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The variational Feynman formalism for the polaron, extended to an all-coupling treatment of bipolarons, is

applied for two impurity atoms in a Bose-Einstein condensate. This shows that if the polaronic coupling strength

is large enough, the impurities will form a bound state (the bipolaron). As a function of the mutual repulsion

between the impurities, two types of bipolaron are distinguished: a tightly bound bipolaron at weak repulsion and

a dumbbell bipolaron at strong repulsion. Apart from the binding energy, the evolution of the bipolaron radius and

its effective mass are also examined as a function of the strength of the repulsive interaction between the impurities

and of the polaronic coupling strength. We then apply the strong-coupling formalism to multiple-impurity atoms

in a condensate, which leads to the prediction of multipolaron formation in the strong-coupling regime. The

results of the two formalisms are compared for two impurities in a condensate, which results in a general

qualitative agreement and a quantitative agreement at strong coupling. Typically, the system of impurity atoms in

a Bose-Einstein condensate is expected to exhibit the polaronic weak-coupling regime. However, the polaronic

coupling strength is, in principle, tunable with a Feshbach resonance.

DOI: 10.1103/PhysRevA.88.013613 PACS number(s): 67.85.Bc, 63.20.kd

I. INTRODUCTION

In recent years systems related to ultracold gases have suc-

cessfully been applied as quantum simulators for many-body

theories [1]. A specific example is a Bose-Einstein condensate

(BEC) with an impurity atom of which the Hamiltonian can

be mapped onto the Fröhlich polaron Hamiltonian, provided

the Bogoliubov approximation is valid [2–4]. The polaron is a

well-known concept in solid-state physics, where it represents

the quasiparticle that consists of an electron in a polar or

ionic lattice, dressed with the self-induced polarization cloud,

which is described by the lattice vibrations or phonons [5]. In

the context of ultracold atomic gases the electron is replaced

by an impurity atom, and the role of the phonons is played

by the Bogoliubov excitations of the condensate. Hitherto, the

Fröhlich Hamiltonian has resisted analytical diagonalization,

making it the subject of various approximation schemes

[6]. A polaronic system typically exhibits different coupling

regimes characterized by a quasifree polaron at weak coupling

and a bound state in the self-induced potential at strong

coupling. The variational all-coupling treatment, as developed

by Feynman to describe the ground state of the polaron [7],

reveals the transition between the coupling regimes and nicely

interpolates between the Fröhlich perturbative result at weak

coupling [8] and the Landau-Pekar strong-coupling result

[9,10]. For a single impurity in a Bose-Einstein condensate the

application of the Feynman all-coupling theory also revealed

the transition between the different coupling regimes [11,12].

Recently, there have been reports on the immersion of

a single impurity in an ultracold gas [13–17]. For neutral

impurity atoms in a BEC the system is expected to be in

the weak polaronic coupling regime. For a 6Li impurity

in a Na condensate, for example, the polaronic coupling

strength α is of the order of 10−3 [11], which is well

within the weak-coupling regime. However, the polaronic

coupling strength is, in principle, externally tunable and

can be increased by means of a Feshbach resonance. The

feasibility of interspecies Feshbach resonances has recently

been demonstrated in various ultracold mixtures (see, for

example, Refs. [18–21]). An experimental study of the BEC

impurity polaron with a variable coupling strength could shed

light on discrepancies between different predictions of the

polaronic dynamic response properties [22–24].

Considering multiple impurities in a Bose-Einstein con-

densate unveils a whole range of interesting phenomena. The

presence of the Bose-Einstein condensate induces an effective

interaction between the impurities [25,26]. At weak polaronic

coupling the application of the many-polaron formalism, as

developed in Refs. [27,28], leads to a description of the ground-

state properties and the response to Bragg spectroscopy of

ultracold weakly interacting binary mixtures [29]. If the pola-

ronic coupling is strong enough, the BEC-induced interaction

can lead to the clustering of the impurities, also known as

a multipolaron [30,31]. The possibility of the formation of a

multipolaron at strong polaronic coupling is also well known in

the solid-state context [32–36]. A special case is the formation

of a bound state of two electrons, commonly known as the

bipolaron [37–39]. Bipolarons have attracted much attention

because of their possible role as an unconventional pairing

mechanism for high-temperature superconductivity [40,41].

In this work, we consider a few impurities in a Bose-

Einstein condensate and examine the formation of a multi-

polaron. We start in Sec. II by showing how the Hamiltonian

of impurity atoms in a BEC can be mapped onto the Fröhlich

Hamiltonian, provided the Bogoliubov approximation is valid.

Then, in Sec. III, the all-coupling variational path-integral

approach, as developed by Feynman in Ref. [7] for a single

polaron and extended in Ref. [42] for two electrons in a polar

or ionic lattice, is applied to two distinguishable impurities in

a condensate. This allows us to examine the polaron-bipolaron

transition and the bipolaron ground-state properties such as

the radius and the effective mass. In Sec. IV a strong-coupling

treatment for multiple impurities in a BEC, based on the

Landau-Pekar strong-coupling approach, is considered. This is

first applied for two impurities in a condensate to examine the
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polaron-bipolaron transition and the polaronic properties and

then to multiple impurities to study the formation of a larger

multipolaron. Finally, in Sec. V, we compare the results of the

two presented formalisms for two distinguishable impurities

in a BEC, and in Sec. VI we conclude.

II. THE POLARONIC SYSTEM CONSISTING OF

MULTIPLE IMPURITIES IN A BOSE-EINSTEIN

CONDENSATE

The Hamiltonian of NI impurity atoms, in the presence of

a homogeneous Bose gas, is given by

Ĥ =
NI
∑

i=1

p̂2
i

2mI

+
∑

�k
E�k â

†

�k â�k + 1

2

∑

�k,�k′,�q
VBB (�q) â

†

�k′−�q â
†

�k+�q â�k â�k′

+
∑

�k,�q
VIB (�q) ρ̂I (�q) â

†

�k−�q â�k +
NI
∑

i<j

VII (�̂r i − �̂rj ). (1)

The first term represents the kinetic energy of the impurities of

mass mI and associated momentum operators { �̂pi} and position

operators {�̂r i}. The operator â
†

�k (â�k) creates (annihilates) a

boson with mass mB , wave vector �k, and energy E�k =
(h̄k)2 /2mB − μ, with μ being the boson chemical potential.

These bosons interact mutually, with VBB (�q) being the Fourier

transform of the interaction potential. The Fourier transform

of the impurity-boson interaction potential is VIB (�q) and

couples the boson density to the impurity density

ρ̂I (�q) =
NI
∑

i=1

ei �q·�̂r i . (2)

The impurity-impurity interaction is described by the interac-

tion potential VII (�r). For the interparticle interactions we as-

sume contact pseudopotentials: VBB (�r) = gBBδ (�r), VIB (�r) =
gIBδ (�r), and VII (�r) = gII δ (�r). The interaction strengths gBB ,

gIB , and gII are related to the corresponding scattering lengths

aBB , aIB , and aII through the Lippmann-Schwinger equation.

For the boson-boson and the impurity-impurity interactions

the first-order result suffices: gBB = 4πh̄2aBB/mB and gII =
4πh̄2aII/mI . We will only consider repulsive impurities

(aII > 0). For the impurity-boson interaction the Lippmann-

Schwinger equation has to be treated up to second order to

obtain convergent final results:

2πh̄2aIB

mr

= gIB − g2
IB

∑

�k �=0

2mr

(h̄k)2
, (3)

where mr is the reduced mass (m−1
r = m−1

I + m−1
B ).

If a Bose-Einstein condensate is realized, the number of

bosons N0 that occupy the single-particle ground state be-

comes a macroscopic number: N0 ≫ 1 [43]. This is expressed

by the Bogoliubov shift [44], which transforms Hamiltonian

(1) into

Ĥ = EGP + NIN0gIB + Ĥ
(NI )
pol , (4)

where EGP is the Gross-Pitaevskii energy of the homogeneous

condensate [45,46]. The second term in Hamiltonian (4) is the

interaction shift due to the impurities, and the third term is the

Fröhlich Hamiltonian for NI polarons:

Ĥ
(NI )
pol =

NI
∑

i=1

p̂2
i

2mI

+
∑

�k
h̄ω�kα̂

†

�kα̂�k +
∑

�k
V�kρ̂I (�q) (α̂�k + α̂

†

−�k)

+
NI
∑

i<j

VII (�̂r i − �̂rj ). (5)

The first term of the Fröhlich Hamiltonian represents the

kinetic energy of the impurities. The operator α̂
†

�k (α̂�k) creates

(annihilates) a Bogoliubov excitation with wave number �k and

energy

h̄ω�k = h̄2k

2mBξ

√

2 + (ξk)2, (6)

where the healing length of the Bose condensate was intro-

duced: ξ = 1/
√

8πaBBn0, with n0 = N0/V being the conden-

sate density (we work with unit volume for the homogenous

gas). The third term in the Fröhlich Hamiltonian (5) describes

the interaction between the impurities and the Bogoliubov

excitations with the interaction amplitude

V�k =
√

N0gIB

[

(ξk)2

(ξk)2 + 2

]1/4

. (7)

The last term of the Fröhlich Hamiltonian (5) corresponds to

the interaction between the impurities. The Fröhlich Hamil-

tonian (5) was originally derived to describe the interaction

between an electron (or hole) and the longitudinal optical

phonons in a polar or ionic crystal [8]. A strong repulsion

between the impurity and the bosons can lead to a large

depletion of the condensate in the vicinity of the impurity,

which can break the validity of the Bogoliubov approximation

and the applicability of the Fröhlich Hamiltonian to describe

the system. This typically leads to a bubble state [47].

III. ALL-COUPLING VARIATIONAL TREATMENT

FOR TWO IMPURITY ATOMS IN A BEC

A. All-coupling formalism

We consider the generic polaronic system of two distin-

guishable particles interacting with a bosonic bath through the

Fröhlich interaction, i.e., any system that can be described

by Hamiltonian (5) with NI = 2. The variational all-coupling

single-polaron treatment, as originally developed by Feynman

[7], was extended in Ref. [42] to the case of two polaronic

particles. This approach is based on the Jensen-Feynman

variational inequality for the free energy F [48,49]:

F � F0 + 1

h̄β
〈S − S0〉S0

, (8)

where S is the action of the polaronic system as described

by the Fröhlich Hamiltonian (5), S0 is the action of a

variational trial system with free energy F0, and β is the

inverse temperature T : β = (kBT )−1. Eliminating the degrees

of freedom of the Bogoliubov excitations leads to an effective
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FIG. 1. Schematic picture of the variational trial system for

two polaronic particles, as introduced in Ref. [42]. The black dots

represent the impurity atoms of mass mI , and the larger gray dots

depict the fictitious particles of mass M . The connecting lines

represent harmonic interactions with the corresponding oscillator

strengths indicated.

polaron action containing retardation effects:

S =
∫ h̄β

0

dτ

⎡

⎣

NI
∑

i=1

mI

2
ṙ2
i (τ ) +

∑

i<j

VII (�ri − �rj )

⎤

⎦

−
NI
∑

j,l=1

∑

�k

|V�k|2
h̄

∫ h̄β

0

dτ

×
∫ h̄β

0

dσGω�k (τ − σ ) ei�k·[�rj (τ )−�rl (σ )], (9)

with Gω�k (u) being the Green’s function of the Bogoliubov

excitations:

Gω�k (u) = cosh[ω�k (h̄β/2 − |u|)]
2 sinh(βh̄ω�k/2)

. (10)

For a single polaron a variational system was suggested by

Feynman that mimics the influence of the interaction with

the Bogoliubov excitations on the impurity by a harmonic

coupling to a fictitious particle of mass M with oscillator

strength κ [7]. The upper bound for the free energy (8) is then

minimized as a function of the variational parameters M and

κ . In Ref. [42] an extension of this trial system was introduced

for the case of two polaronic particles, which is schematically

presented in Fig. 1. As is the case in the Feynman one-polaron

trial system the impurities interact quadratically with fictitious

particles of mass M with oscillator strength κ . Furthermore,

there is a quadratic interaction, with oscillator strength κ ′,
with the fictitious particle of the other impurity. The particles

are separated by the vector �a, and they mutually interact

quadratically with strength K . For κ ′ = K = 0 this reduces

to (twice) the Feynman model system. After transforming

to the eigenmodes the action of the trial system can be

written as

S0 =
∫ h̄β

0

dτ

⎡

⎣

μ0

2
ρ̇2

0 +
3

∑

j=1

(

μj

2
ρ̇2

j + 1

2
μj�

2
jρ

2
j

)

⎤

⎦ , (11)

with { �ρi} being the coordinates of the eigenmodes of the trial

system and {�i} being the corresponding eigenfrequencies

(�0 = 0 corresponds to a translation of the trial system as

FIG. 2. Schematic presentation of the eigenmodes corresponding

to the eigenfrequencies �1, �2, and �3. The small black dots

represent the impurities, and the larger gray dots depict the fictitious

particles of mass M .

a whole):

�2
1 = M + mI

MmI

(κ + κ ′), (12)

�2
2,3 = 1

2

{

M + mI

MmI

(κ + κ ′) − 2K

mI

±
√

[

M − mI

MmI

(κ + κ ′) − 2K

mI

]2

+ 4

mIM
(κ−κ ′)2

}

.

(13)

Since all oscillator strengths are positive, the eigenfrequencies

satisfy the inequalities

�2
1 � �2

2 + �2
3, (14)

�2 � ν � �3 � 0, (15)

where we have introduced the frequency parameter ν =√
(κ + κ ′) /M . In expression (11) the following mass factors

were introduced:

μ0 = 2 (mI + M) , μ2 = 2mIM

(mI + M)
,

μ2 = 1, μ3 = 1. (16)

The corresponding eigenmodes of the trial system are schemat-

ically presented in Fig. 2. The action (11) shows that the

trial system decouples into a free particle and three harmonic

oscillators.

After eliminating the degrees of freedom of the two

fictitious particles of mass M the effective action of the trial

system becomes retarded and can be written as

S0 =
∫ h̄β

0

dτ

[

∑

i=1,2

mI

2
ṙ2
i (τ ) − K

2
(�r1 − �r2 − �a)2

]

+ κ2 + κ ′2

4Mν

∫ h̄β

0

dτ

∫ h̄β

0

dσGν (τ − σ )

×
∑

j

[�rj (τ ) − �rj (σ )]2 + κκ ′

Mν

∫ h̄β

0

dτ

×
∫ h̄β

0

dσGν (τ − σ ) [�r1(τ ) − �r2(σ ) − �a]2. (17)

Applying the Jensen-Feynman inequality then results in

an upper bound E for the polaronic contribution to the
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ground-state energy at zero temperature [42]:

E =
3

∑

j=1

3

2
h̄�j − 3h̄ν +

∑

�k
VII (�k)ei�k·�ae−k2D12(0)

− 2
∑

�k

|V�k|2
h̄

∫ ∞

0

du e−ω�ku[e−k2D11(u) + ei�k·�ae−k2D12(u)]

− 3

2

�2
1−ν2

�2
1

h̄�1

2
− 3

2

�2
2 − ν2

�2
2 − �2

3

h̄�2

2
− 3

2

ν2 − �2
3

�2
2 − �2

3

h̄�3

2
,

(18)

where the functions D11 (u) and D12 (u) are defined as

D11 (u) = h̄

2mI

[

ν2

�2
1

u

2
+ �2

1 − ν2

�2
1

E (�1,u)

+ �2
2 − ν2

�2
2 − �2

3

E (�2,u) + ν2 − �2
3

�2
2 − �2

3

E (�3,u)

]

,

(19)

D12 (u) = h̄

2mI

[

ν2

�2
1

u

2
+ �2

1 − ν2

�2
1

E (�1,u)

+ �2
2 − ν2

�2
2 − �2

3

F (�2,u) + ν2 − �2
3

�2
2 − �2

3

F (�3,u)

]

,

(20)

with

E (�,u) = 1 − exp [−�u]

2�
, (21)

F (�,u) = 1 + exp [−�u]

2�
. (22)

The next step is to minimize the upper bound E (18) as a

function of the variational parameters {ν,�1,�2,�3,�a}.

1. Bipolaron radius

As an estimate for the bipolaron radius R the root mean

square of the distance between the impurities is used [42]:

R =
√

〈[�r1(τ ) − �r2(τ )]2〉
=

√

a2 + 6D12(0), (23)

with the function D12 (u) as defined in (20).

2. Effective mass of the bipolaron

The effective mass m∗ can be derived from the path-integral

propagation from �ri (0) to �ri (T ) = �ri (0) + �UT for i = 1,2.

The ground-state energy then behaves as

E (U ) = E (0) + m∗U 2

2
. (24)

This procedure was implemented by Feynman to derive the

effective mass of a single polaron at arbitrary coupling [7].

The same treatment for two particles leads to an expression

for the effective mass of the bipolaron:

m∗ = 2mI + 2
∑

�k

|V�k|2
h̄

×
∫ ∞

0

du e−ω�ku[e−k2D11(u) + ei�k·�ae−k2D12(u)]u2k2
z ,

(25)

with functions D11 (u) and D12 (u) as defined in (19) and (20),

respectively.

3. Single-polaron limit

The trial system reduces to (twice) the Feynman one-

polaron trial system for K = κ ′ = 0. For the eigenmodes this

corresponds to �3 = 0 and �1 = �2 = �. This gives, for

functions D11 (u) [Eq. (19)] and D12 (u) [Eq. (20)],

lim
�3 → 0

�1 = �2 = �

D11 (u) = h̄

2mI

[

ν2

�2
u + �2 − ν2

�2

1 − exp [−�u]

�

]

= D (u) , (26)

lim
�3 → 0

�1 = �2 = �

D12 (u) → ∞. (27)

The upper bound for the ground-state polaron energy (18)

becomes in this limit

lim
�3 → 0

�1 = �2 = �

E = 2

[

3

2
h̄ (� − ν) − 3

4

�2 − ν2

�2
h̄�

−
∑

�k

|V�k|2
h̄

∫ ∞

0

du e−ω�kue−k2D(u)

]

. (28)

This is (twice) the upper bound for the ground state of a single

polaron, as derived by Feynman [7]. The effective mass of the

bipolaron becomes in this limit

lim
�3 → 0

�1 = �2 = �

m∗

= 2

⎛

⎝mI + 1

3

∑

�k

|V�k|2
h̄

∫ ∞

0

du e−ω�kue−k2D(u)u2k2

⎞

⎠ ,

(29)

which is (twice) the single-polaron effective mass, as derived

by Feynman [7].

B. Two impurities in a Bose-Einstein condensate

We now consider the specific system of two impurity atoms

in a Bose-Einstein condensate. Using the contact pseudopo-

tential with the first-order Lippmann-Schwinger result gives

for the impurity-impurity interaction

∑

�k
VII (�k)ei�k·�ae−k2D12(0) = h̄2aII

2
√

πmID12 (0)3/2
e
− a2

4D12(0) .

(30)
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Introducing the interaction amplitude (7) gives, for the upper

bound for the ground-state energy (18), in polaronic units

(h̄ = mI = ξ = 1),

E =
3

∑

j=1

3

2
�j − 3ν + aII

2
√

πD12 (0)3/2
e
− a2

4D12(0)

+ α

2π

(

mB + 1

mB

)2 ∫ ∞

0

dk

{

2mB

mB + 1
− k3

√
k2 + 2

×
∫ ∞

0

du e−ω�ku
[

e−k2D11(u) + sin [ak]

ak
e−k2D12(u)

]}

− 3

2

�2
1 − ν2

�2
1

�1

2
− 3

2

�2
2 − ν2

�2
2 − �2

3

�2

2
− 3

2

ν2 − �2
3

�2
2 − �2

3

�3

2
,

(31)

where α is the dimensionless polaronic coupling parameter:

α = a2
IB

ξaBB

. (32)

The first term in the k integrand on the right-hand side of

expression (31) is a consequence of using the Lippmann-

Schwinger equation up to second order for the impurity-

boson interaction strength (3) in the second term of the total

Hamiltonian (4) and is needed for convergence. A similar

procedure was applied for the single-polaron all-coupling

treatment in Ref. [11]. With the interaction amplitude (7) the

bipolaron effective mass in polaronic units becomes

m∗ = 2 + α

8π2

(

1 + mB

mB

)2 ∫

d�k
√

k2

k2 + 2

×
∫ ∞

0

du e−ω�ku[e−k2D11(u) + ei�k·�ae−k2D12(u)]u2k2
z .

(33)

C. Results and discussion

For numerical calculations it is favorable to introduce a

cutoff Kc for the k integral in (31). Similar to the one-polaron

case, we use the inverse of the van der Waals radius of the

impurity-boson interaction potential for Kc [11]. We introduce

the specific system of 6Li impurities in a Na condensate which

amounts to mB/mI = 3.8227 and ξKc = 200. The considered

system with two distinguishable impurities can, for example,

be realized with two different hyperfine states of the same

atom.

1. Phase diagram

The upper bound for the ground-state energy (31) was

minimized as a function of the variational parameters

{�a,�1,�2,�3,ν} for given values of the coupling parameter α

and the impurity-impurity scattering length aII . If the resulting

upper bound is lower than twice the upper bound for the

one-polaron ground-state energy, we conclude that it is

energetically favorable to form a bipolaron; otherwise, the

system consists of two separate polarons. This procedure

results in the (aII ,α)-phase diagram presented in Fig. 3,

where we have also indicated three regions as a function

of α. For α > 2.71 the formation of a bipolaron is always

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

α

a
II
/ξ

1 32

2 polarons

bipolaron

FIG. 3. (Color online) The (aII ,α)-phase diagram for two 6Li

impurities in a Na condensate with α being the polaronic coupling

parameter and aII being the impurity-impurity scattering length. The

solid line indicates the polaron-bipolaron transition. The dotted lines

at α = 1.22, α = 2.71, and α = 3 indicate the boundaries of the

different regions, as discussed in the text.

energetically favorable, irrespective of aII , and the area with

α ∈ [2.71,3] is denoted as region 2 (see Fig. 3). At α = 3

the Feynman all-coupling single-polaron treatment predicts

the transition to the strong-coupling regime [11], and the area

with α > 3 is denoted as region 3. From Fig. 3 it is clear that

for α ∈ [1.22,2.71] (region 1) the bipolaron is only stable at

small values of aII . For α < 1.22 a bipolaron is never formed.

If the bipolaron is stable, the variationally determined vector �a,

separating the impurities in the trial system of Fig. 1, is always

zero in region 1, irrespective of aII , while for α > 2.71 it is

finite at sufficiently large aII , in which case the shape of the

bipolaron can be interpreted as a dumbbell.

2. Bipolaron mass and radius

In Fig. 4 the upper bound (31), the polaronic effective mass

(33), and the inverse bipolaron radius (23) are presented as

1 2 3
−2
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−0.5

0

0.5
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E
/
[h̄

2
/
(ξ

2
m

I
)]

1 2 3
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20
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α

m
* /m

I

2 2.5 3 3.5
0

0.2

0.4

α

(R
/ξ

)−
1

a
II
/ξ = 10

α = 2.71

(a) (b)

(c)

FIG. 4. (Color online) (a) The upper bound of the ground-state

energy, (b) the bipolaron effective mass, and (c) the inverse of the

bipolaron radius are presented as a function of the polaronic coupling

parameter α at aII = 10 for two 6Li impurities in a Na condensate.

The dotted line at α = 2.71 indicates the polaron-bipolaron transition.
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FIG. 5. (Color online) (a) The upper bound of the ground-state

energy, (b) the effective mass (note the semilogarithmic scale), and (c)

the inverse of the bipolaron radius are presented as a function of the

impurity-impurity scattering length aII at α = 2 (region 1 in Fig. 3)

for two 6Li impurities in a Na condensate. The polaron-bipolaron

transition at aII/ξ = 1.3 and the transition of the internal bipolaron

state (see text) at aII/ξ = 0.6 are indicated with the dotted lines.

Also, the upper bound for the ground-state energy of two separate

polarons (E2 pol) and the corresponding effective mass (m∗
2 pol) are

shown.

a function of the coupling parameter α at aII = 10. For α <

2.71 the system consists of two separate polarons, while for

α > 2.71 a bipolaron is formed. For two separate polarons

the bipolaron radius is defined as infinity. As a function of

α the effective mass exhibits an increasing behavior, and for

α > 3 it increases more rapidly, indicating the transition to

the strong-coupling regime, which is also present for a single

polaron [11]. If the bipolaron is stable, the bipolaron radius

decreases as a function of α. This shows that the bipolaron

becomes more tightly bound as the coupling is increased.

In Fig. 5 the upper bound (31), the polaronic effective mass

(33), and the inverse bipolaron radius (23) are presented as

a function of the impurity-impurity scattering length aII at

α = 2 (region 1 in Fig. 3). The energy and the effective mass of

two polarons are also shown. This reveals that the bipolaron is

only stable for sufficiently small values of aII , with a polaron-

bipolaron transition at aII/ξ = 1.3. From Fig. 5 it is clear that

in this case the polaron-bipolaron transition is accompanied

with a discontinuity in the effective mass. The value aII/ξ =
0.6 is also indicated in Fig. 5, which corresponds to another

discontinuity in the effective mass, as well as in the bipolaron

radius. For aII/ξ < 0.6 the bipolaron is relatively small and

heavy, and the ground-state energy and the properties exhibit

a strong dependence on aII compared to the behavior for

aII/ξ > 0.6. This suggests that for aII/ξ < 0.6 the bipolaron

can be considered as a tightly bound particle, while for aII /ξ >

0.6 it consists of a more loosely bound state of two polarons.

Increasing aII results in a less tightly bound bipolaron and

finally in the formation of two separate polarons.

In Fig. 6 the upper bound (31), the polaronic effective mass

(33), and the inverse bipolaron radius (23) are presented as

a function of the impurity-impurity scattering length aII at

α = 2.85 (region 2 in Fig. 3). The energy of two separate

2 3 4
−0.1

−0.08
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−0.02
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80

a
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/ξ
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1

(a) (b)

(c)

α = 2.85

E
2 pol

FIG. 6. (Color online) (a) The upper bound of the ground-state

energy, (b) the effective mass, and (c) the inverse of the bipolaron

radius are presented as a function of the impurity-impurity scattering

length aII at α = 2.85 (region 2 in Fig. 3) for two 6Li impurities in a

Na condensate. The upper bound for the ground-state energy of two

polarons (E2 pol) is also indicated.

polarons is also indicated, which shows that the bipolaron

is always stable, irrespective of aII . Also, here we find that

increasing aII results in a less tightly bound bipolaron. Again,

we can distinguish two regimes in the aII dependence of E and

m∗ but now without a discontinuity at the transition. At small

aII the increase of the ground-state energy and the decrease

of the effective mass as a function of aII are significantly

faster than at higher values of aII , with a transition region

at aII/ξ ≈ 2. As before, this indicates that at small values of

aII the bipolaron can be considered a tightly bound particle,

while at large values it is more appropriately interpreted as

two loosely bound polarons. Moreover, at small values for

aII the variationally determined vector �a, separating the two

impurities in the trial system of Fig. 1, is zero, while for

relatively large aII it is finite. This shows that the loosely

bound polarons at large aII are spatially separated, and the

shape can be interpreted as a dumbbell.

Finally, in Fig. 7 the upper bound (31), the polaronic

effective mass (33), and the inverse bipolaron radius (23) are

presented as a function of the impurity-impurity scattering

length aII at α = 4 (region 3 in Fig. 3). The upper bound

(31) in the limit aII → ∞ is also indicated, which is lower

than the upper bound of the ground-state energy for two

separate polarons. This shows that the bipolaron is always

stable. Also, here we observe two regimes as a function of aII

with a transition at aII/ξ = 0.91 which is accompanied by a

discontinuity in the effective mass and the bipolaron radius,

indicating a transition between a tightly bound bipolaron and

a more loosely bound state of two polarons. Also, in this case

the variationally determined vector �a is zero for the tightly

bound bipolaron and nonzero for the loosely bound state of

two polarons, resulting in a dumbbell bipolaron.

IV. STRONG-COUPLING FORMALISM

We now apply a generalization of the Landau-Pekar strong-

coupling treatment for NI polaronic particles to impurities
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FIG. 7. (Color online) (a) The upper bound of the ground-state

energy, (b) the inverse of the bipolaron radius, and (c) the effective

mass are presented as a function of the impurity-impurity scattering

length aII at α = 4 (region 3 in Fig. 3) for two 6Li impurities in a Na

condensate. The dotted line at aII = 0.91ξ indicates a transition of

the internal state of the bipolaron (see text). The dashed line shows

the upper bound to the ground-state energy in the limit aII → ∞.

in a Bose-Einstein condensate to examine the formation of

multipolarons.

A. Formalism

For the description of the strong-coupling formalism the

product ansatz is used, which states that the total wave function

|�〉 is the product of a part that describes the Bogoliubov

excitations |φ〉 and a part for the impurities |�(NI )〉: |�〉 =
|φ〉|�(NI )〉. Taking the expectation value of the Fröhlich

Hamiltonian (5) with respect to |�〉 and completing the squares

for the Bogoliubov creation and annihilation operators result

in

〈�|Ĥ (NI )
pol |�〉 = K +

∑

�k �=0

h̄ω�k〈φ|
(

α̂
†

�k + V�kρI (�k)

h̄ω�k

)

×
(

α̂�k+
V ∗

�k ρ
†
I (�k)

h̄ω�k

)

|φ〉−
∑

�k �=0

|V�kρ̂I (�k)|2
h̄ω�k

+U,

(34)

where K is the kinetic energy, ρI (�k) is the Fourier transform

of the density, and U is the mutual interaction energy of the

impurities:

K = 〈�(NI )|
NI
∑

i=1

p̂i
2

2mI

|�(NI )〉, (35)

ρI (�k) = 〈�(NI )|
NI
∑

i=1

ei�k·�̂r i |�(NI )〉, (36)

U = 〈�(NI )|
NI
∑

i<j

VII (�̂r i − �̂rj )|�(NI )〉. (37)

The expectation value of Hamiltonian (34) is minimal if the

wave function of the Bogoliubov excitations is chosen as the

vacuum
∣

∣φg

〉

for the “displaced” operators:

〈φg|
(

α̂
†

�k + V�kρI (�k)

h̄ω�k

) (

α̂�k +
V ∗

�k ρ
†
I (�k)

h̄ω�k

)

|φg〉 = 0. (38)

This results in the following expression for the ground-state

energy:

E
(NI )
0 = K −

∑

�k �=0

|V�k|2|ρI (�k)|2
h̄ω�k

+ U. (39)

This result can alternatively be derived with a canonical

transformation, as done by Bogoliubov and Tyablikov for a

single polaron [50]. For the impurities we will use a variational

wave function; the resulting energy (39) is then an upper bound

for the ground-state energy.

1. Effective mass

The strong-coupling formalism allows a derivation of the

multipolaron effective mass in a similar way as was done for

a single polaron in Refs. [51–54] and for the bipolaron in

Ref. [55]. The total momentum of the polaronic system �̂P is

given by

�̂P = �̂P +
∑

�k
h̄�kα̂

†

�kα̂�k, (40)

with �̂P = ∑NI

i �̂pi . This operator commutes with the Fröhlich

Hamiltonian (5), and the total momentum is thus a constant

of motion: 〈 �̂P〉 = �P . We make this explicit by means of a

Lagrange multiplier �v which physically represents the velocity

of the system and consider the operator

Ĥ
(NI )
pol (�v) = Ĥ

(NI )
pol − �v ·

(

�̂P +
∑

�k
h̄�kα̂

†

�kα̂�k − �P
)

(41)

for minimization. The effective mass m∗ of the multipolaron

can then be determined from the relation �P = m∗�v. The

impurity variational wave function |�(NI )〉, with 〈 �̂P 〉 = 0,

has to be adapted to a wave function with finite averaged

momentum 〈 �̂P 〉 = NImI �v; we use

� ′(NI ) ({�ri}) = exp

[

imI �v · ∑ �ri

h̄

]

�(NI ) ({�ri}) . (42)

Taking the expectation value of Ĥ
(NI )
pol (�v) with respect to the

product wave function |φ〉|� ′(NI )〉 and introducing the wave

function |φg〉 for the Bogoliubov excitations, as in (38), result

in

E(NI )(�v) = K + U − NI

mIv
2

2
+ v · �P −

∑

�k �=0

|V�k|2|ρI (�k)|2
h̄ω�k − h̄�v · �k

,

(43)

with K , ρI (�k), and U as defined in (35), (36), and (37),

respectively. Minimizing expression (43) with respect to �v
and performing a Taylor expansion for small �v gives, for the
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effective mass,

m∗ = NImI + 2h̄2
∑

�k �=0

|V�k|2|ρI (�k)|2
(h̄ω�k)3

k2
z , (44)

with kz being the z component of �k.

2. Variational impurity wave function

For NI distinguishable particles we consider the following

normalized variational wave function:

�(NI ) ({�ri}) =
NI
∏

i=1

1

(πλ2)3/4
exp

[

− (�ri − �ai)
2

2λ2

]

, (45)

which consists of NI Gaussians with standard deviation λ,

centered at �ai . For a single impurity in a condensate a numerical

calculation of the wave function revealed a good agreement

with a Gaussian wave function if the polaronic coupling is

strong enough [56]. The corresponding expectation values are

K = NI

3h̄2

4mIλ2
, (46)

U =
NI
∑

i<j

∑

�k
VII (�k)e− k2λ2

2
+i�k·(�a1−�a2), (47)

ρI (�k) = exp

[

−k2λ2

4

] NI
∑

i=1

ei�k·�ai . (48)

Wave function (45) can be extended to the case of identical

impurities by using a Slater determinant for fermions or the

appropriate symmetrized wave function for bosons.

3. Single-polaron limit

If all the impurities are infinitely separated, we expect the

multipolaron to reduce to individual polarons. For the impurity

wave function (45) this corresponds to the limit |�ai − �aj | →
∞ ∀ i �= j . The upper bound for the polaron ground-state

energy (39) becomes in this limit

lim
|�ai − �aj | → ∞

∀ i �= j

E
(NI )
0 = NI

(

3h̄2

4mIλ2
−

∑

�k �=0

|V�k|2
ε�k

e− k2λ2

2

)

= NIE
(1)
0 . (49)

This equals NI times the strong-coupling result for the upper

bound for the ground-state energy of a single polaron E
(1)
0 , as

expected. The effective mass of the multipolaron (44) becomes

in this limit

lim
|�ai − �aj | → ∞

∀ i �= j

m∗ = NI

⎛

⎝mI + 2h̄2
∑

�k �=0

|V�k|2
(h̄ω�k)3

e− k2λ2

2 k2
z

⎞

⎠

= NIm
∗
pol. (50)

This is NI times the strong-coupling result for the effective

mass of a single polaron m∗
pol, again as expected.

4. Impurities in a Bose-Einstein condensate

We now consider the specific polaronic system consisting of

impurities in a BEC. Introducing the Bogoliubov dispersion

(6), the interaction amplitude (7), and the variational wave

function (45) for NI distinguishable impurities in the upper

bound for the ground-state energy (39) gives, in polaronic

units (h̄ = mI = ξ = 1),

E
(NI )
0 = 3NI

4λ2
+ 2aII

(2π )1/2 λ3

NI
∑

i<j

exp

[

− (�ai − �aj )2

2λ2

]

− 2αμ

π

∫ ∞

0

dk k2
exp

[

− k2λ2

2

]

k2 + 2

NI
∑

i,j

sin[k|�ai − �aj |]
k|�ai − �aj |

,

(51)

where a contact pseudopotential with the first-order

Lippmann-Schwinger result was used for the impurity-

impurity interaction. We also introduced expression (32) for

the dimensionless polaronic coupling parameter α and the

dimensionless mass factor,

μ = (mB + mI )2

4mBmI

. (52)

In the strong-coupling regime the mass parameter mB/mI and

the coupling parameter α combine to a single dimensionless

coupling parameter αμ. The effective mass of NI impurities

in a BEC in polaronic units can be written as

m∗ = NImI + 4αμm2
B

π2

∫

d�k |ρI (�k)|2
(2 + k2)2

k2
z

k2
. (53)

B. Results

1. Bipolaron

First, we examine two impurities in a Bose-Einstein

condensate (NI = 2) and the formation of a bipolaron. The

bipolaron radius, estimated by the mean-square distance

between the impurities (23), gives, for the impurity variational

wave function (45),

R =
√

〈(�r1 − �r2)2〉 =
√

a2 + 3λ2, (54)

with a = |�a1 − �a2|.
In Fig. 8 the (aII ,αμ)-phase diagram of two distinguishable

impurity atoms in a BEC is presented, and the different regions

as a function of α are also indicated. With each aII a value

(αμ)exist is associated in such a way that for αμ < (αμ)exist

the minimization of the right-hand side of expression (51)

yields no solution at a finite value of λ. If αμ > (αμ)exist,

another value (αμ)stable can be determined, separating a region

with a metastable bipolaron (positive ground-state energy)

for αμ < (αμ)stable from a region with a stable bipolaron

(negative ground-state energy) for αμ > (αμ)stable. In the case

of a metastable bipolaron the impurities are expected to be

expelled from the condensate. However, since the formalism

is only expected to be valid at strong coupling, the physical

relevance of the metastable bipolaron is not obvious. In the

limit aII → ∞ the strong-coupling results for a single polaron

are retrieved: (αμ)exist = 3.57 and (αμ)stable = 3.84 [54]. For

αμ > 3.84 (region 3) the formation of the bipolaron is always

energetically favorable compared to the formation of two

separate polarons, irrespective of aII . For αμ ∈ [3.39,3.84]

(region 2) a stable solution only exists if aII is smaller than
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FIG. 8. (Color online) The solid lines show the (aII ,αμ)-phase

diagram for two distinguishable impurity atoms in a Bose-Einstein

condensate with αμ being the coupling parameter and aII being the

impurity-impurity scattering length as calculated with the strong-

coupling formalism. At strong coupling the bipolaron is stable, and at

sufficiently weak coupling there is no solution. In between there

is a region where the solution results in a positive ground-state

energy, which means the bipolaron is metastable. The dotted lines

at αμ = 1.92, αμ = 3.39, and αμ = 3.84 indicate the boundaries of

the different regions, as discussed in the text.

a critical value, which is relatively large and increases rapidly

as a function of αμ. For αμ ∈ [1.92,3.39] (region 1) a stable

bipolaron also only exists for aII smaller than a critical value,

but now this critical value is relatively low and increases

much more slowly as a function of αμ, compared to the

behavior in region 2. At weaker coupling there is never a stable

solution. Considering the stable solution, the variationally

determined vector �a1 − �a2, which represents the separation

between the two Gaussians in wave function (45), is always

zero if αμ < 3.39; for αμ > 3.39 it is finite at sufficiently

large values of aII , resulting in a dumbbell bipolaron.

In Fig. 9 the upper bound for the ground-state energy (51),

the inverse bipolaron radius (54), and the effective mass (53)
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FIG. 9. (Color online) (a) The upper bound for the ground-state

energy, (b) the inverse bipolaron radius, and (c) the effective mass as

a function of the impurity-impurity scattering length aII at αμ = 4

for two distinguishable impurities in a Bose-Einstein condensate. The

upper bound for the ground-state energy of two polarons E2 pol is also

indicated.

are presented as a function of the impurity-impurity scattering

length aII for two distinguishable impurities in a BEC at αμ =
4. The upper bound for the ground-state energy of a single

polaron is also indicated, which shows that the formation of a

bipolaron is energetically favorable for all finite values of aII .

From Fig. 9 we see that for increasing aII the bipolaron binding

energy decreases, the radius increases, and the effective

mass decreases, showing that the bipolaron becomes less

tightly bound. In the limit aII → ∞ the bipolaron effective

mass becomes twice the effective mass of a single polaron.

Considering the aII dependence of the properties reveals two

regimes with a transition at aII/ξ = 0.85. For aII/ξ < 0.85

there is a relatively strong dependence of the properties on

aII compared to the behavior for aII/ξ > 0.85. Furthermore,

the variationally determined vector �a1 − �a2, representing the

distance between the two centers of the Gaussians in wave

function (45), is only nonzero for aII/ξ > 0.85. This is

consistent with our earlier interpretations in that for aII/ξ <

0.85 the bipolaron is tightly bound, while for aII/ξ > 0.85 it

is a more loosely bound dumbbell bipolaron.

A similar analysis can be made for identical impurities

by antisymmetrizing wave function (45) for fermions or

symmetrizing it for bosons. In the case of two identical bosons

the same qualitative results are retrieved as for distinguishable

impurities. For identical fermions the symmetry of the wave

function results in a vanishing expectation value of the s-wave

contact pseudopotential (47), which implies that at ultralow

temperatures identical fermions behave as noninteracting

particles. The only remaining parameter is the coupling

parameter αμ, and we find (αμ)exist = 3.09 as a minimum

for a solution to exist and (αμ)stable = 3.31 as a minimum to

find a stable solution. Furthermore, if a solution exists, it is

always energetically favorable to form a bipolaron compared

to two separate polarons.

2. Multipolaron

We now examine the multipolaron by minimizing the upper

bound for the ground-state energy (51) for NI = 1,2, . . . ,8

distinguishable impurities. In Ref. [30] a similar procedure

was presented, but the expectation values of the positions of

the impurities were considered to be equal, which corresponds

to the variational wave function (45) with �ai = �aj ∀ i �= j .

In Fig. 10 (a) the resulting phase diagram is presented for

NI = 1,2, . . . ,8 distinguishable impurities in a Bose-Einstein

condensate as a function of the polaronic coupling αμ and

the impurity-impurity scattering length aII . Similar to before

for the bipolaron for each aII a minimum coupling value

(αμ)exist is needed for a solution of the minimization of (51)

to exist at finite λ, and another minimum value (αμ)stable

[(αμ)stable > (αμ)exist] is necessary to find a stable solution.

In the limit aII → ∞ the one-polaron strong-coupling results

are found for any number of impurities: (αμ)exist = 3.57 and

(αμ)stable = 3.84. In Fig. 10(a) only (αμ)stable is presented for

clarity. This shows that if the number of impurities NI is

increased, (αμ)stable decreases, resulting in a larger stability

region. This behavior of a smaller critical coupling value for

the formation of a larger multipolaron was also observed in

Ref. [30].
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FIG. 10. (Color online) In (a) the (aII ,αμ)-phase diagram for NI

distinguishable impurities in a Bose-Einstein condensate with respect

to the formation of a stable multipolaron is presented, with αμ being

the coupling parameter and aII being the impurity-impurity scattering

length. In (b) the upper bound for the multipolaron ground-state

energy per impurity is presented as a function of the impurity-impurity

scattering length aII for distinguishable impurities at αμ = 4.

The (aII ,αμ)-phase diagram in Fig. 10(a) for a specific

number NI of impurities is qualitatively the same as for the

bipolaron in Fig. 8. This means the same qualitative regions

can be distinguished as a function of αμ as we did for

the bipolaron in Fig. 8, and we present a general analysis,

valid for every value of NI . In region 3 the formation of the

multipolaron is always energetically favored compared to NI

separate polarons. Furthermore, the variationally determined

locations of the impurities �ai coincide at sufficiently small aII ,

indicating a tightly bound multipolaron, while at sufficiently

large aII we find �ai �= �aj ∀ i �= j , indicating a bound droplet

of NI separate polarons (similar to the dumbbell bipolaron).

In region 2 the minimization of the right-hand side of (51)

yields no stable solution if aII is larger than a critical value,

which is relatively large and increases rapidly as a function of

αμ. In region 1 there is also no stable solution for aII above a

critical value, which is now relatively low and increases slowly

as a function of αμ. In this regime the behavior of the critical

aII as a function of αμ resembles a straight line, and it was

shown in Ref. [30] that in the limit NI → ∞ this line is well

approximated by the boundary for phase separation [57–60]:

aII

ξ
= αμ. (55)

At small αμ there is never a solution.

In Fig. 10(b) the upper bound for the multipolaron ground-

state energy per impurity is presented as a function of

the impurity-impurity scattering length aII at αμ = 4. For

aII → ∞ all curves tend to the single-polaron result. At finite

aII the ground-state energy per particle decreases as NI is

increased, showing that it is energetically favorable for the

impurities to cluster and form a multipolaron.

For the positive impurity-boson scattering length there is a

depletion of the condensate in the vicinity of the multipolaron.

This can be detrimental for the polaronic description since the

Bogoliubov approximation breaks down at large depletion.

This restriction is only important for the tightly bound

multipolaron at small aII . In the case of a loosely bound

droplet of separate polarons at sufficiently large aII the

mean distance between the impurities is of the order of the

healing length, which shows that the depletion is spread out

over a large volume and the Bogoliubov approximation is

not jeopardized. For the tightly bound multipolaron, on the

other hand, these considerations result in a critical number of

impurities above which the system cannot be described by the

Fröhlich Hamiltonian. It was shown in Ref. [30] that for typical

experimental parameters only tightly bound multipolarons

with a few impurities are possible.

V. COMPARISON OF THE BIPOLARON RESULTS

FROM THE TWO FORMALISMS

The results of the strong-coupling formalism of Sec. IV A,

applied to the specific system of two distinguishable 6Li

impurities in a Na condensate (mB/mI = 3.82 and μ = 1.52),

can be compared with the results of the path-integral treatment

of Sec. III. The phase diagrams in Figs. 3 and 8 exhibit a similar

qualitative behavior, and we can compare the three regions

denoted in the figures separately. Both formalisms predict that

there is no formation of a bipolaron if the polaronic coupling

is too weak, and at slightly stronger coupling (region 1) the

bipolaron is only formed at relatively small aII . In region 2 the

all-coupling approach predicts the bipolaron is always formed,

while according to the strong-coupling approach there is no

bipolaron formation at very high values of aII . In region 3 both

formalisms agree on the prediction that the bipolaron is always

formed, irrespective of aII . Quantitatively, the strong-coupling

formalism underestimates the critical coupling parameter for

bipolaron formation, compared to the all-coupling approach.

Note that the strong-coupling approach also underestimates the

critical coupling value for the transition to the strong-coupling

regime, compared to a numerical study [56].

Considering the aII dependence of the properties, both

formalisms reveal two distinct regimes. The behavior at

relatively small aII corresponds to a tightly bound bipolaron

that behaves as a single particle, while at relatively large aII

it is better interpreted as a loosely bound dumbbell bipolaron.

The all-coupling approach predicts a possible discontinuity in

the polaronic properties at this transition which diminishes

as the coupling is increased and ultimately, well in the

strong-coupling regime, vanishes, as also predicted by the

strong-coupling treatment.

VI. CONCLUSIONS

The Feynman all-coupling polaron treatment was applied

for two distinguishable impurities in a condensate. This

showed that if the polaronic coupling is strong enough,

a bipolaron is formed. We also calculated the bipolaron

effective mass and the bipolaron radius. Considering the
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dependence of the polaronic properties on the impurity-

impurity scattering length, aII results in the distinction of

two regimes as a function of aII , a tightly bound bipolaron

that behaves as a single particle at relatively small aII and

a more loosely bound dumbbell bipolaron at sufficiently

large aII . If the coupling is sufficiently strong or weak, this

transition is found to be accompanied by a discontinuity in the

properties of the bipolaron, which becomes less pronounced

as the coupling is increased towards the strong-coupling

regime.

We also applied a strong-coupling treatment to impuri-

ties in a Bose-Einstein condensate. For two distinguishable

impurities in a BEC this leads to similar results, as found

by the all-coupling treatment. This strong-coupling treatment

was then extended for identical impurities. For identical

bosons this results in the same qualitative results as for

distinguishable impurities. For identical fermions the mutual

s-wave interaction vanishes, and above a critical coupling

strength the formation of a bipolaron is always energetically

favored compared to two separate polarons.

The strong-coupling treatment was then applied for more

impurities in a BEC to consider the formation of multipolarons.

We find that the multipolaron becomes stable at weaker cou-

pling as the number of impurities is increased. Furthermore, the

ground-state energy per particle decreases as NI is increased,

which shows that clustering is energetically favorable in the

strong-coupling regime.

Since both formalisms are variational and depend on the

choice of a model system, there is no guarantee that they

describe the actual system. However, the extension of the all-

coupling Feynman approach for the bipolaron not only uses

the model system to describe the system but also incorporates

corrections and is expected to be more accurate compared to

the usual variational principle. Furthermore, the agreement

between the two formalisms at strong coupling indicates that

the physics of the system is captured by the models.
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