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Birational Canonical Transformations and

Classical Solutions of the Sixth Painlevé Equation

HUMIHIKO WATANABE

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVII ( 1998),

Abstract. Two topics on the sixth Painleve equation are treated in this paper. In
Section 1, a simple construction of a group of birational canonical transformations
of the sixth equation isomorphic to the affine Weyl group of D4 root system is
given by exploiting an affine Weyl group symmetry of the Hamiltonian structure
of the sixth equation defined on the defining variety of the equation. In the rest
of this paper (Sections 2-4), based on Umemura’s theory on algebraic differential
equations, all one-parameter families of classical solutions of the sixth equation
are determined, and the irreducibility of the sixth equation is proved. The latter is
a rigorous proof of what Painleve asserted in C. R. Acad. Sci. Paris 143 (1906),
1111-1117.

Mathematics Subject Classification (1991): 34A34 (primary), 34A05, 34A20,
34A26 (secondary).

0. - Introduction

In this paper we give a simple construction of a group of birational canonical
transformations of the sixth Painleve equation isomorphic to the affine Weyl
group of D4 root system, and determine all one-parameter families of classical
solutions of the sixth Painleve equation. Especially, the latter includes the proof
of the irreducibility of the generic solutions of the equation, which is a rigorous
proof of what Painleve asserted in [5].

In general, one understands by the sixth Painleve equation the following
one:

This equation (1) does not, however, seem to be suitable for our purpose be-
cause it is hard to explain geometric and/or algebraic properties of the sixth

Pervenuto alla Redazione il 12 giugno 1998 e in forma definitiva il 21 ottobre 1998.
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Painleve equation by means of this form (1). Okamoto gave a Hamiltonian

system with a polynomial Hamiltonian equivalent to (1) in connection with
the isomonodromic deformation of a second order Fuchsian differential equa-
tion ([3]), and developed a theory of birational canonical transformations and
tau functions of the sixth Painleve equation from the view point of the
Hamiltonian structure ([4]). According to his theory, various properties of
the sixth Painleve equation are written by means of such a Hamiltonian system
more systematically than by means of only the original single equation (1).
Moreover, Okamoto [2] constructed a seven-dimensional phase space bundle E
(see Section 1) over the space of time and parameters of the sixth Painleve
equation on which the Hamiltonian foliation of the sixth equation is naturally
defined. The space E, which we would like to call the defining variety, inherits
a lot of properties of the Hamiltonian structure of the sixth Painleve equation.
For example, starting from the space E, one can recover the Hamiltonian struc-
ture of the sixth Painleve equation on E under a natural assumption ([6]). In

this paper, therefore, we understand by the sixth Painleve equation the pair
of the variety E and the Hamiltonian structure of the sixth Painleve equation
defined on E (see Section 1).

The content of this paper is as follows. In Section 1, after reviewing
the defining variety and the definition of the sixth equation defined on E, we
explain how to construct the group B of birational canonical transformations of
the sixth equation isomorphic to the affine Weyl group of the D4 root system.
In [4] Okamoto constructed such transformations by exploiting the symmetry of a
second order differential equation which is satisfied by a Hamiltonian function
of the sixth Painleve equation. His calculation in construction seems to be

complicated, and it is not explicitly specified where such birational canonical
transformations are considered. In this paper we take the position that birational
canonical transformations of the sixth Painleve equation should be considered
on the defining variety E. This easily leads us to a simpler construction of
them. In fact, we explicitly write out birational canonical transformations of E
corresponding to generators of the affine Weyl group of D4 root system Wa,
which acts on the space of parameters of the sixth Painleve equation, by taking
into consideration an affine Weyl group symmetry of the Hamiltonian structure
on E (Theorem 1.1). By an elementary property of the Coxeter system, we also
see that the group B generated by such birational canonical transformations is

isomorphic to the affine Weyl group Wa (Corollary 1.2). Our method releases us
from complicated calculations, and clarifies the geometric meaning of birational
canonical transformations of the sixth Painleve equation. Moreover, there seem
to be applications of our method to the other Painleve equations and the Garnier
systems, etc. (e.g. [13], [14]).

Sections 2-4 deal with the determination of classical solutions and the

irreducibility of the sixth Painleve equation. In Section 2 we first prepare some
materials relating to the parameter space C4 of the sixth Painleve equation:
hyperplanes invariant under the action of the group Wa and fundamental regions
for the group Wa. Next we state the main theorem concerning the determination
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of one-parameter families of classical solutions and the irreducibility of the
equation (Theorem 2.1). Since the notion of classical function in the sense
of Umemura (e.g. [8]) is invariant under birational transformations, thanks to
the action of the group B on the parameter space of the sixth equation, we
can reduce the main theorem to Theorem 2.2 where all one-parameter families
within a fundamental region F of the parameter space for Wa are determined.
We see that all the classical solutions come from the hypergeometric differential
equation of Gauss (Remark 2.2).

Sections 3 and 4 are devoted to the proof of Theorem 2.2. Our proof here
as well as those for the other Painleve equations ([10], [ 11 ], [12]) is based
on Umemura’s theory on algebraic differential equations ([7], [8], [9]). In his

theory Umemura introduced an algebraic criterion for the irreducibility of a given
ordinary differential equation, which is called the condition (J) (see Section 3).
In Proposition 3.1, we establish a necessary condition of the parameters of
the sixth equation under which the condition (J) fails. This condition is crucial
because all results concerning the irreducibility and the determination of classical
solutions follow from Proposition 3.1. In the proof of Proposition 3.1, as was
done in the other Painleve equations, we investigate the equation X (a) F = GF
in detail, where X (a) is the Hamiltonian vector field corresponding to the sixth
equation, and F and G are polynomials in the canonical variables q and p with
coefficients in a differential overfield K of (C(t) the field of rational functions
in one variable. We introduce two gradings to the polynomial ring K[q, p], and
decompose F in two ways with respect to such gradings: F = Fm +... + Fo =
Fn + ~ ~ ~ ’+7~, where m is a non-negative integer, and n and n’ are integers such
that n &#x3E; n’. We determine the explicit forms of the polynomials Fm, Fn
and G by Lemmas 3.2-3.6, and obtain the desired condition by equating two
equivalent expressions of a coefficient p in G. As a corollary of Proposition
3.1 (Corollary 3.7), we prove that, for all vectors in the fundamental region F
but not on the hyperplanes invariant under the action of the group Wa, there
exists no one-parameter family of classical solutions of the sixth equation. In

Section 4 we determine all X(a)-invariant principal ideals of K[q, p] for all

vectors a on the intersection of the region F and the invariant hyperplanes
(Propositions 4.1-4.8). Thus the results in Sections 3 and 4 complete the proof
of Theorem 2.2.

1. - Defining variety and birational canonical transformations

We review the defining variety of the sixth Painleve equation constructed
by Okamoto [2], and define the sixth Painleve equation on it. Let I~1 denote
the complex projective line, and let t and s be inhomogeneous coordinates of
I~1 with the condition
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We set B = f t = 0, 1, oo }, and regard t or s as coordinates of B. Let

Uo, U2, U3, U4, U~ be copies of the product space ~4 x B x ~2 with
corresponding coordinate systems (a,, a2, a3 , a4; t; qi, pi ) (i = 0, 1, 2, 3, 4, oo).
With a brief notation a = (a I , a2, a3, a4) E (C4, we also write (a; t; qi, pi) =

a2, a3, a4; t; qi, 9 pi). The rule of patching the six spaces is as follows:

(i) on Uo n 

(ii) on Uo n Ul ,

(iii) on Uo n U2,

(iv) on Up f1 U3,

(v) on Uoo n U4,

We denote by E the seven-dimensional open variety thus obtained. The variety
E has been first constructed by Okamoto [2], p.37-49. The above conditions

(i)-(v) are taken from Shioda and Takano [6]. Obviously, the variety E has a
natural fibration 7r : E - C~ x B.

We next define the sixth Painleve equation on E. To this end, we give
polynomial functions Hi on open sets Ui (i - 0, 1, 2, 3, 4, oo) by the following
equations (see [4]):
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Then we have the following relations:
(i) on Uo n Uoo,

(ii) on Uo n Ul ,

(iii) on Uo n U2,

(iv) on Uo f1 U3,

(v) on Uoo n U4,

Let d be the exterior differential with respect to the variables t, qi, pi (i =

0, 1, 2, 3, 4, oo). Thus we have dai = 0 (i = 1, 2, 3, 4). From (1)-(16), we have
the following:
(i) on Uo n 
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(ii) on Uo n Ul ,

(iii) on Uo n U2,

(iv) on Uo n U3,

(v) on U~ n U4,

These conditions (17)-(21) mean that the foliations Fi in Ui (i = 0, 1, 2, 3, 4, oo)
defined by the Hamiltonian systems

are mutually compatible. Here ti = t if i = 0, 1, 2, 3, and ti - s if i = 4, oo.
Therefore the six foliations determine a unique foliation .~’ of codimension 2
in E such that the restriction of ~" to each Ui coincides with the foliation Ti.
In [2] the following properties are shown concerning the variety E and the
foliation .~’:

(i) the foliation .~’ in E has no singularity except those of the first class (for
the definition, see [2]);

(ii) the variety E is maximal with respect to inclusion among seven-dimensional
complex smooth varieties possessing the property (i).

We call the system Si the sixth Painleve equation defined on Ui. By the sixth
Painleve equation defined on E we mean the collection of all the sixth Painleve
equations defined on trivial affine open subbundles of E. Thus we can identify
the foliation .~’ with the set of solutions of the sixth Painleve equation defined
on E, and a leaf of F with a solution of the sixth Painleve equation defined
on E. We call E the defining variety of the sixth Painleve equation, or the
Painleve-Okamoto variety of sixth kind. In fact, Shioda and Takano [6] show
that the foliation .~’ is a unique holomorphic Hamiltonian foliation in E. Let 7r
be the natural projection E - C~4 x B. Following Okamoto, we call each fibre
7r - 1 (a; t ) ((a; t ) x B ) the space of initial conditions of the sixth Painleve
equation for (a; t ) E x B.
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Let Vl, V3, V4 be again copies of with corresponding coordinate
systems (a; t; Qi, Pi) (i = l, 3, 4). The rule of patching Uo, Vi, V3, V4 is as
follows (see [4]):

(i) on Uo n vi,

(ii) on Uo n V3,

(iii) on Uo n V4,

The variety thus obtained is obviously identified with the union Uo U Uoo in E.
In the following we identify Vl , V3, V4 with affine open subbundles of E. We

represent the sixth Painleve equation on each open set Let Ki (i = 1, 3, 4)
be polynomial functions on Vi given by the following equations:

Then we have the following relations:
(i) on Uo n vi,
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(ii) on Uo f1 V3 ,

(iii) on Uo n V4,

Moreover we have:

(i) on Uo n vi,

(ii) on Uo n V3,

(iii) on Uo n V4,

Thus we see that the sixth Painleve equation defined on Vi is also represented
as the Hamiltonian system

Now we construct a group of birational canonical transformations of E

isomorphic to the affine Weyl group of D4 root system. To this end, let si (i =
1, 2, 3, 4, 5) be affine transformations of cC4 defined by sl (a) = (a2, al, a3, a4),
S2 (a) - (a 1 ~ a3 ~ a2 ~ a4 ) ~ S3 (a) - (2i,~2~4~3)) S4 (a) - (al, a2, -a4, -a3) and
S5 (a) (-a2 + 1, -al + 1, a3, a4) for a = (a1, a2, a3, a4) E C4. We have s2i = 1
(i = l, 2, 3, 4, 5), si sj = sj si (i, j =A 2) and = (SiS2)3 = 1 (i ~ 2), where
1 denotes the identity transformation of C4. Let Wa be the subgroup generated
by these five transformations in the group of all affine transformations. We see
that Wa is isomorphic to the affine Weyl group of D4 root system, and the
pair (W~,{~i,~2~3~4~5}) is a Coxeter system (cf. [15], Corollary 2.4). We
prove the following theorem concerning the construction of birational canonical
transformations of the sixth Painleve equation (cf. [4], Theorem 1.).
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THEOREM 1.1. If g E Wa, then there exists a birational canonical transforma-
tion y of E such that the following diagram (34) is commutative:

where 7rl represents the natural projection E -~ (C4.

PROOF. Since the group Wa is generated by si (i = 1, 2, 3, 4, 5), it is
sufficient to construct birational canonical transformations ai (i = 1, 2, 3, 4, 5)
of E such that the diagram (34) is commutative for y = ai and g = si.

(i) Construction of cri. Since = (a2, al, a3, a4), the Hamiltonian Ho is
invariant under sl. Thus we have the locally trivial birational canonical trans-
formation aj of Uo:

If extending the domain of definition of orl to U~ by (2), (3) and (12), we
have on U 00

In a way, the birational canonical transformation orl on Uo U U~ is extended to
the whole space E. We omit the detail.

(ii) Construction of cr3. Since s3(a) - (a,, a2, a4, a3), the Hamiltonian K4
is invariant under s3. Thus we have the locally trivial birational canonical
transformation a-3 of V4:

If extending the domain of definition of a3 to Uo by (26), (27) and (30), we
have on Uo

By (2), (3) and (12), we have on U ...
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By the similar way the birational canonical transformation cr3 of Uo U U 00 U V4 =
Uo U U~ is extended to the whole space E. We omit the detail.

(iii) Construction of a4. Since s4 (a) _ (a 1, a2, -a4, -a3), the Hamiltonian H~
is invariant under s4. Thus we have the locally trivial birational canonical
transformation o~4 of U~ :

If extending the domain of definition of cr4 to Uo by (2), (3) and (12), we have
on Uo

By the similar way, the birational canonical transformation of4 of Uo U U, is
extended to the whole space E. We omit the detail.

(iv) Construction of Since S5 (a) = (I - a2, I - a3, a4), the Hamiltonian
K1 1 is invariant under s5. Thus we have the locally trivial birational canonical
transformation a5 of Vl:

If extending the domain of definition of u5 to Uo by (22), (23) and (28), we
have on Uo

By (2), (3) and (12), we have on Uoo

By the similar way, the birational canonical transformation a5 of U 0 U U 00 U VI =
Uo U U,, is extended to the whole space E. We omit the detail.

(v) Construction of a2. Since S2(a) = (a 1 , a3, a2, a4), the Hamiltonian H,
is invariant under s2. Thus we have the locally trivial birational canonical
transformation cr2 of Ul:



389

If extending the domain of definition of a2 to Uo by (4), (5) and (13), we have
on Uo

By (2), (3) and (12), we have on U~

By the similar way the birational canonical transformation cr2 of Uo U U,, U U1
is extended to the whole space E. We omit the detail. Theorem 1.1 is thus

proved.
COROLLARY 1.2 (cf. [4], Remark 3.2). Let B be the subgroup of bira-

tional canonical transformations of E generated by the five transformations ai
(i - 1, 2, 3, 4, 5) in the proof of the theorem. Then B is isomorphic to the group
Wa, and therefore to the affine Weyl group of D4 root system.

PROOF. Obviously, we have a homomorphism the

diagram (34). Conversely, we have = 1 (i = 1, 2, 3, 4, 5), 03C3i 03C3j = 03C3j03C3i
(i , j ~ 2) and = = 1 (i ~ 2), where 1 denotes the identity
transformation of E. Since the pair (Wa, f sl, s2, s3, s4, is a Coxeter system,
by the universality (cf. [ 1 ], Chap. IV, Section 1), we have another homo-
morphism Wa 3 g --~ y E B. Obviously, these homomorphisms are mutually
reciprocal.

REMARK 1.1. We find various notations for the parameters of the sixth
Painleve equation in the literature. For example Okamoto [4] denotes a param-
eter of the equation (or, the Hamiltonian) by b = (b 1, b2, b3, b4). The following
shows the relation between our notation a = a2, a3, a4) and Okamoto’s b:

2. - Classical solutions and irreducibility

First, we consider the parameter space of the sixth Painleve equation (~4,
and review some results about it ( for the details, see [15]). We fix the usual
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hermitian inner product alb, + a2b2 -~ a3b3 + a4b4 for two vectors
a = (a 1, a2 , a3 , a4) and b = b2, b3, b4) in ~4, where b denotes the complex
conjugate of a complex number b. Let R be the collection of the follow-

ing 24 vectors: (~ 1, ~ 1, 0, 0), (±1,0, ±1,0), (±1,0,0,±1), (0,~1, ~ 1, 0),
(o, ~ 1, 0, ~ 1 ), (o, 0, ~ 1, ~ 1 ) ; the set R is the root system of type D4. For

a E R and k E Z (the set of integers), let Ha,k be the complex hyperplane of
cC4 defined by = {a E cC4 I = We define ten subsets M, P, Pl ,
P2, L, L 1, L2, D, D1 I and D2 of (C4 by the following:

M : union of all Ha, k’s for a E R and k E Z;

P : union of all intersections Ha, k n Hp,l l for a, f3 E R which are linearly
independent (or equivalently, 7~ ±2), and for k, l E Z;

Pl : union of all intersections Ha,k n for a, f3 E R such that (a)fl) = 0,
and for k, I E Z;

P2 : union of all intersections Ha,k n Hp,l / for a,f3 e R such that (a I ,B ) = 20131,
and for k, I E Z;

L: union of all intersections Ha,k n Hp,l n Hy,m for a, f3, y E R which are
linearly independent, and for k, l , m E Z;

LI: union of all intersections for a, 13, y E R such that
(al13) = = = 0, and for 

L2: union of all intersections for a, 13, y E R such that
(a I,B) = 0 and and for k, l, m E ~;

D: union of all intersections Ha,k n Hp,l for a, P, Y, 3 E R which
are linearly independent, and for k, l , m, n E Z;

Di : union of all intersections rl Hy,m rl Hs,n for a, 13, y, 8 E R such
that 
such that mod 2;

D2 : union of all intersections n H8,n for a, Y, 3 E R such
that and for k, 1, m:n E Z
such that mod 2.

Obviously, we have M D P D L D D, P D P, U P2, L D Li UL2, D D Di UD2
and D, n D2 = 0. Moreover, by [15], Proposition 1.2, we have (i) Pi j5 P2
and Pj gt P2 ; (ii) P = P, U P2 ; (iii) L2 and L2; (iv) L = L U L2;
(v) D = Dl U D2. By [15], Proposition 1.3, we see that these ten subsets are
invariant under the action of the group Wa.

Let E -~ cC4 be the natural projection, and let be the restriction
of the foliation ,~’ to the fibre (a E C4) . By a one-parameter family of
solutions of we mean the collection of leaves of 0(a) which are defined
on each open set n Ui (i - 0, l, 2, 3, 4, oo) in 7r¡I(a) by a common
non-trivial single algebraic equation in at least one variable qi or pi. By a
classical solution of F(a), we mean a leaf of which are parametrized by
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a classical solution (in the sense of Umemura, for example see [8]) of the sixth
Painlevé equation defined on each open set Ui n 7r 11 1 (a) in 7r 11 1 (a). The rest of
this paper is devoted to the proof of the following:

THEOREM 2.1. (i) For a E M but a V P, there exists a one-parameter family of
classical solutions of 
(ii) Fora E P but a ¢ L, there exist two one-parameter families of classical solutions
of T (a).
(iii) For a E L but a ¢ D, there exist three one-parameter families of classical
solutions of F(a).
(iv) For a E D, there exist four one-parameter families of classical solutions of
.F(a).
(v) Let a be a (a E C4 ) defined by a transcendental solution of the sixth
Painleve equation different from those in (i)-(iv). Then a does not belong to any
one-parameter family of F(a), and does not define any classical solution of the sixth
Painlevi equation.

REMARK 2.1. Assertion (v) implies the irreducibility of the sixth Painlev6
equation (cf. [5]).

We consider reduction of the proof of the theorem. First, observing the
forms of the systems Si (i = 1, 2, 3, 4), we see that there exists no one-parameter
family of solutions on E defined by pi = 0 or P2 = 0 or P3 = 0 or P4 = 0.
Therefore it is sufficient to prove the theorem on the open subset Uo U Uoo. We
write the systems So and Soo explicitly:
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Here we set

and always adopt this notation in the following. There seems to be no possibility
of confusion of the variable P with the subset P of ~4. When we emphasize
the dependence on the vector a E (C4 of the systems So and we also write

So (a) and Soo(a). By the argument of the proof of Theorem 1.1, we can regard
the group B in Corollary 1.2 as a group of birational canonical transformations
of the subbundle Uo U U 00 of E. Since, by definition (e.g. [8]), the notion

of classical function is invariant under birational transformations, and since the

group B acts naturally on (~4 the parameter space of the systems So and 5oo,
we may restrict the parameter a of the systems So and to a fundamental

region of (~4 for the group Wa isomorphic to B. We adopt as a fundamental
region the collection, denoted h, of all vectors a = a2, a3, a4) E C~4 subject
to the following conditions (see [15], Corollary 2.5):

Here we denote by the real and imaginary parts of a complex
number a, respectively. Therefore, to prove Theorem 2.1, it is sufficient to

prove the following:
THEOREM 2. 2. (i) For a 1 - (a 1, a2, a3, a4) E C4 such that a 1 = a2, there exists

a one-parameter family of classical solutions of It consists of the solutions
of the form (0, P) where P satisfies the Riccati equation

(ii) For a2 = (a,, a2, a3, a4) EC4 such that a2 = a3, there exists a one-parameter
family of classical solutions of SO(a2). It consists of the solutions of the form (q, 0)
where q satisfies the Riccati equation



393

(iii) For a3 = (a,, a2, a3, a4) E C4 such that a3 = a4, there exists a one-parameter
family of classical solutions of So (a3 ). It consists of the solutions of the form (1, p)
where p satisfies the Riccati equation

(iv) Fora4 = (a,, a2, a3, a4) E (C4 such that a3 = -a4, there exists a one-parameter
family of classical solutions of So (a4). It consists of the solutions of the form (0, p)
where p satisfies the Riccati equation

(v) Foras = (a,, a2, a3, a4) E (C4 such that a +a2 = 1, there exists a one-parameter
family of classical solutions of So(a5). It consists of the solutions of the form (t, p)
where p satisfies the Riccati equation

(vi) For a E F, let (q, p) (or (Q, P)) be a transcendental solution of the system
So (a) (or S~ (a)) different from those in (i)-(v). Then none of the functions q, p,
Q, P is classical, and the transcendence degree of C(t, q, p) (C(s, Q, P)) over
C(t) = C(s) equals two.

The assertions (i)-(v) are obvious. The proof of the assertion (vi) consists
of the following two parts:

(a) to determine the condition of the parameter a E CC4 where the Hamiltonian
vector field X(a) (which will be defined in Section 3) does not satisfy the

algebraic condition (J) of Umemura (Proposition 3.1 and Corollary 3.7);

(b) to determine X (a)-invariant principal ideals for a E F (Propositions 4.1-4.8).
Once these steps have been established, Theorem 2.2 follows immediately from
Umemura’s theory summarized in [10], Section 1 (see also [7], [8], [9]).

REMARK 2.2. The Riccati equations (1)-(5) come from the hypergeometric
differential equation of Gauss. For example, in (5), if setting p = (du/dt)/u,
then we have the equation for u

Similarly, the equations (1), (3) and (4) are also transformed to the hyperge-
ometric equation. In (2), we introduce a new variable q by q - (a 1 - a3)q.
Then q satisfies the following Riccati equation

which is also transformed to the hypergeometric equation.
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3. - Necessary condition for the existence of invariant ideals

Let K be an ordinary differential overfield of C(t), and let K[q, p] be the
polynomial ring over K in two variables q and p. We consider the following
derivation on 

where a = (a,, a2, a3, a4) E c~4. We call this the Hamiltonian vector field of
the system So (Section 2). From now on we fix the vector a E cC4. In [10],
Section 1, Umemura introduced the condition (J) for X (a) :

(J) For any ordinary differential field extension there exists no prin-
cipal ideal I of K [q, p] such that 0 C I C p] and X (a) I C I.

Here we consider the following cases for the parameter a = (aI, a2, a3, 

Case 1.

Case 2.

and

Case 3.

All cases are exhausted in these three. In fact, assume a ~ (~, ~, 0, 0). Then we
have a2 # 0 or a3 - a4 # 0 or a3 + a4 # 0 or a + a2 # 1. By considering
the sixth Painleve equation on an appropriate open set among the four Uo, Vi,
V3 and V4, we may assume a 1 - a2 # 0. Since the system So has a symmetry
with respect to the transformation s 1 (Section 1), if (a2 - a3 ) (a 1 - a3 ) = 0 and
a I - a2 =,A 0, we may assume 0. The Cases 1 and 2 will be treated in

the next section. Here we assume the Case 3. We show the following crucial
result:



395

PROPOSITION 3.1. Assume the Case 3. If the derivation X (a) does not satisfy
the condition (J) for a vector a = (a,, a2, a3, a4) EC4 with the condition (4), then
there exist non-negative integers a, b, i, j and k such that

and

PROOF. The proof is accomplished in seven steps.

Step 1. By hypothesis there exists an X (a)-invariant principal ideal I properly
between the zero-ideal and K [q, p]. Let F E K [q, p] be a generator of I:
I = (F). Then we have

and

with some G E K[q, p].
To investigate the equality (8), we introduce the following two gradings in

the polynomial ring K[q, p].
In the first grading we define the weight of a monomial (0 # y E K)

in K[q, p] as j. Let Rd be the K-linear subspace of K [q , p ] generated over
K by all the monomials of weight d. We have Rd = K[q] . pd for every non-
negative integer d. Thus K[q, p] becomes a graded ring: K[q, p] = 

Rdi C Rd+d’. We define three derivations Xi’s (i = -1, 0, 1) by

Then we see that X(a) = X + Xo + X-1 1 and that each Xi maps Rd to Rd+i-
In the second grading we define the weight of a monomial yqi pj (0 ~ y E

K) in K[q, p] as i - j. Let Rd be the K-linear subspace of K[q, p] generated
over K by all the monomials of weight d. We have K[qp] . qd and
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Rd - pd for every non-negative integer d. Thus K[q, p] has another
grading structure: K[q, p] = RI We define three
derivations X" s (i = -1, 0, 1) by

Then we see that X (a) = X 1 + X o + X’ 1 and that each X i maps Rd to Rd+i .
We determine the form of the polynomial G in (8). Since the highest part

X 1 of X (a) is of weight one with respect to the first grading, the polynomial
G belongs to the direct sum Ro Q3 Namely we have G = + go with

some g 1, go E K[q]. Moreover, since the highest part X’1 of X(a) is also of

weight one with respect to the second grading, the polynomial G belongs to
the direct sum R’ Q3 R§ Q3 R 1. Therefore we see that the polynomial gi 1 is of

degree at most two in q and the polynomial go is of degree at most one in q.
Namely we have

with some À,~, v, p, or E K.
We decompose the polynomial F with respect to the first grading of

K[q, p]. Then there exist a non-negative integer m and a unique collection
of m + 1 homogeneous polynomials Fd E Rd (0  d  m ) such that

and

We can surely assume the condition (11) because of (7). Substituting (9) and
(10) into (8), we have

Comparing the homogeneous parts of both sides of the equality, we have a
system of m + 3 equations equivalent to (8):
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where d is an integer such that -2  d  m, and Fm+2 - F-1 1 =

F_2 = 0.
On the other hand, we decompose F with respect to the second grading

of K[q, p]. Then there exist two integers n and n’ with n &#x3E; n’, and a unique
collection of n - n’ + 1 homogeneous polynomials Fd E Rd (n’  d  n) such
that

and

Substituting (9) and (13) into (8), we have

Comparing the homogeneous parts of both sides of the equality, we have a
system of n - n’ + 3 equations equivalent to (8):

where d is an integer such that n’ - 2 ::s n, and = ~_j_~ = Fn~-1 -
Fn,_2 = 0.

Thus we have obtained the two systems ( 12)d and ( 15)d equivalent to (8).
In the following we investigate them exclusively.

REMARK 3.1. The gradings above come from the Newton polygon of the
derivation X (a), which is described in the following figure:
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Here an integral point ( j, i ) ~ (o, 0) in ~2 represents the derivation in
X(a) of the form -I- (u, v E K); the point (0, 0)
represents that of the form t(t - 1)(a/at) + uq(a/aq) + vp(a/ap) (u, v E K)
(cf. [ 10], ll ll, [ 12] ).

Step 2. To investigate the systems ( 12)d and ( 15)d we need the lemmas
below (Lemmas 3.2-3.6).

LEMMA 3.2. Let d be a non-negative integer and e be a positive integer. Let A
be a polynomial in Rd, and let ~,’, and v’ be elements of K. If v’ + (d - 21 + 2) t :A 0
for every integer I such that 1  I  e and if A satisfies a congruence

then A - 0 mod q e.

LEMMA 3.3. Let d, e, A, ~,’, JL’, and v’ be as above. + ~,c’ + v’ + (d - 21 +
2) ( 1- t ) ~ 0 for every integer I such that 1 ~ ~ ~ and if A satisfies a congruence

mod

then A - 0 mod (q - 

LEMMA 3.4. Let d, e, A, À’, it’, and v’ be as above. If À’t2 + JL’t -f- v’ + (d -
21 + 2)t (t - 1) =,4 0 for every integer I such that 1  I  e, and if A satisfies a
congruence

then A - 0 mod (q - t)e.

PROOF OF LEMMA 3.2. We denote by K[T] the polynomial ring in one
variable T over K. Let ~po be the K-algebra morphism of K[q, p] onto K[T]
defined by CPo(q) = 0 and (I - t)T. Then the following diagram is
commutative:

The kernel of the morphism ~oo is a principal ideal generated by q. Since

XI(q) = 2q(q - 1)(q - t)p, it is an X 1-invariant ideal. Now we show A == 0
mod ql by induction on I (1  I  e). We set A = Bpd with some B E Ro. If
we apply ~po to both sides of (16), we have
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This is equivalent to

by the diagram (19). Since qJo(B)(1 - t)dTd, it follows that

that is,

Since v’ 0 by hypothesis, we have wo(B) = 0 and hence A - 0 mod q.
This proves the case I = 1. Assume that A - 0 mod q l -1 for I &#x3E; 2. We show
A - 0 mod q l . We set A = with some C E Ro. If we substitute this

expression into (16) and divide both sides of the resulting congruence by 
then we obtain

If we apply to this congruence, we have

Since v’ + d t - 2 (l - 0 by hypothesis, we have = 0 and hence
A - 0 mod ql. Thus Lemma 3.2 is proved.

PROOF OF LEMMA 3.3. Let wj be the K-algebra morphism of K[q, p] onto
K[T] defined by = 1 and tT. Then the following diagram is
commutative:

The kernel of the morphism wj is a principal ideal generated by q - 1. Since
= it is an X, -invariant ideal. By the same argument

as in the proof of Lemma 3.2, we can show A n 0 mod (q - 1 )l by induction
on I I  e). So we omit the rest of the proof of Lemma 3.3.

PROOF OF LEMMA 3.4. Let wi be the K-algebra morphism of K[q, p] onto
K[T] defined by CPt(q) = t and ~pt ( p) - -T. Then the following diagram is
commutative:
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The kernel of the morphism wi is a principal ideal generated by q - t. Since

Xl(q-t) = it is an X 1-invariant ideal. By the same argument
as in the proof of Lemma 3.2, we can show A n 0 mod (q - t)l by induction
on I I  e). So we omit the rest of the proof of this lemma.

REMARK 3.2. The commutative diagrams (19), (20) and (21) are obtained
in the following way (cf. [10]). Assume that there exists a homogeneous
K-algebra morphism 0 such that the following diagram is commutative:

Here the polynomial ring K[q, p] is regarded as the graded ring K[q, p] =
and K[T] as the usual graded ring K[T] = Then we can
= a and ~ ( p) - f3T with a, 13 E K (~B ~ 0). By the commutative

diagram, we have a system of algebraic equations:

All the solutions of this system are (a, 13) = (o, - t ), (1, and (t, - 

which define the expected morphisms CPo, CPl and respectively.

LEMMA 3.5. Let d be an integer and e be a positive integer. Let A be a

polynomial in Rd, and let;,’and p’ be elements of K. Furthermore, let the derivation
X’, depending on the vector a = (a 1, a2, a3, a4), be considered under the condition
(a I - a2) (a3 - a2) =,4 0. If (a3 - a2)~,’ + p’ + (I - 1 - d) (a I - a2) =A 0 for every
integer I such that 1  I  e and if A satisfies a congruence

then A - 0 mod (qp - a3 + a2)e.

LEMMA 3.6. Let d, e, A, ~.’ and p’ be as above, and let the derivation X 1 be
considered under the condition (a2 - aI)(a3 - a 1) =,4 0. If (a3 - + p’ + (I -
1 - d) (a2 - a 1) i= 0 for every integer I such that 1  I  e and if A satisfies a
congruence

then A - 0 mod (qp - a3 + al )e.
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PROOF OF LEMMA 3.5. We denote by K [T, the Laurent polynomial ring
in one variable T over K. Let 1/J + be the K-algebra morphism of K[q, p] onto
K[T, T-1] defined by 1/J+(q) = (aI-a2)-IT and 1/J+(p) = 
The definition is well-defined by the hypothesis (al - a2)(a3 - a2) # 0. Then
the following diagram is commutative:

The kernel of the morphism 0/+ is a principal ideal generated by qp - a3 + a2.
Since a3 + a2) = -(qp - a3 + a2)(qp - a3 + it is X 1-invariant
ideal. We show A - 0 mod (qp - a3 + a2)1 by induction on I (1  I  e).
Here we need to consider two cases: (a) d &#x3E; 0; 0. Assume the case

(a). Then we set A = Bqd with some B E Ro. If we apply 0/+ to both sides
of (22), we have

This is equivalent to

by the commutative diagram (24). Since ~+(A) = l/1+(B)(aI - a2) -d T d, it

follows that

Since (a3 - a2)À’ + p’ - d(al - a2) i= 0 by hypothesis, we have 1/1+(B) = 0 and
hence A - 0 mod (q p - a3 + a2). This proves the case I = 1. Assume that
A --- 0 mod (qp - a3 + a2)1-1 for 1 &#x3E; 2. We show A * 0 mod (qp - a3 + a2)1.
We set A = C(qp - a3 + a2)I-lqd with some C E Ro. If we substitute
this expression into (22) and divide both sides of the resulting congruence by
(q p - a3 + then we obtain

If we apply to this congruence, then we have

Since (a3 - a2 ) ~,’ + P’ + (I - 1 - a2) # 0 by hypothesis, we have
~+ (C) = 0 and hence A n 0 mod (qp-a3+a2)1. In the case (b) (i.e. d  0),
the discussion is similar to the case (a) by setting A = Bp-d with B E Ro. So
we omit the detail. Lemma 3.5 is proved.
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PROOF OF LEMMA 3.6. Let 1/1- be the K-algebra morphism of K [q, p] onto
K[T, defined by 1/I-(q) = and 1/I-(p) = 
The definition is well-defined by the hypothesis (a2 - a 1 ) (a3 - a 1 ) 7~ 0. Then
the following diagram is commutative:

The kernel of the morphism is a principal ideal generated by q p - a3 
Since a3 + aI) = -(qp - a3 + a2)(qp - a3 + al)q, it is X’-invariant
ideal. The rest of the proof is similar to the corresponding part of the proof
of Lemma 3.5. In fact, we can show A w 0 mod (qp - a3 + al)’ l by induction
on I (I  I  e). So we omit the detail.

REMARK 3.3. The commutative diagrams (24) and (25) are also obtained by
the same argument as in Remark 3.2. In fact we can determine all homogeneous
K-algebra morphisms W such that the following diagram is commutative:

Here the polynomial ring K [q , p ] is regarded as the graded ring K[q, p] =
and the Laurent polynomial ring K[T, 7~] ] as the usual graded ring

K[T, T-1] _ Td.

Step 3. We return to the proof of the proposition. Consider the equation

Because of (11), it follows from Lemmas 3.2-3.4 that the three elements of K

and
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are non-negative integers. From these we have

and

Using Lemmas 3.2-3.4 again, we see that there exists a non-zero element c E
Ro = K [q ] such that

Substituting (29) into ( 12)m , we have X 1 c = 0, and therefore c E K. By (11)
we also see

Step 4. We first show that the integer n in (13) is a non-negative integer.
In fact, otherwise, the polynomial F = Fn + - - - 7~ is

divisible by the monomial p-n. Namely there exists a polynomial F’ such that
p f F’ and F = F’ p-n . Substituting F = F’ p-n into the equality (8), we have

Since p t F’, it follows that the polynomial X(a)p is divisible by p, and so
(a2 - a3 ) (a 1 - a3) = 0. This contradicts the hypothesis (4), and therefore we
have n &#x3E; 0.

Consider the equation

Because of (11), it follows from Lemmas 3.5 and 3.6 that the elements

and

are non-negative integers. From these we have
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and

Using Lemmas 3.5 and 3.6 again, we see that there exists a non-zero element
c’ E Ro = K[qp] such that

Substituting (33) into ( 15)n, we have = 0. Since c’ is a polynomial in qp
over K and 0, we have c’ e K.

Step 5. By the same argument as in [10], Subsection 2.5, we find the
generic figure of the Newton polygon of the polynomial F: .

Here an integral point (u, v) in R2 represents a monomial yqv pu (y E K).
In the figure the Cartesian coordinates of the vertices O, A, B, C, D are
(0, 0), (0, n), (a + b, a + b + n) = (m, i -f- j + k), (m, i), (m - i, 0), respectively.
The coefficient of each monomial out of the pentagon OABCD is equal to
zero. The side A B represents the polynomial The side B C represents the

polynomial Fm. It is also easy to see that the side C D represents the polynomial
(c" E K). Since the monomials cqi+j+kpm in Fm and

CiR,a+b+n pa+b in Fn represent the same vertex B, we have the equalities

Similarly we have the equality at the vertex C:
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In particular we see that the two expressions of ),, (26) and (31), are equal
to each other via (34) and (35). A polynomial c-’F is X(a)-invariant and
generates the ideal I = (F) introduced at the beginning of Step 1. And so we

may assume c = 1. It follows from (29), (33) and (36) that

and

From (30), (34), and (35), we have

This is the desired relation (5).

Step 6. Consider the equation

Substituting (38) into (12),,,-,, we have

where À, p, v and p are given by (26), (27), (28), (31) and (32). We assume
m &#x3E; 1 in this step, and treat the remaining case m = 0 in Step 7. Since X1 1 is
a derivation, we have
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Eliminating I from (41) and (42), we have

Applying Lemmas 3.2-3.4 to the homogeneous polynomial A = q(q - 1)(q -
we see that there exists an element B E Ro = K[q] such that

Substituting (44) into (43) and dividing the resulting equation by 
we have an equation for B:

Here we set L(B) = [3q2 - 2(1 + t)q + t]B = 2q(q - 1)(q -
[3q2 - 2(1 + t)q + t]B. The operator L defines a K-linear endo-

morphism of the K-linear space Ro. We have the following formulae:

Moreover, if A is a polynomial in Ro of degree d &#x3E; 3, then L (A) is a polynomial
in Ro of degree d + 2. Let Vo be the three-dimensional K-linear subspace of
Ro generated by the three monomials 1, q, q2, i.e., the K-linear subspace of
Ro consisting of all the polynomials in q of degree at most two. Let V, be the
three-dimensional K-linear subspace of Ro generated by the three polynomials
-3~+2(1+~-~, -q3 + tq~ ~-2(1+~+3~. By (46), (47) and (48),
we see that the restriction of L to Vo induces a K-linear isomorphism of Vo
onto Vl. Thus, if there exists a solution B of the equation (45), then B must
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be a polynomial in q of degree at most two and the right hand side of (45)
must belong to the K -linear space Vi . If we set

then we have

(50) L(B) = zq4 - {2(1 + t)z + y{q3 + 3(tz - + {ty + 2(1 + tx.

Substituting (50) into (45), we have the following:

Comparing the coefficients of powers of q in both sides of (51), we have the
following system of equations (52)-(56) for x, y, z, p, a :
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From them, we have

Then the two expressions of p, (32) and (60), must coincide with each other:

By substituting (34) and (35) into this equality, we have

Thus we have the desired condition (6). Finally, we determine the form of
Substituting (57), (58) and (59) into (49), we have

From (44) and (62), we have

Step 7. Here we consider the case m = 0. From (35), (34) and (32), we
have a = Thus the

equality (41) is turned to
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Then we have

and

The relation (64) with a = b = 0 is a special case of the relation (6), and (65)
is a special case of (61). Thus Proposition 3.1 is completely proved.

COROLLARY 3. 7. Let the notation be as in Sections 1-2. The vector a in Propo-
sition 3.1 does not belong to the set (F U sl (I-’)) - M.

PROOF. It is sufficient to prove that, for arbitrary non-negative integers
a, b, i, j and k such that a + b + i + j + k &#x3E; 1, the complex hyperplane

does not intersect Assume the contrary. Then there exist non-

negative integers a, b, i, j, k and a vector a = a2, a3, a4) E (F M

such that a -~- b -~- i ~- j -~- k &#x3E; 1 and the relation (66) holds. Since the relation
(66) has a symmetry with respect to the transformation s, (Section 1), we may
assume that a E h - M. The relation (66) is equivalent to the following two
relations:

and

The rest of the proof is an analogy of the proof of [12], Corollary 2.6. So we
omit the detail.

4. - Determination of invariant ideals

Corollary 3.7 leads us to determine all the non-trivial X (a)-invariant prin-
cipal ideals of K [q, p] for a This includes the consideration for the
Cases 1 and 2 at the beginning of Section 3. We first prove:



410

PROPOSITION 4.1. (i) Let a 1 be a vector in r n {a E C4 I 
not in P (Section 2). For every positive integer i, a principal ideal (q i ) is X (a,) -
invariant. Conversely, if I is an X (a1) -invariant principal ideal properly between
the zero-ideal and K [q, p], then there exists a positive integer i such that I = 

(ii) Let a2 be a vector in r f1 {a E C4 I a3 - a4 = 01 and not in P. For every

positive integer j, a principal ideal ((q - I)j) is X (a2) -invariant. Conversely, if I
is an X (a2)-invariant principal ideal properly between the zero-ideal and K [q, p],
then there exists a positive integer j such that I = ((q - I)j).

(iii) Let a3 be a vector in r f1 {a E C4 I a, + a2 = 1 } and not in P. For every
positive integer k, a principal ideal ((q - t)k) is X (a3)-invariant. Conversely, if I
is an X (a3)-invariant principal ideal properly between the zero-ideal and X [q, p],
then there exists a positive integer k such that I = ((q - t)k).

PROOF. Since the three assertions are proved in the same way, we prove
only the assertion (i) and omit the proofs of the others. The first half of (i)
is obvious. We show the second half. To this end, the notation being as in
Proposition 3.1, it is sufficient to prove that the X(aj)-invariant polynomial
F is equal to qi i with some positive integer i. We set a, 1 = (a 1, a2, a3, a4).
By hypothesis the vector a 1 satisfies the condition (4) in Section 3. Since

a3 + a4 = 0, it follows from (6) in Proposition 3.1 that

which is equivalent to the following pair of equalities:

Since al 1 E h f1 {a E C~ ! a3 -f- a4 = 0} and P, we have a = b = j = k = 0
by the same argument as in the proof of Corollary 3.7. Thus we have i &#x3E; 1
from (5) in Section 3, and m = 0 from (35) in Section 3. Therefore it follows
from (10) and (38) in Section 3 that F = Fo = qi.

REMARK 4.1. For a Ern {a E C4 I a 1 - a2 = 0} and a 1 P, there
exists no non-trivial X (a)-invariant principal ideal. However, taking X (a) for the
Hamiltonian vector field of the sixth Painleve equation defined on V3 (Section 2),
we find a X(3)-invariant principal ideal with a positive integer N of
K[Q3, P3]. This implies that the system has a unique one-parameter
family of classical solutions defined by q = qo = 00.

PROPOSITION 4.2. (i) Let a4 be a vector in r n {a E «:4 a3 - a4 = 1 -

al - a2 = 0} and not in L (Section 2). For arbitrary non-negative integers j
and k such that j -~ k &#x3E; 1. a principal ideal ( (q - 1 ) ~ (q - X (a4 ) -invariant.
Conversely, if I is an X (a4)-invariant principal ideal properly between the ,zero-ideal
and K [q, p], then there exist non-negative integers j and k such that j + k &#x3E; 1 and

/=((~-1)~(~-~).
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(ii) Let as be a vector in r f1 {a E (~4 ~ a3 --~ a4 = 1 - a, - a2 = 01 and not in L.
For arbitrary non-negative integers i and k such that i + k ? 1, a principal ideal
(qi (q - t)k) is X (as)-invariant. Conversely, if I is an X (a5)-invariant principal
ideal properly between the zero-ideal and K[q, p], then there exist non-negative
integers i and k such that i + k &#x3E; 1 and I = (q~ (q - t)k).

(iii) Let a6 be a vector in r f1 {a E C4 I a3 + a4 = a3 - a4 = 01 and not in L.
For arbitrary non-negative integers i and j such that i + j &#x3E; 1, a principal ideal
(q‘ (q - 1)’) is X (a6)-invariant. Conversely, if I is an X (a6)-invariant principal
ideal properly between the zero-ideal and p], then there exist non-negative
integers i and j such that i + j &#x3E; 1 and I = (ql (q - I)j).

PROOF. Since the three assertions are proved in the same way, we prove
only the assertion (i) and omit the proofs of the others. The first half of (i)
is obvious. We show the second half. To this end, the notation being as in
Proposition 3.1, it is sufficient to prove that the X (a4)-invariant polynomial F
is equal to (q - (q - t)k with some non-negative integers j and k such that
j + k &#x3E; 1. We set a4 = (a,, a2, a3, a4). By hypothesis the vector a4 satisfies
the condition (4) in Section 3. Since a3 - a4 = 1 - aI - a2 = 0, it follows from

(6) in Proposition 3.1 that

which is equivalent to the following pair of equalities:

Since a4 E h n fa E (C4 ~ I a3 - a4 = 1 - a, - a2 = 01 and a4 g L, we
have a = b = i = 0 by the same argument as in the proof of Corollary
3.7. Thus we have j + k &#x3E; 1 from (5) in Section 3, and m = 0 from

(35) in Section 3. Therefore it follows from (10) and (38) in Section 3 that
F=F0=(q-1)j(q-t)k

REMARK 4.2. For a E h n {a E C4 a 1 - a2 = 1 - a 1 - a2 = 0}, we find a
X (a) -invariant principal ideal (Qf (Q3 - some non-negative integers
M and N such that M + N &#x3E; 1 of K[Q3, P3]. By the same argument we can
find all the invariant ideals on Uo or VI or V3 or V4 for a Ern P, but a g L.

PROPOSITION 4.3. Let a7 be a vector in r n {a E (C4 ~ I a3 -~ a4 = a3 - a4 =
1 - a I - a2 = 01 and not in D (Section 2). For arbitrary non-negative integers i, j
and k such that i + j + k &#x3E; 1, a principal ideal (qi (q - 1)&#x3E; (q - t)k) is X (a7)-
invariant. Conversely, if I is an X (a7) -invariant principal ideal properly between
the zero-ideal and X [q, p], then there exist non-negative integers i, j and k such
that i --~ j + k &#x3E; 1 and I = (qi (q - 1)j (q - t)k).
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PROOF. The first half is obvious. We show the second half. To this end,
the notation being as in Proposition 3.1, it is sufficient to prove that the X(a7)-
invariant polynomial F is equal to with some non-negative
integers i, j and k such that i + j + k &#x3E; 1. We set a7 = (a 1, a2 , a3 , a4 ) .
By hypothesis the vector a7 satisfies the condition (4) in Section 3. Since

a3 + a4 = a3 - a4 = 1 - al - a2 = 0, it follows from (6) in Proposition 3.1 that

which is equivalent to the following pair of equalities:

Since a7 [a E (C4 ~ and a7 fj. D, we
have a = b = 0 by the same argument as in the proof of Corollary 3.7. Thus
we have m = 0 from (35) in Section 3. Therefore it follows from (10) and
(38) in Section 3 that F = Fo = with (5) in Section 3.

REMARK 4.3. By the same argument as in Remark 4.2, we can determine
all the invariant ideals on Uo or V, or V3 or V4 for a E h n L I but a g D.

The rest of this section concerns the consideration of the remaining Cases
1 and 2 at the beginning of Section 3. We first prove:

PROPOSITION 4.4. Let a8 be a vector in r n {a E C4 I a2 - a3 - 0} and
not in P. For every positive integer m, a principal ideal ( pm ) is X (ag)-invariant.
Conversely, if I is an X (ag )-invariant principal ideal properly between the zero-ideal
and K [q, p], then there exists a positive integer m such that I = (pm).

PROOF. The first half is obvious. We show the second half. To this end,
the notation being as in Proposition 3.1, it is sufficient to prove that the X(a8)-
invariant polynomial F is equal to pm with some positive integer m. We set
a8 = (a,, a2, a3, a4). Although a2 = a3, we can use the results obtained in
Steps 3 and 6 of the proof of Proposition 3.1 without assuming (31) and (32)
in Section 3. From Step 3, we have

with

(Since c E K in (29) in Section 3, we may assume c = 1.) Here we claim

that m &#x3E; 1. Otherwise, we have m = 0 and i -f- j + k &#x3E; 1 from (2). Since

Fm-i = F_ = 0, the equation (41) in Section 3 with a2 = a3 is turned to
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from which it follows immediately that

Since a8 V P, we have (a3 + a4)(a3 - a4) ( 1 - al - a2) =,4 0. Thus we have
i = j = k = 0, which contradicts 1.

We determine the form of the polynomial Fn (n E Z) in (13) in Section 3.
We need the following:

SUBLEMMA 1. Let e be a positive integer, and A be a polynomial in Ro, and
let ~,’ be an element of K. Let X 1 I be the derivation introduced in the proof of
Proposition 3.1, and assume that a2 - a3 = 0 and a I - a3 =,A 0. If )" + I - 1 =,A 0
for every integer I such that 1  I  e and if A satisfies a congruence

then A n 0 mod (qp - a3 + 

PROOF OF SUBLEMMA 1. We denote by K[T, the Laurent polynomial
ring in one variable T over K. By hypothesis, the derivation X~ is given by

Let 1.fr be the K-algebra morphism of K[q, p] ] onto defined by
1.fr(q) = (a3 - and ~(p) = (a3 - Then the following diagram
is commutative:

The kernel of the morphism 1/1 is a principal ideal generated by q p + a 1 - a3.
Since _ - (q p ~- a 1 - a3 ) q 2 p, it is X[-invariant. By the same
argument as in the proof of Lemma 3.2, we can show A - 0 mod (qp+aI -a3)1
by induction on I (1 ~ I ~ e). So we omit the rest of the proof.

Now we consider the equation (15)~ in Section 3

We set

with non-negative integers u and v and A E R’ 0 such that A. Then we

have



414

Substituting (5) into (4) and dividing the resulting equation by we have

Since and we have

and the equation (7) is turned to

Here we claim that b = 2013(~ 2013 2u + 3v) is a non-negative integer. In fact,
otherwise, we would have (~ 2013 2u + 3 v ) + l - 1 ~ 0 for every integer I &#x3E; 1. It

would follow from Sublemma 1 that A == 0 mod for every integer
e &#x3E; 1 and therefore Fn = 0. This contradicts (14) in Section 3. Therefore b is
a non-negative integer. Thus we have

If b &#x3E; 1, we have (~ 2013 2u + 3 v ) + l - 1 ~ 0 for every integer I such that
1  I  b. It follows from Sublemma 1 that A --- 0 mod (q p + a 1 - a3)b.
Therefore there exists a non-zero element c E Ro such that

Substituting (11) into (9), we have = 0, and therefore c E K. From (11)
and (5), we have

Since the Newton polygon of F is given in Step 4 in the proof of Proposotion
3.1, by comparing (1) and (12), we have

Here, the two expressions of À, (26) in Section 3 and (10), are equal to each
other via (14) and (15). On the other hand, we have two expressions of p.
Namely, from (60) in Section 3, using a2 - a3 = 0, we have
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Equating (8) and (16), and eliminating u and v by (14) and (15), we have

Since {a E C~ a2 - a3 = 0} and a8 g P, by the same argument as in
the proof of Corollary 3.7, we have i = j = k = b = 0, and therefore u = 0
and m = v = -n from (6), (14) and (15). Consequently it follows from (1),
(8), (10), (12) that

Moreover, from (27), (28), (61), (63) in Section 3, we have

Since X-1 = 0, and since ( 12)d in Section 3 is turned to

the proposition follows immediately from

SUBLEMMA 2. Let d be an integer such that 0  d  m, and A be a polynomial
in Rd. If A satisfies an equation

with (19), (21) and (22), then A = 0.

In fact, since v + (d - 21 + 2) t = (-m -E- d - 21 + 2) t ~ 0 for every I &#x3E; 1,
it follows from Lemma 3.2 that A --_ 0 mod qe for every integer e &#x3E; 1. Thus

we have A = 0. Proposition 4.4 is proved.

REMARK 4.4. In order to prove Sublemma 2, we may use Lemmas 3.3 or
3.4 instead of Lemma 3.2.
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PROPOSITION 4. 5. (i) Let ag be a vector in F n {a E C4 a2 - a3 = a3 ~- a4 = 0}
and not in L. For arbitrary non-negative integers i and m such that i + m &#x3E; 1, a
principal ideal (ql pm) is X (a9)-invariant. Conversely, if I is an X (a9)-invariant
principal ideal properly between the zero-ideal and K[q, p], then there exist non-
negative integers i and m such that i + m &#x3E; 1 and I = (qi 

(ii) Let alo be a vector in r n {a E C4 I a2 - a3 = a3 - a4 = 01 and not in L.
For arbitrary non-negative integers j and m such that j + m &#x3E; 1, a principal ideal
((q - is X (a 10) -invariant. Conversely, if I is an X (a 10) -invariant principal
ideal properly between the zero-ideal and K[q, p], then there exist non-negative
integers j and m such that j + m &#x3E; 1 and I = ((q - I)i pm).

(iii) Let all be a vector in r n {a E C4 a2 - a3 = 1 - ai - a2 = 01 and not in L.
For arbitrary non-negative integers k and m such that k + m &#x3E; 1, a principal ideal
((q - t)k pm) is X (a, 1) -invariant. Conversely, if I is an X (a1I)-invariant principal
ideal properly between the zero-ideal and K[q, p], then there exist non-negative
integers k and m such that k + m &#x3E; 1 and I = ((q - t)k pm).

PROOF. Since the three assertions are proved in the same way, we prove
only the assertion (i) and omit the proofs of the others. The first half of (i)
is obvious. We show the second half. To this end, the notation being as in
Proposition 3.1, it is sufficient to prove that the X (ag)-invariant polynomial F is
equal to qi pm with some non-negative integers i and m such that i + m &#x3E; 1. We

set ag = (a,, a2, a3, a4). By the same reason as in the proof of Proposition 4.4,
we have ( 1 ) and (2). Let us show i + m &#x3E; 1. Otherwise, we have i = m = 0

and j + k &#x3E; 1 from (2). Since F m-1 1 - F_ } = 0, the equation (41 ) in Section 3
with a2 - a3 = a3 + a4 = 0 is turned to

from which it follows immediately that

Since a9 g L, we have (a3 - a4) ( 1 - al - a2) # 0. Thus we have j = k = 0,
which is a contradiction.

Since a2 - a3 = 0 and al - a3 # 0, we can develop an argument similar
to that in the proof of Proposition 4.4. Therefore we may use (6), (8), (10),
(12)-(15). Moreover we have two expressions of p. Namely, from (60) in

Section 3, using a2 - a3 = a3 + a4 = 0, we have
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Equating (8) and (25), and eliminating u and v by (14) and (15), we have

Since a9 E h f1 [a E C~ I a2 - a3 - a3 -f- a4 - 0} by the same
argument as in the proof of Corollary 3.7, we have j = k = b = 0, and
therefore u = i, v = m and n = i - m from (6), (14) and (15). Consequently,
it follows from (1), (8), (10), (12) that

Moreover, from (27), (28), (61), (63) in Section 3, we have

Thus the proposition follows immediately from

SUBLEMMA. Let d be an integer such that 0  d  m, and let A be a polynomial
in Rd. If A satisfies an equation

with (28), (30) and (31 ), then A = 0.

In fact, since ~, + ~u -~ v -f- (d - 2l -~ 2) ( 1 - t) = (m - d -f- 2l - 2) (t - 1 ) ~ 0
for every I &#x3E; 1, it follows from Lemma 3.3 that A - 0 mod (q -1 ) e for every
e &#x3E; 1. Thus we have A = 0. Proposition 4.5 is proved.

REMARK 4.5. By the same argument as in Remark 4.1, for a la E
C~ a2 - a3 = a1 - a2 = 0} but 3 g L, we find an X (a)-invariant principal ideal
(Qf P3N) with M ~- N &#x3E; 1 of K[Q3, P3].

REMARK 4.6. In order to prove Sublemma, we may use Lemma 3.4 instead
of Lemma 3.3. However, we cannot use Lemma 3.2.
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PROPOSITION 4. 6. (i) Let a 12 be a vector in r n fa E C4 a2 - a3 = a3 - a4 =
1 - a, - a2 = 01 and not in D. For arbitrary non-negative integers j, k and
m such that j + k + m &#x3E; 1, a principal ideal ((q - is X (a 12 )-
invariant. Conversely, if I is an X (a 12) -invariant principal ideal properly between
the zero-ideal and K[q, p], then there exist non-negative integers j, k and m such
that j + k + m &#x3E; 1 and I = ((q - t)k pm).
(ii) Let a 13 be a vector in r n {a E ~4 ~ a2 - a3 =a3+a4 = 1 - a 1 - a2 = 0} and
not in D. For arbitrary non-negative integers i, k and m such that i + k + m &#x3E; 1,
a principal ideal (q i (q - t ) k pm) is X (a 13) -invariant. Conversely, if I is an X (a 13 ) -
invariant principal ideal properly between the zero-ideal and K [q, p], then there
existnon-negative integers i, k and m such that i -I-k-E-m &#x3E; 1 and I = (qi(q_t)kpm).
(iii) Let a 14 be a vector in r n {a E (C4 ~ a2 - a3 = a3 + a4 = a3 - a4 = 01 and not in
D. For arbitrary non-negative integers i, j and m such that i + j +m &#x3E; 1, a principal
ideal (qi (q - is X (a14)-invariant. Conversely, if I is an X (al4) -invariant
principal ideal properly between the zero-ideal and K[q, p], then there exist non-
negative integers i, j and m such that i + j + m &#x3E; 1 and I = (qi (q - l)j pm).

PROOF. Since the three assertions are proved in the same way, we prove
only the assertion (iii), and omit the proofs of the others. The first half of (iii)
is obvious. We show the second half. To this end, the notation being as in
Proposition 3.1, it is sufficient to prove that the X (a14)-invariant polynomial F
is equal to qi(q - with some non-negative integers i, j and m such that
i + j + m &#x3E; 1. We set a 14 = (a 1, a2, a3, a4). By the same reason as in the proof
of Proposition 4.4, we have ( 1 ) and (2). Let us show i + j + m &#x3E; 1. Otherwise,
we have i = j = m = 0 and k &#x3E; 1 from (2). Since Fm-l 1 = F_ 1 = 0, the
equation (41) in Section 3 with a2 - a3 = a3 + a4 = a3 - a4 = 0 is turned to

from which it follows immediately that

Since D, we have 1 - a2 # 0, and therefore k = 0. This is a

contradiction.

Since a2 - a3 - 0 and a3 # 0, we can develop an argument similar
to that in the proof of Proposition 4.4. Therefore we may use (6), (8), (10),
(12)-(15). Moreover we have two expressions of p. Namely, from (60) in
Section 3, using a2 - a3 = a3 + a4 = a3 - a4 = 0, we have

Equating (8) and (34), and eliminating u and v by (14) and (15), we have
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Since ~ r D [a E C~ a2 - a3 = a3 + a4 = a3 - a4 = 0} and a14 g D,
by the same argument as in the proof of Corollary 3.7, we have k = b = 0,
and therefore u = i + j, v = m and n = i + j - m from (6), (14) and (15).
Consequently, it follows from (1), (8), (10), (12) that

Moreover, from (27), (28), (61), (63) in Section 3, we have

Thus the proposition follows immediately from

SUBLEMMA. Let d be an integer such that 0  d  m, and let A be a polynomial
in Rd. If A satisfies an equation

with (37), (39) and (40), then A = 0.

In fact, since ~,t2-f-~,ct-~-v+(d-2l-f-2)t(t-1) _ (-m-~-d-2l-f-2)(t2-t) ~ 0
for every I &#x3E; 1, it follows from Lemma 3.4 that A n 0 mod (q - t)e for every
e &#x3E; 1. Thus we have A = 0. Proposition 4.6 is proved.

REMARK 4.7. We can determine all the invariant ideals on Uo or VI or V3
or V4 for a Er n L 2 but a V D. See Remarks 4.2 and 4.3.

REMARK 4.8. We can use neither Lemma 3.2 nor Lemma 3.3 instead of
Lemma 3.4 to prove Sublemma.

PROPOSITION 4.7. For arbitrary non-negative integers i, j, k and m such that
i + j + k + m &#x3E; 1, a principal ideal (q’(q - 1) i (q -t)k pm) is X (1, 0, 0, 0)-invariant.
Conversely, if I is an X (1, 0, 0, 0) -invariant principal ideal properly between the
zero-ideal and K [q, p], then there exist non-negative integers i, j, k and m such that
i + i + k + m &#x3E; I and I 
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PROOF. The first half is obvious. We show the second half. To this end, the
notation being as in Proposition 3.1, it is sufficient to prove that the X ( 1, 0, 0, 0)-
invariant polynomial F is equal to with some non-negative
integers i, j, k and m such that i -f- j ~- k + m &#x3E; 1. By the same reason as in the
proof of Proposition 4.4, we have (1) and (2). Substituting (~1,~2.~3~4) =
( 1, 0, 0, 0) into (60), (61), (63) in Section 3, we have

On the other hand, since a2 - a3 = 0 and a 1 - a3 - 1 ~ 0, we can develop
an argument similar to that in the proof of Proposition 4.4. Therefore we may
use (6), (8), (10), (12)-(15). Equating (8) and (43), and eliminating u and v
by (14) and (15), we have b = 0, and therefore

from (12) and (13), where

Let h be an integer such that 0  h  j + k. We first show

We have already proved the case h = 0 by (46). Assume that h &#x3E; 1, and that
and Fn_h+1 1 are given by (48)h_2 and (48)h-1. The polynomial Fn_h

satisfies the equation (15)n-h in Section 3:

Here ~., it and v are given by (26), (27), (28) in Section 3, and p and cr are

given by (43) and (44). Moreover X1, Xo and X’ 1 are given by
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Thus the equation (49) is turned to

We set

Eliminating Fn_h from this expression and (50), we have an equation for 

Here we claim that En-h = 0 (1  h  j + k). In fact, otherwise, there exist
non-negative integers x and y, and a polynomial A E Ro such that

Substituting (52) into (51) and dividing the resulting equation by qx py, we have

Since and qp t A, we have

From (43), (47), (54) and (56), we have

On the other hand, by (56), the equation (55) is turned to

Since (~ - 2;c + 3y) + / - 1 &#x3E; 1 ~ 0 for every I &#x3E; 1 by (26) in
Section 3, (57) and (58), it follows from Sublemma 1 of Proposition 4.4 that
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A - 0 mod (qp +1)~ for every integer e &#x3E; 1, that is, A = 0. This contradicts
(53), and therefore we have En-h = 0. Thus (48)h holds for every integer h
such that 

Next we show

for every integer h &#x3E; 1. We proceed again by induction on h. The polynomial
1 satisfies the equation (15)i-,,,-, in Section 3:

Here Fi’_m and I are given by

and

by (48)h. Substituting (61) and (62) into (60), we have

By the same argument as in the preceding paragraph, we have F(-m-1 = 0, i.e.,
(59) 1. The polynomial satisfies the equation (15)i-m-2 in Section 3:

Substituting (59) i and (61) into (63), we have

Thus we have = 0 again. By the same argument we have (59)h for every
integer h &#x3E; 1. From (48)h and (59)h, we have F = F,, + + ... + F!-m =

(q - t)k pm . Proposition 4.7 is thus proved.
REMARK 4.9. We can determine all the invariant ideals on Uo or VI or V3

or V4 for a = (o, 0, 0, 0) or ( 2 , 2 , 2 , - 2 ) or (1 1 1 1). See Remarks 4.2 and
4.3.

PROPOSITION 4.8. For arbitrary non-negative integers i, j and k such that
i + j + k &#x3E; 1, a principal ideal (qi (q - t)k) is X(l, 1, 0, 0)-invariant.
Conversely, if I is an X ( 2 , 2 , 0, 0)-invariant principal ideal properly between the
zero-ideal and K[q, p], then there exist non-negative integers i, j and k such that
i -t- j + k &#x3E; 1 and I = (qj (q - t)k).
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PROOF. The first half is obvious. For the second half, the notation being
as in Proposition 3. l, it is sufficient to prove that the X(4, 4,0, 0)-invariant
polynomial F is equal to with some non-negative integers
i, j and k such that i + j + k &#x3E; 1. We set ( 2 , 2 , 0, 0) - a2 , a3 , a4 ) .
Although a 1 = a2, we can use the results obtained in Steps 3 and 6 of the
proof of Proposition 3.1 without assuming (31) and (32) in Section 3. From

Step 3 we have

with

From (60) in Section 3, we have

On the other hand, the polynomial Fn satisfies the equation ( 15)n in Section 3:

Here k is given by (26) in Section 3, and the derivation X’ by

Note that

Since (a2 - a3) (al - a3) = ~ 7~ 0, the integer n is non-negative. Therefore we
may set

with a non-negative integer a and a polynomial A E Ro such that qp + 4 f A.
Substituting (69) into (67) and dividing the resulting equation by (q p + 4)aqn,
we have 

- -

Since (qp + !)2IA by (67), it follows immediately that
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and

From (70) and (71), we have

Substituting (26) in Section 3 and (66) into (73), we have m = 0. It follows
from (64) and (65) that F = Fo = 1.

Considering the Newton polygon of F, we have a = 0 and therefore Fn = qn
with n = i + j + k. Proposition 4.8 is proved.

REMARK 4.10. There exists a one-parameter family of classical solutions
at (~,~,0,0) defined by q = oo. In fact, take the derivation X(!,!, 0, 0)
introduced in Remark 4.1. By the same argument, we see that the X ( 2 , 2 , 0, 0)-
invariant principal ideals of P3] are of the form ( Q 3 ( Q 3 -1 ) M ( Q 3 - t ) N ) .

REMARK 4.11. From Proposition 4.8, it follows that the solution of E.
Picard (e.g. [4], Example 3.1 ) is not classical in the sense of Umemura.
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