUCTION

Landau’s idea1 of the autolocalized state of a charge ca
rier ~polaron! in a homogeneous polar medium got a furth
development by Pekar2 who first studied a problem of a
stable complex of two charge carriers of the same sign~bi-
polaron!. The bipolaron binding energy was first calculat
in Ref. 3. The bipolaron problem was widely discussed,
e.g., Refs. 4–9. A detailed outline of this subject is presen
in a recent review.10

Dimensionless constants of the Coulomb interactionU
and of the electron-phonon interactiona are related to each
other by the equation10

U5
A2a

12h
, ~1!

whereh5«` /«0 («0 and«` are static and optical dielectri
constants, respectively!. Due to the fact that«0.«` , the
relationU>A2a follows. When the distancel between elec-
trons is large or small compared with the characteristic
laron radiusRp ~see Ref. 11!, the phonon-mediated attractio
between electrons occurs to be weaker than the repulsion
large distancesl @Rp , both interaction potentials have sim
lar spatial dependences but the Coulomb repulsion is st
ger than the phonon-mediated attraction. In the oppo
case,l !Rp , the Coulomb potential diverges at the zero d
tance, while the phonon-mediated attraction is always fin
Nevertheless, when two electrons move in such a way
the average distance between them is of the same ord
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the polaron radius, the bipolaron can be stable ata@1 and
h!1. When two electrons are together confined to a pot
tial well, one can expect that the conditions of the bipolar
stability may be improved for relevant sizes of the well.

Two new circumstances have stimulated the bipola
theory: the progress in the fabrication technology of me
scopic nanostructures such as quasi-2D~where 2D denotes
two dimensional! ~quantum wells and superlattices!,
quasi-1D~quantum wires!, quasi-0D~quantum dots!, and the
advancement of the hypothesis that bipolaron excitati
might play a role in processes occurring in the hig
temperature superconductors. The present research has
motivated also by the recent advances in creation of na
crystals with a strong ionic coupling.12

The basic bipolaron parameters are recalled in what
lows. The bipolaron stability region is determined by t
inequalityW.0 for the bipolaron binding energy

W[2Ep2Ebip . ~2!

HereEp andEbip are the free polaron and bipolaron groun
state energies, respectively. From the equation

W~a,h,R!50, ~3!

whereR denotes the set of parameters determining the sh
and the size of the confinement domain, the functio
ac(h,R) andhc(a,R) describing the boundaries of the b
polaron stability region are found, for fixedh anda, respec-
tively. According to different theoretical treatments4–10 the
bipolaron binding energy is an increasing function ofa and
2721 ©2000 The American Physical Society
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a decreasing function ofh. It will be shown that the function
hc(a,R) starts fromhc50 at a5amin(R)Þ0, grows with
increasinga, and tends to the upper limithmax at a→`. The
bipolaron stability region is then determined by the inequ
ties a>amin(R) and 0<h,hc(a,R).

Let us adduce typical values of the parametersamin,3D and
hmax,3D of the bulk ~3D! bipolaron: amin,3D56.8 and
hmax,3D50.14 were found by Verbist, Peeters, a
Devreese13,14 and by Verbist, Smondyrev, Peeters, a
Devreese.15 Adamowski7 obtainedamin,3D57.3 andhmax,3D
50.14. The bipolaron theory developed for pure 2D~Refs.
16 and 17 and 1D~Ref. 17! models shows that the bipolaro
stability region broadens when the dimensionality is reduc
For these systems, the following parameters were obtai
amin,2D52.9, hmax,2D50.158 ~Ref. 16!; amin,1D50.9,
hmax,1D50.764~Ref. 18!. Bipolaron states were investigate
in a quantum well19,20 and in a quantum wire21 as a function
of the characteristic size of the system. The polaron the
for a quantum dot is developed in Refs. 22–25.

The goal of the present investigation is to determine
bipolaron stability region and to study the basic parame
characterizing the bipolaron ground state as a function
confinement. Two different types of confinement are cons
ered and compared to each other:~i! a cylindrical quantum
wire of the radiusR, where continuous transitions from 3D t
1D are realized with decreasingR; ~ii ! a planar quantum wire
of the widthL, where a transition from 2D to 1D is realize
with decreasingL. A unique approach, namely the Feynm
variational method,26,27 is used throughout the paper for bo
systems under analysis.

The paper is organized as follows. In Sec. II, general f
mulas for parameters of a bipolaron in quantum wires
deduced. In Sec. III, particular cases of cylindrical and pla
quantum wires are considered. The basic parameters o
bipolaron ground state are obtained. Limiting cases of str
and weak confinement are studied in detail. The obtai
numerical and analytical results are discussed in Sec.
Section V contains conclusions about the influence of c
finement on the bipolaron binding energy in quantum wir

II. GENERAL THEORY

We analyze the bipolaron problem taking into accou
both the electron-phonon interaction and the Coulomb re
sion between two electrons confined to a quantum wire.
Lagrange function of the system is

L5(
i 51

D

(
n51,2

miẋi ,n
2

2
2 (

n51,2
U~rn!2

e2

«`ur12r2u

1
1

2 (
k

~ẇk
22v0

2wk
2!2 (

n51,2
(

k
gk~rn!wk , ~4!

wherern(x1n ,x2n ,x3n) is the radius vector of thenth elec-
tron (n51,2); mi is the i th component (i 51,2,3) of the
diagonal band mass tensor,U(r ) is the potential energy of an
electron in the quantum wire, andwk are the normal coordi-
nates of longitudinal optical~LO! phonon modes. Here, th
parameterD determines the dimensionality of the electr
subsystem:D53 and 2 for cylindrical and planar quantu
-

d.
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wires, respectively. Amplitudes of the electron-phonon int
action are taken in the Fro¨hlich form:

gk~r !1/252S 2p\v0a

V D 1/2v0

k S \

2m̄v0
D 1/4

exp~ ikr !, ~5!

wherem̄[(m1m2m3)1/3, V is the volume of the system, an
the Fröhlich constant

a5
e2

2\v0
S 1

«`
2

1

«0
D S 2m̄v0

\
D 1/2

~6!

characterizes the strength of the coupling between an e
tron and bulk polar LO phonons with the long-waveleng
frequencyv0. In this paper, the 3D phonon approximation
used, according to which the interaction of an electron w
both bulklike and interface phonons is replaced by that w
3D phonons. This often used approach is adequate bec
any integral polaron or bipolaron effect, resulting from
summation over all phonon modes, appears to be o
weakly dependent on the details of the phonon spectrum
should be also mentioned that the system under consi
ation simulates realistic structures with relatively smooth
terface barriers, where interfacelike phonon modes can
pear, which are smoothly distributed in space rather th
localized near a sharp boundary, as is the case for inter
modes.

In order to study the bipolaron problem at arbitrary valu
of a, the Feynman variational approach27 is the most appro-
priate method. The trial Lagrange function is written as

Ltr5
1

2 (
i 51

D

(
n51,2

@miẋi ,n
2 1MiẊi ,n

2 2ki~xi ,n2Xi ,n!2

2ki8~xi ,n2Xi ,n̄!2#1(
i 51

3

Ki~xi12xi2!22 (
n51,2

W~rn!,

~7!

where Xin are coordinates of thenth ‘‘fictitious’’ particle
(n51,2). This model imitates the interaction of electro
with phonons and between each other by elastic bond
shown in Fig. 1. The massesMi and the force constantski ,
ki8 , Ki play the role of variational parameters. Forn51, n̄

takes the value 2, and forn52, n̄ is equal to 1. The potentia
well U(r ) from Eq.~4! is simulated here by a parabolic func
tion:

FIG. 1. A scheme of the trial system which contains two ele
trons connected with two ‘‘fictitious’’ particles through the elast
attraction and models the Coulomb interaction by the elastic re
sion.
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W~r !5
1

2 (
i 51

q

miV i
2xi

2 . ~8!

The indexq characterizes the dimensionality of confineme
and is determined as follows: for a planar quantum wireq
51 (V1Þ0 andV250) and for a cylindrical quantum wire
q52 (V1Þ0, V2Þ0, andV350).

The basis of the Feynman variational method is
Jensen-Feynman inequality27:

^exp~S2Str !&Str
> exp̂ S2Str&Str

, ~9!

where the angular brackets denote averaging over elec
paths:

^G&Str
5

TrE DrG@r #exp~Str !

TrE Dr exp~Str !

. ~10!

Here S and Str are the electron action functionals obtain
after integration over phonon variables and over coordina
of ‘‘fictitious’’ particles, respectively. At low temperatures
the variational bipolaron energy is calculated using the
pression
in
h

e-
ith
t

e

on

s

-

Ebip5Etr2 lim
b→`

^S2Str&Str

b
, ~11!

whereEtr is the ground state energy of the trial system w
the Lagrangian~7!, b51/kBT is the inverse temperature.

The trial Lagrange function~7! consists ofD independent
parts:Ltr5( i 51

D Li . Each partLi is a function of four vari-
ablesxi1 , xi2 , Xi1 , Xi2. Let us introduce unified denotation
for coordinates of electrons and of ‘‘fictitious’’ particles
x̃i15xi1 , x̃i25xi2 , x̃i35Xi1 , x̃i45Xi2. It follows from the
form of the trial Lagrangian~7! with Eq. ~8! that the groups
of variablesx̃i j with different indicesi are dynamically inde-
pendent from each other. They are related to normal v
ablesj i j by the unitary transformation:

x̃i j 5 (
j 851

4

di , j j 8j i j 8 , i 51, . . . ,D ~12!

with 434 matricesidi , j j 8i ( j , j 851, . . . ,4).From the equa-
tions of motion for the group of coordinatesx̃i j ( j
51, . . . ,4)with a fixedi, the following eigenfrequencies ar
obtained:
v i j
2 5

1

2 H S 11
Mi

mi
D v i

21V i
22~21! jAF S 12

Mi

mi
D v i

22V i
2G2

14
Mi

mi
v i

4J , j 51,2,

v i j
2 5

1

2 H S 11
Mi

mi
D v i

21V i
222

Ki

mi
2~21! jAF S 12

Mi

mi
D v i

22V i
212

Ki

mi
G2

14
~ki2ki8!2

miMi
J , j 53,4, ~13!
on
the

l

rest

ia-

of
e
ese
where v i
25(ki1ki8)/Mi . Matrix elements of the unitary

transformation~12! are

di ,11
2 5

v i1
2 2v i

2

2~v i1
2 2v i2

2 !
, di ,12

2 5
v i

22v i2
2

2~v i1
2 2v i2

2 !
,

di ,13
2 5

v i3
2 2v i

2

2~v i3
2 2v i4

2 !
, di ,14

2 5
v i

22v i4
2

2~v i3
2 2v i4

2 !
,

di ,2j 85sj 8di ,1j 8 , di ,3j 85
ki1sj 8ki8

Mi~v i
22v i j 8

2
!
di ,1j 8 ,

di ,4j 85sj 8di ,3j 8 , ~14!

sj51 ~ j 51,2!, sj521 ~ j 53,4!.

Note that the elastic repulsion imitating the Coulomb
teraction gives a contribution to the eigenfrequencies witj
53 and 4 through the force constantsKi . It is easy to see
from Eq. ~13! that under the conditions of a strong confin
ment along thei th coordinate axis the eigenfrequencies w
-

j 51 and 3 corresponding to the motion of the bipolar
along this axis as a whole are determined mainly by
parameterV i .

The action functionalsS andStr in Eqs.~9!–~11! contain
the potential energiesU and W, respectively. Though the
shape of a real potentialU may differ from that of the mode
quadratic potential~8!, the averaged differencêU2W&Str

can be omitted as far as it is small when compared to the
of ^S2Str&Str

/b.
The averaging procedure in Eq.~11! is carried out by the

path integration and leads to the following form of the var
tional bipolaron energy:

Ebip5(
i 51

D

Bi1C1P. ~15!

Here the termsBi include the averaged kinetic energies
two electrons and of two ‘‘fictitious’’ particles as well as th
averaged potential energy of the elastic interaction of th
four particles:

Bi5
1

2 (
j 51

4

v i j S 12
v i j

2 2V i
2

v i j
2

di ,1j
2 D 2v i , i 51, . . . ,D.

~16!
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In Eqs.~15! and~16! and further on, the Feynman units26 are
used:\v0 for energies;v0 for frequencies; and (\/m̄v0)1/2

for lengths.
The averaged potential energy of the Coulomb elect

repulsion is

C5
a

~12h!p2
K2~0!, ~17!

and the averaged energy of the electron-phonon interactio

P52
a

p2 (
n51,2

E
0

`

dte2tKn~t!, ~18!

where

Kn~t!5E
2`

` 1

k2
expF2(

i 51

D

ki
2Ain~t!G)

i 51

D

dki . ~19!

The functionsAin(t) are determined as follows:

Ain~t!5
m̄

mi
S (

j 51,2

di ,1j
2

v i j
~12e2v i j t!

1 (
j 53,4

di ,1j
2

v i j
@11~21!ne2v i j t# D , n51,2. ~20!

In order to find the bipolaron energy, it is necessary to m
mize the functionEbip given by Eq.~15! over twelve inde-
pendent variational parametersv i j , i 51, . . . ,3, j
51, . . . ,4, which are used instead of the massesMi and the
force constantski , ki8 , Ki .

From Eq.~13! for the eigenfrequencies, the expression
components of the diagonal tensor of relative bipolaron
fective mass is deduced straightforwardly:

~mbip! i

mi
[2S Mi

mi
11D5

2~v i1
2 1v i2

2 2V i
2!

v i
2

, ~21!

where the values of parametersv i1 , v i2 , v i are taken which
provide the bipolaron energy.

The number of phonons in the bipolaron cloud is det
mined by the general expression of Ref. 11

Nph5 K ]S

]~\v0!L
Str

, ~22!

which gives in the case under consideration:

Nph5
a

p2 (
n51,2

E
0

`

Kn~t!e2ttdt. ~23!

Calculations of the average number of phonons accordin
Eq. ~23! are performed using the results of minimization
the bipolaron energy.
n

is

i-

r
f-

-

to

III. BIPOLARON IN CYLINDRICAL
AND PLANAR QUANTUM WIRES

A. Variational problem

Here we write down the variational bipolaron energies
the cylindrical and planar quantum wires~see Fig. 2!. Here-
after, the following denotation for the confinement parame
is used:V i[V' , i 51,q. The electron mass is taken to b
isotropic, i.e.,m15m25m35m. From Eqs.~15!–~18! we
obtain the variational bipolaron energy

Ebip5B'1Bi1C1P, ~24!

where, in accordance with Eq.~16!,

Bi5
1

2 (
j 51

3

v i j~12dD,1j
2 !2v i , ~25!

B'5
q

2 F (
j 51

4

v' jS 12
v' j

2 2V'
2

v' j
2

d1,1j
2 D 22v'G . ~26!

Here the frequencies of the motion along thez axis ~called
below the longitudinal motion! are

vD1[v i1vD250, vD j[v i j , j 53,4, ~27!

vD[v i

and those of the motion in thexy plane~the transverse mo
tion! are

v i j [v' j , j 51, . . . ,4, v i[v' ~28!

with i 51,2 for q52 and i 51 for q51. In the case unde
consideration, the integrations containing the functionKn(t)
are performed analytically. The calculation of the integrals
Eqs.~17! and~18! yields the averaged potential energy of t
Coulomb repulsion between electrons

C5
A2U

ApAi2~0!
FqS 12

A'2~0!

Ai2~0! D ~29!

and the averaged energy of the electron-phonon interact

P52
2a

Ap
(

n51,2
E

0

`

dte2t
1

AAin~t!
FqS 12

A'n~t!

Ain~t! D ,

~30!

where

FIG. 2. A scheme of cylindrical~a! and planar~b! quantum
wires.
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Ain~t!5 (
j 53,4

dD,1j
2

v i j
@11~21!ne2v i jt#

1
dD,11

2

v i1
~12e2v i1t!1dD,12

2 t,

A'n~t!5 (
j 51,2

d1,1j
2

v' j
~12e2v' jt!

1 (
j 53,4

d1,1j
2

v' j
@11~21!ne2v' jt#, n51,2,

Fq~x!55
tanh21Ax

Ax
, q52,

E
0

p/2 df

~12x sin2f!1/2, q51.

~31!

The minimization of the variational bipolaron energyEbip
determined by Eqs.~24!–~31! is carried out with respect to
eight variational parametersv i , v'2 , v i j ,v' j ( j 51,3,4).
Settingki8 andKi equal to zero in these formulas, the twic
value of the polaron energy25 is obtained from Eq.~24!. The
binding energy is then found according to Eq.~2!. Results of
the calculation ofW as a function of the quantum wire radiu
R5V'

21/2 are presented in Fig. 3 for different values ofa.
Then the functionsamin(R)[ac(h50,R) ~Fig. 4! and

FIG. 3. The bipolaron binding energyW in cylindrical ~a! and
planar~b! quantum wires plotted versus the dimensionless radiuR
and widthL, respectively.

FIG. 4. The minimal value~at h50) of the critical electron-
phonon coupling constantac plotted versusR andL in cylindrical
~a! and planar~b! quantum wires, respectively.
hc(R,a) are obtained. The latter function is used for calc
lation of the critical value of the Coulomb repulsion consta
Uc(a) in order to describe the bipolaron stability regio
shown in Fig. 5. From Eq.~21!, taking into account Eq.~27!,
the relative bipolaron effective mass of the longitudinal m
tion is derived as

~mbip! i

m
5

2v i1
2

v i
2

. ~32!

Plots of the relative bipolaron mass as a function ofR are
shown in Fig. 6. A detailed discussion of the results will
given in Sec. IV.

B. Weak size quantization

For a weak size quantization, the eigenfrequencies of
transverse motion can be represented as expansion ser
V' . In these series, we take into account only the two fi
terms:

v'1
2 5v i1

2 1V'
2

v i1
2 2v i

2

v i1
2

1O~V'
4 !,

v'2
2 5V'

2
v i

2

v i1
2

1O~V'
4 !,

v'3
2 5v i3

2 1V'
2

v i3
2 2v i

2

v i3
2 2v i4

2
1O~V'

4 !,

v'4
2 5v i4

2 1V'
2

v i
22v i4

2

v i3
2 2v i4

2
1O~V'

4 !. ~33!

As a consequence, Eq.~26! takes on the form

B'5qFBi1V'

v i

4v i1

3v i1
2 2v i

2

v i1
2 G1O~V'

2 !, ~34!

and the parameters on the right-hand side of Eq.~30! satisfy
the relations

FIG. 5. The ratio of the critical Coulomb repulsion constantUc

and a, as a function ofa, in cylindrical quantum wires forR
50.01 ~1!, 0.5 ~2!, 1.0 ~3!, and 20.0~4!.
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A'n~t!5Ain~t!2
1

4
V't2

v i
3

v i1
3

1O~V'
2 !, n51,2.

~35!

Substituting the expression~35! in Eqs. ~29! and ~30!, we
obtain the energy of the Coulomb repulsion

C5
A2U

Ap

f 1q

AAi12~0!
1O~V'

2 !, ~36!

and the energy of the electron-phonon interaction

P52
2a

Ap
(

n51,2
E

0

`

dte2tF f 1q

AAin~t!
1

V'

4
t2

v i
3

v i1
3

f 2q

AAin
3 ~t!

G
1O~V'

2 !, ~37!

where

f 1q5H 1, q52

p

2
, q51

f 2q5H 1

3
, q52

p

8
, q51.

The bipolaron energy in this limiting case can be rep
sented as

Ebip5Ebip
0 1DEbip1O~V'

2 !,

whereEbip
0 is the bipolaron energy in three or two dime

sions for D53 or D52, respectively. The confinemen
induced shift of the bipolaron energyDEbip is given by

DEbip5V'H q
v i

4v3

3v i1
2 2v i

2

v i1
2

2
2a

Ap
f 2q

v i
3

4v i1
2 E0

`

dte2tt2S 1

AAi11
3 ~t!

1
1

AAi12
3 ~t!

D J . ~38!

FIG. 6. The bipolaron effective mass (mbip) i /m in cylindrical
~a! and planar~b! quantum wires plotted versusR and L, respec-
tively. The curves for the effective mass are broken off as the
polaron becomes unstable.
-

It is worth mentioning, that in the strong coupling regim
the integrals in Eq.~38! are calculated analytically, and th
minimization of this variational function with respect to th
frequencies is performed explicitly. For this purpose we u
the results of Ref. 28, where the following analytical expre
sions for frequencies are obtained:v i i5a2ṽ i ~for i 51,3),
v i451, v i51, where

ṽ15
128

9p
uD

@12z2~U !#4

z2~U !
, ṽ35

128

9p
uD@12z2~U !#3,

~39!

z~U !5
U

16a
1

1

2 F21S U

8a D 2G1/2

, uD5H 1, D53

S 3p

4 D 2

, D52.

Using these frequencies, we find the confinement-indu
shift of the bipolaron energy to be

DEbip5q
V'

2a2ṽ3

. ~40!

This result differs qualitatively from that deduced in Ref. 2
for a bipolaron in a weak magnetic field, where the cyclotr
frequencyvc plays the role ofV. Namely, as distinct from
Eq. ~40!, in the equation from Ref. 29 for the first-orde
correction to the bipolaron energya2 stands instead ofa4.

It is important to note that this positive correction to th
bipolaron energy due to the confinement is less than tw
the value of the respective correction to the polaron energ25

The confinement-induced variation of the bipolaron bindi
energy obeys the inequality

DW5
q

2

V

'
a2F 9p

2uD
2

1

ṽ3
G.0. ~41!

Thus, the enhancement of the bipolaron binding takes p
due to the confinement.

C. Strong size quantization

In the limiting case of a strong size quantization, t
terms of the order ofV'

2 play a determining role in Eq.~15!.
For the frequencies of the transverse motion, the expan
in inverse powers ofV2 gives

v'1
2 5V'

2 1
M1

m
v'

2 1O~V'
22!, v'2

2 5v'
2 1O~V'

22!,

v'3
2 5V'

2 1
M1

m
v'

2 22
K'

m
1O~V'

22!,

v'4
2 5v'

2 1O~V'
22!. ~42!

Consequently, the bipolaron ground state energy is descr
by the expression

i-
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Ebip5qV'1Ti1
U

A2pAi2~0!
lnS 16

q2
V'Ai2~0!D

2
a

Ap
(

n51,2
E

0

`

dte2t
1

AAin~t!
lnS 16

q2
V'Ain~t!D .

~43!

The first term on the right-hand side of Eq.~43! is the energy
of two electrons in the parabolic potential. The last thr
terms on the right-hand side of Eq.~43! are due to the
electron-phonon and Coulomb interactions. In the stro
coupling regime,v i i5a2ṽ i ( i 51,3); v i4 andv i are propor-
tional to a0 with coefficients which are functions ofV' .
Then omitting the terms of the order ofa0 in the last three
terms of the variational bipolaron energy~43! we obtain

Ebip5qV'1a2H ṽ11ṽ3

4
1

UAṽ1

aA2p
lnS 16

q2

V'

a2ṽ1
D

2
2A2

Ap
S ṽ1ṽ3

ṽ11ṽ3
D 1/2

lnF 8

q2

V'

a2 S 1

ṽ1

1
1

ṽ3
D G J .

~44!

Note that the second term on the right-hand side of Eq.~44!
is proportional toa2, as is expected in the strong couplin
regime. When replacingV'→vc at q52, this polaronic
term coincides with that of the bipolaron variational ener
in a strong magnetic field from Ref. 29. The dependence
the bipolaron binding energy on the cylindrical confineme
provides a possibility for a controllable enhancement of
bipolaron binding by decreasing the radius of a quant
wire.

SettingU50 andṽ5ṽ15ṽ3 in Eq. ~44!, one obtains the
twice variational polaron energy 2Ep with the variational
parameterṽ ~see Ref. 25!. The polaron energyEp depends
on the confinement parameter similarly toEbip . The binding
energyW ~which is not written explicitly to save space! in-
creases logarithmically with increasingV' .

IV. DISCUSSION OF NUMERICAL RESULTS

Beyond the framework of the limiting cases which allo
an analytical treatment as discussed above, the bipolaron
bility is studied using the following computational proc
dure. First, we evaluate the bipolaron energyEbip and the
model bipolaron effective mass defined asmbip52(M i1m).
Second, the functionsamin(R) andhc(a,R) are found from
Eq. ~3!. The region of the Fro¨hlich coupling constant ranging
from 2 to 4 is chosen for the numerical work in order
include the values ofa corresponding to some specific su
stances with smallh @for example, TiO2 : a52.03, h
50.035;30 TlCl: a52.56, h50.133;31 BaO: a53.23, h
50.118;30 LiBr: a54.15, h50.24 ~Ref. 31!#.

Figure 3 illustrates the size dependence of the bipola
binding energy in cylindrical and planar quantum wires,
a values corresponding to the above-mentioned substa
and for h50. As seen from Fig. 3, the bipolaron bindin
energy monotonously rises with increasing transverse c
e

g

f
t
e

ta-

n
r
es

n-

finement@cf. Eqs.~24! to ~30!#.
In Fig. 4, the minimal valueamin is represented as a func

tion of R and L for cylindrical and planar quantum wires
correspondingly. In the region of largeR andL, the minimal
valuesamin for cylindrical and planar quantum wires tend
the three-dimensional and two-dimensional limitsamin,3D
andamin,2D, respectively. WhenR andL decrease from 1.0
to 0.1, a rapid diminution ofamin is seen. Note that at sma
values ofR,L ~which are, however, still compatible with th
continuum description!, the bipolaron stability region ex
tends to small values ofa. Note that the bipolaron param
eters for quantum wires obtained in the formal limiting cas
R,L→0 differ substantially from those derived for the pure
one-dimensional model18 ~with 1D electrons and 1D
phonons!, which givesamin,1D50.9.

In Fig. 5, the ratio of the critical value of the Coulom
repulsion constant to the Fro¨hlich coupling constanta,

Uc~a!

a
5

A2

12hc~a!
~45!

is plotted as a function ofa for various radii~ranging from
0.01 to 20.0! of the cylindrical quantum wire. Since the pa
rameterhc is non-negative,Uc(a)/a cannot be less than th
value A2 ~shown by the lineA). When increasinga, the
right-hand side of Eq.~45! tends to the three-dimensiona
limit A2/(12hc,3D), marked by the lineB. The physical
sense of this trend consists in the following: when increas
the electron-phonon coupling, the electron confinemen
the parabolic potential~8! is gradually replaced by the con
finement to thepolaronic potentialwell. The regions of bi-
polaron stability can exist only between the linesA and B.
The domain between a curveUc(a)/a and the lineA is the
bipolaron stability region for a specific radius of the cyli
drical quantum wire. This figure illustrates clearly an e
largement of the bipolaron stability region with decreasi
the radius of the quantum wire. An analogous dependenc
the bipolaron stability region on the width takes place for t
planar quantum wire.

Bipolaron effective masses are represented in Fig. 6 a
function of the dimensionless sizesR andL of the cylindrical
and planar quantum wires. The size dependence of the b
laron effective mass is qualitatively similar to that of th
ground state energy but appears to be substantially more
nounced. At small radii (0.1<R<0.2), the bipolaron mass
strongly increases with decreasingR.

V. CONCLUSIONS

The conclusion of our analysis is that the confinem
leads to anenlargement of the bipolaron stability regionin
cylindrical and planar quantum wires as compared to
corresponding regions of infinite three-dimensional and tw
dimensional systems, respectively. ForR;1 or L;1, the
critical valuesac required for bipolaron stability are close t
those for TiO2, TlCl, BaO, and LiBr. For example, accordin
to Fig. 4~b!, the bipolaron stability region sets in at the wid
L of the planar quantum wire of about 8 nm for paramet
of TlCl. In this view, manifestations of the bipolaron ph
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nomena might be observed in the technically achievable p
nar quantum wire structures.

The performed analytical and numerical analysis of t
influence of confinement on the bipolaron binding ener
has shown that stable bipolaron states are possible even
intermediate values ofa (a;2) and for not too small values
of h (h;0.1) in nanostructures whose sizes are of the sa
order as the polaron radiusRp . Among the considered sys
tems, the most favorable conditions for the bipolaron stab
ity take place in planar quantum wires, where the bindi
energy W increases monotonously~logarithmically! with
strengthening confinement. Nanostructures, whose sizes
isfy the conditions of the bipolaron stability, seem to b
achievable for the modern technology.
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