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Bipolarons in the extended Holstein Hubbard model
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We numerically and analytically calculate the properties of the bipolaron in an extended Hubbard-Holstein
model, which has a longer-range electron-phonon coupling like theliEnomodel. In the strong-coupling
regime, the effective mass of the bipolaron in the extended model is much smaller than the Holstein bipolaron
mass. In contrast to the Holstein bipolaron, the bipolaron in the extended model has a lower binding energy and
remains bound with substantial binding energy even in the lardenit. In comparison with the Holstein
model where only a singlet bipolaron is bound, in the extended Holstein model a triplet bipolaron can also
form a bound state. We discuss the possibility of phase separation in the case of finite electron doping.
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There is growing evidence that electron-phonon couplingpossible setting. While it is clear that in comparison to the
plays an important role in determining exotic properties ofFrohlich model, our simplified EHHM lacks long-range tails
novel materials such as colossal magnetoresistanceél in the electron-phonon interaction, the physical properties
high-T. compounds. Since electrons in these materials arethat depend predominantly on the short-range interaction
strongly correlated, the interplay between an attractiveshould be similar. For example, calculating the polaron en-
electron-phonon interaction and Coulomb repulsion may bergy of the original Fiblich model as defined in Refs. 6 and

important in determining physics at finite doping. In particu-7 one finds that 94% of the total polaron energy comes from
lar, when the electron-phonon interaction is local, as is thgne first two sites.

case in the Holstein model, finite Coulomb repulsion leads to |, the case whetf(j)= 4, ;, the model in Eq(1) maps

. . . . 5 . .
the forr??;lon (()jf an flr:';]rasnel b|polafr;§ni_ with %an effective  4nt a Holstein-Hubbard modé@HHM) [see Fig. 1b)]. The
mass of the order of the polaron ellective mass. last two terms in Eq(1) represent the energy of the Einstein

It has been recently discovered that a longer-range _ . . .
oscillator with frequencyw and the on-site Coulomb repul-

electron-phonon interaction leads to a decrease in the ef“fe%-ion between two electrons. We consider the case where two
tive mass of a polaron in the strong-coupling regfiéhe '

lower mass can have important consequences, becau ctronfs with opposite_spin§{=_0).couple to di_spersion-
lighter polarons and bipolarons are more likely to remain ess optical phonons with polarization perpendicular to the

mobile and less likely to trap on impurities or from mutual chain.

repulsion. Motivated by this discovery, we investigate a sim- In this :oapehr we é*?e a rte)_cer:jtly _dﬁveloped, highbl'. accurate
plified version of the Frblich model in the case of two elec- "tUMmerica technique,’combined with & strong-coupling ex-
trons, pansion to study the simplified EHHM. Our main goal is to

calculate physical properties such as the binding energy, ef-
fective mass, isotope effect, and the phase diagram of the
H=—tz (CLlSCj'S-l- H.c.)—wgoz f|(j)c;rscjys(a|+a,T) EHHM bipolaron and compare them to the Holstein bipo-
Is ' iIs ' laron that has been thoroughly studied recehtliven
though the two models appear very similar, we find profound
+w2 aJTajJrUE njNj,, (1) differences between the physical properties of bipolarons
! ) within the EHHM and the HHM.

where CJT'S creates an electron of spmand a;r creates a

phonon on sitg. The second term represents the coupling of a) O O Q. O

an electron on sit¢ with an ion on sitel, whereg, is the / \ / \ / N\ / \
dimensionless electron-phonon coupling constant. While in —@ @ n @ @ Qo—

general long-range electron-phonon couplifg(j) is
considered;” we further simplify this model by placing ions

in the interstitial sites located between Wannier orbitals, as b) O O O

occurs in certain oxidesshown in Fig. 1a). In this case it is E | |

natural to investigate a simplified model, where an electron —@ o o

located on sitg¢ couples only to its two neighboring ions, i.e., t

| =j+1/2. We describe such coupling with. 1/(j)=1 and FIG. 1. Schematic representation of the simplifialextended

0 otherwise, and refer to this model as the extended Holsteinqolstein and(b) Holstein model on a chain. Filled circles represent
Hubbard modelEHHM). We can view the EHHM as the electron Wannier orbitals, open circles represent ions. Solid lines
simplest model with longer range than a single site, and usiadicate the overlap integral between Wannier orbitals, dashed
it to explore the qualitative change in physics in the simplestines represent nonzero electron-phonon coupling.
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The numerical method that we use creates a systematat least one singlet bound state. A triplet bound state with an
cally expandable variational space of phonon excitations irenergyE = —2wgi— 2t?/ wg3 exists only whenog3>t.
the vicinity of the two electron3?® The variational method is In the strong-coupling limitT in Eqg. (2) may be consid-
defined on an infinite lattice and is not subject to finite-sizeered as a perturbation. In the case when 2wg3, the single
effects. It allows the calculation of physical properties at anysjte orso bipolaron, defined agg,= CgTC$l|O>’ has the low-
wave vectork. In the intermediate-coupling regime where it est energy to zeroth order. In this regime the binding energy
is most accurate, it provides results that are variational in the; A — E— 2e,=U —4wgZ, whereES? denotes thes0 bi-

thermodynamic limit and gives energies accurate to 14 digit$)|5ron energy and, is the energy of a polaron in zeroth
for the polaron case and up to seven digits for the bipolaro rder. In the opposi'?e regime whd=.h>2wg§ the intersite
case.. . . . or S1 bipolaron,

To investigate the strong-coupling regime of the EHHM,

we use a Lang-Firsd¥ unitary transformatiod = eSHe S,

_ 1
where S=g,%isf|(j)n;s(aj—a]). This incorporates the ex- & O'=—=(cd;c] = cl)]0),
act distortion and interaction energies for static electrons into V2

Ho and leads to a transformed Hamiltonian has the lowest energy. Its binding eneryy- —ngg does

not depend orJ, which also leads to a degeneracy between
the spin-singlet$=0) and the spin-triplet$=1) state. This
simple analysis predicts that an EHHM bipolar@&HB) re-
mains bound in the strong-coupling regime even in the limit

H=Hy+T,

H0=w; a}raj—wgéijzl f|(i)f|(l')ninj+U; WRUTE

whenU — .,
) It is worth stressing that in the limi — o, singlet and
- triplet bipolarons become degenerate. We can therefore pre-
T=—te 9 % CLLSCJ-’SEXL{ —goZ {fi(j+ 1)—1‘|(j)}afr dict the existence of a singlet and a triplet bipolaron, where

at finite U the singlet bipolaron has lower energy. It is also
obvious that the energy of the triplet bipolaron should not
+H.c., depend orJ. In contrast to these predictions, a triplet Hol-
stein bipolaron(HB) is never stable, and furthermore in the
limit U—o no bound HB exists.
) ; Next, we focus on the effective mass of the EHB in the
=Jo for the EHHM. The second term iHl, gives the po-  qong-coupling regime. First-order perturbation theory does

. . . _ 2 .
laron energy, which n the EHHM case &=2wgp, While ot lead to energy corrections for t89 EHB. Second-order
for the HHM, e,= wgj. This term also includes the interac- perturbation theory gives

tion between electrons located on neighboring sites, a conse-

guence of the nonlocal electron-phonon interaction. As noted r (
by Alexandrov and Kornilovitcf,in the strong-coupling re- ms, 1=4t?e 20>
gime a Frdilich polaron has a much smaller effective mass n-0

than a Holstein polaron with the same polaron enefgy  wherem* ~*=d?E(k)/dk?. Equation(4) is only valid in the
The reason for lower mass in the Rlich case(as well as  |imit when 1A=2t/e,—0 andU<e,. In the limit of large

EHHM) is that the effective electron-phonon coupling thatg anqu =0, M, exp(2e,/w), which should be compared to

renormalizes hoppingy®= ye,/w, is smaller(in EHHM, v the HB effective mass that scales rag,exp(de,/w).>* In
=1/2) than in the case of the HHM with=1. In the strong-  the strong-coupling regime the EHB should be much lighter
coupling EHHM polaron, the phonon is displaced on twothan the Holstein bipolaron. There is a particularly interest-
sites. It is identical on one of these sites in the initial and theng EHB regime wherlU=¢,. In this case the zero-order
final state after the electron hop, resulting in a smaller masgnergies of theps, and ¢g; °* bipolarons are degenerate.
enhancement from phonon overlap. Degenerate first-order perturbation theory can be applied to

In the antiadiabatic limit whergip—0 and w—2 with = the spin-singlet EHB in this case, which leads to a substantial
wgj constant, the phonon interaction is instantaneous andecrease in the effective mass

our simplified EHHM maps onto a generalized Hubbard
model,

xexp{gOEI {h(G+1)—=fi(D}ay

where nj=n;;+n;; and g?=g3%[f,(0)>*~f,(0)f|(1)]; g

_2g2)n 1
n! e~ U+no’

4

V2
Mg (U= €p) :Teéplzw- )

_ T T

H= _t% (Ci+1vSCJ'3+H'C')+U§j: n”n”+v§j: NN+ The EHB in this regime consists of a superpositiondgf

(3) anda3; ° and moves through the lattice in a crablike motion.

~ Its binding energy i\ = — €,— 22t exp(— €)/2w).

with an effective Hubbard interactioU=U—4wg(2) andV In the U—o limit we apply second-order perturbation
=—2wg3. In the case of two electrons an analytical solutiontheory to theS1 bipolaron. We take into account processes
can be found. As many as three bound states may exist: twawhere one of the electrons within ti¥4 bipolaron jumps to
singlets and a triplet. In the case wher=0 there is always the left (right) and then the other follows. This leads to
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FIG. 3. (a) Binding energiesA(®Y vs U of the EHHM (full
lines) and the HHM(dashed lines Corresponding binding energies
gof the first excited states are indicated with thin linds. Phase
diagram of the EHHM(filled circles and the HHM(open circle®
calculated atv=1. The vertical line akh =\ represents the stabil-
ity line of the S=1 EHB. Text in the figure applies only to EHHM
phase diagranic) The inverse effective mass and the isotope effect
of the EHHM vs\ atU=5. Vertical lines represent stability limits
of the S=0 andS=1 EHB (from left to righy.

FIG. 2. (a) The bipolaron inverse effective mass vsat w=1.
The thin full line and thin dot-dashed line represent strong-couplin
results obtained using Eq&l) and(5), respectively(b) The effec-
tive mass vdJ at w=1 and\ =1.45. The thin full and dot-dashed
lines represent strong-coupling results obtained using @ysand
(6), respectively.

mg (u—oo)—fefp’w (6)
EHB\™ ™ - t '

the EHB is two orders of magnitude lighter than the HB

The strong-coupling approach thus predicts nonmonotonizvhen U=0. While the effective mass of the HB decreases
dependence of the effective EHB mass as a functiod a6  monotonical withU, the EHB effective mass reaches a shal-
can be seen from different exponents in Ed$, (5), and(6). low minimum nearU=¢, as predicted by the strong-

We next present numerical results. To achieve sufficiencoupling approach. At largdd > €, we observe a slight in-
accuracy, we have used up tx3( variational states per up crease in the effective mass. In the same regime, the HB
electron location. We use units where the bare hopping coreffective mass drops below the EHB effective mass. This
stant ist=1. The ground-state energy of the EHB Xt crossing coincides with a substantial decrease of the HB
=0.5, w=U=1 isE=—5.822 621, which is accurate to the binding energy and subsequently with separating of the HB
number of digits shown(For the same parameterd=0, into two separate polarons. Numerical results for the EHB
the Holstein-bipolaron energy B= —5.424652 8). The ac- agree reasonably well with analytical predictions for small
curacy of our plotted results in the thermodynamic limit is U, Eq. (4), and also in the limit of largéJ, Eq. (6).
well within the line thickness. In Fig. () we present the To gain insight into the symmetry of the bound EHB state,
inverse effective masses of the EHB and the HBat0 and we have calculated the binding energy(®Y= Eg?'l)
of the EHB atU = ¢, . Our results for the bipolaron mass are —2E,,, where Ef)?'l) are the ground-state and the first-
in qualitative agreement with results for the polaron effectiveexcited energies of the EHHM or HHM for two electrons
mass by Alexandrov and Kornilovitéhin the weak-coupling  with opposite spinsS,=0, and E,o is the ground-state en-
regime we find the EHB slightly heavier than the HB, while ergy of the corresponding model with one electron. In Fig.
in the strong-coupling regime the opposite is true. Setting th&(a) we present binding energies of the bipolaron ground-
Coulomb interaction tdJ=¢,, the effective mass becomes and first-excited states as a functionléfAn important dif-
even lighter, which is a consequence of the smaller exponerigrence between the HHM and the EHHM is that in the
in Eqg. (5). In the strong-coupling regimex&1), we find  former case a criticall ;. exists for any coupling strength
good agreement with our strong-coupling predictions in Eqswhere the HB unbinds, while the EHB remains bound even
(4) and(5), depicted by thin lines. While the absolute valuesin the limit U—o~ whenx>\.=0.76. At smallU, excited
may differ by up to a factor of 4in the case o) =€), the  states of both models correspond to bipolaronic singlets,
strong-coupling approach almost perfectly predicts the expospaced approximately above the ground state. Singlets can
nential dependencgseen as parallel straight lines in Fig. be recognized by the fact that their binding energies depend
2(a)] of the effective masses a#),=2t\. on U. As U increases, the excited state of the HB unbinds

To obtain better understanding of the effect of on-sitewhile the excited state of the EHB undergoes a transition
Coulomb repulsion on the bipolaron effective mass in thefrom a singlet to a triplet state, which is also bound.
strong-coupling regime, we present in FiglbR effective By solving A®Y(\,U.)=0 we arrive at the phase dia-
masses of the EHB and HB at fixed coupling strenjth gram U.,\) of the EHHM calculated at fixedb=1, pre-
=1.45 as a function o). The most prominent finding is that sented in Fig. @). We indicate three different regimes. For
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small\ and largeU no bound bipolarons exist. With increas- quence of a longer-range electron-phonon interaction, a
ing \ there is a phase transition into a bound singlet-P0und spin-triplet bipolaron exists in the EHHM for
bipolaron state. Increasing even further, a triplet bipolaron ~Xc- The difference between the binding energies of the
becomes bound as well at=\,. For comparison we also spin-singlet and the spin-triplet bipolaron is proportional to

- ; 1/U. In the weak-to-intermediate-coupling regime of the
include the phase boundary of the HHW®pen circles Note . PN CI
that only a singlet bipolaron exists in the HHM. EHHM (A <\, and finiteU) S=0 bipolarons exist with sub-

. . stantial binding energy close ta~X\., and an effective
In Fig. 3() wea);;resent a cross section thioulgh the phas?nass of the order of noninteracting electron mass

diagram in Fig. at fixedU=5, and plotm* ~* and the ; - ; :

. . . The existen f ingl n riplet EHB h

isotope effecte=d Inm,;/dInM vs N\, whereM is the ion e existence of a singlet and a triplet state has

. : . . important implications in the case of finite doping. As was
mass(see also d.ISCUSSIOI’l of the |sotope effect in REfThe stablished previously, there is no phase separation in the
effective mass increases by approximately a factor of 2.§

¢ i it y lue in th . h | tatic and low-density limit of the HHM.The reason is in

srgiw slir?g?e?cmkr)]isg?acrcl)r;]g (\aliigtz(t;gtw:er:e%:ge taoerveer(:ir;gl apart that a triplet bipolaron is always unstable. The lack of
> ; . . hase separation in the low-density limit and in the strong-

dashed lines The increase of the effective mass is followed P P y g

) . ; - coupling regime has a simple intuitive explanation: a third
by an increase in the isotope effect. The binding enéngy particle, added to a bound singlet bipolaron, introduces a
plotted reaches a value A

triplet component to the wave function. The opposite is true
~—0.5 atA\=\.=0.76. P P iy

. . in the strong-coupling limit of EHHM where singlet and trip-
To conclude, we have shown that a light EHB exists EVeNet bipolarons coexist. In this case, the third added particle

glthefstron%-coup:cing reg_itmde with al‘ln e:fﬁcti\{de] mHasBs t?fat fa%imply attaches to the existing singlet bipolaron and thus
€ a few orders of magnitude smaller than the errec 'Vegains in the potential energy. We therefore expect that the

mass at small. At finite U =e,, a regime of extremely light £y phase separates in the case of finite dopingXor

E|_t|hBtSh is found where tthe btlr?olar(l)n effe(;ftlv?_ mass Sca_ll_iSSUfﬁciently large. To stabilize a system of EHHM bipolarons
Wi € same exponent as the polaron elfective mass. 1hi gainst phase separation, a long-range Coulomb repulsion

mobile bipolaron arises as a superposition @i and ads;  gpo1d be taken into account. This prediction is in agreement

state and it moves through a lattice in a crablike motion. ASyith recent findings by Alexandrov and Kaban@wvhich

found in Ref. 5, a HB becomes very light with increasldg  giate that there is no phase segregation in thialgtomodel
close to the transition into two unbound polarons Wt i, e presence of long-range Coulomb interactions.
=U.. Near this transition, its binding energy diminishes
substantially and reachés=0 at the transition point. . In J.B. gratefully acknowledges the support of the Los Ala-
contrast, an EHB can have a small effective mass even in th@os National Laboratory, where part of this work has been
regime where its binding energy is lardgs the strong- performed, and financial support by the Slovene Ministry of
coupling regime A approaches\=—¢,). Furthermore, an Science, Education and Sport. This work was supported in
EHB remains bound in the limit wheld —«. As a conse- part by the U.S. DOE.
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