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SUMMARY

Let X be the moduli space of complete (n � 1)-quadrics. In this thesis, we study the

birational geometry of X using tools from the minimal model program (MMP). In Chapter 1,

we recall the definition of the space X and summarize our main results in Theorems A, B and

C.

In Chapter 2, we examine the codimension-one cycles of the space X, and exhibit generators

for E↵(X) and Nef(X) (Theorem A), the cone of e↵ective divisors and the cone of nef divisors,

respectively. This result, in particular, allows us to conclude the space X is a Mori dream space.

In Chapter 3, we study the following question: when does a model of X, defined as X(D) :=

Proj(
L

m�0H
0(X,mD)), have a moduli interpretation? We describe such an interpretation for

the models X(Hk) (Theorem B), where Hk is any generator of the nef cone Nef(X). In the

case of complete quadric surfaces there are 11 birational models X(D) (Theorem B), where D

is a divisor in the movable cone Mov(X), and among which we find a moduli interpretation for

seven of them.

Chapter 4 outlines the relation of this work with that of Semple (1), (2) as well as future

directions of research.
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CHAPTER 1

INTRODUCTION

This thesis studies the birational geometry of the space of complete quadrics.

The moduli spaces of complete quadrics are compactifications of the space of smooth quadric

hypersurfaces in Pn. These spaces were introduced by Schubert (3) and studied by many

prominent mathematicians of the 19th century such as Schubert, Chasles and Hirst. Complete

quadrics were instrumental in the development of enumerative geometry and intersection theory

carried out by Kleiman, Laksov and others (4). Moreover, these spaces are important examples

of “wonderful varieties” which are special compactifications of symmetric varieties defined and

studied in representation-theoretic terms (5). This dissertation aims to exploit all these di↵erent

perspectives of these classical spaces and draw conclusions that relate their moduli theory and

their birational geometry.

To study the birational geometry of the space of complete quadrics we will use the Minimal

Model Program (MMP). Specifically, we want to understand the birational geometry of the

space of complete (n� 1)-quadrics X by examining all the morphisms (possibly rational) from

X to another projective algebraic variety. We will do so, following the fundamental work

of Mori, by examining the geometry of certain convex cones called the cone of numerically

e↵ective divisors, nef cone Nef(X) (see 1.1 (6)), and the cone of e↵ective divisors, E↵(X), (see

1.1 (6)) both contained in the Neron-Severi group N1(X), which is the space of divisors up to

1



2

numerical equivalence. Our first result, Theorem A, describes the geometry of these two such

cones. Before stating such a theorem, let us introduce precisely the objects we will study.

We recall the definition of the main object of study of this dissertation. We work over the

field of complex numbers throughout. Let Q ⇢ Pn = P(V ) be a smooth quadric hypersurface.

It defines a symmetric linear map Q : V ! V ⇤, which induces a symmetric linear map ⇤kQ :

⇤kV ! ⇤kV ⇤ for any 1  k  n. Hence, ⇤kQ can be thought of as a quadric, i.e., an element

in S2(⇤kV ). If Q is smooth, then the association Q 7! ⇤kQ is injective up to multiplication by

scalars. Consequently, we get an embedding of X�, the family of smooth quadric hypersurfaces

in P(V ), into the space W = P(S2(V ))⇥ P(S2(⇤2V ))⇥ . . .⇥ P(S2(⇤nV )) via the map

⇢ : Q 7! (Q,⇤2Q, . . . ,⇤nQ) .

Definition 1.1. Let the space of complete (n� 1)-quadrics X be the closure ⇢(X�) ⇢ W .

Let us introduce the generators of the nef cone Nef(X), whose first mention can already be

found in Schubert (3).

Definition 1.2. Let X denote the space of complete (n�1)-quadrics. Let Hi ⇢ X be the closure

in X of the subvariety parametrizing smooth quadric hypersurfaces in Pn which are tangent to

a fixed linear subspace of dimension i� 1.

Let us now introduce the generators of the e↵ective cone E↵(X). The Lie group SLn+1C

acts on X with the following properties: there is an open dense SLn+1C-orbit in X which is

isomorphic to X� := SLn+1/N , where N is the subgroup fixed by the involution �(A) =tA�1.
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Outside such an open dense subset, X\X� is the union
Sl

iEi of smooth boundary divisors Ei

with transversal intersection, where l denotes the dimension of the maximal anisotropic torus

of SLn+1/N .

Theorem A. Let X be the space of complete (n�1)-quadrics. The cone of e↵ective divisors

on X is generated by boundary divisors E↵(X) = hE1, . . . , Eni. Furthermore, the nef cone is

generated by Nef(X) = hH1, . . . , Hni.

This description of the nef cone Nef(X) allows us to conclude that the space X is a Fano

variety. As a consequence of being a Fano variety, following (7), the space X is a Mori dream

space. The notion of Mori dream space was introduced by Keel and Hu in (8) and it gives

name to those Q-factorial algebraic varieties for which N1(X) ⌦ Q = Pic(X) ⌦ Q and whose

Cox ring is finitely generated. One of the main properties of a Mori dream space is that the

cone of e↵ective divisors E↵(X) and the cone of nef divisors Nef(X) are rational polyhedral.

Furthermore, the cone of e↵ective divisors can be decomposed into a finite number of the so-

called Mori chambers which are rational polyhedral convex subcones. The relevance of these

chambers is explained next.

Suppose our goal is to understand all the morphisms from a Q-factorial variety X to another

projective variety Y , then in order to avoid redundancies we observe that for each line bundle

L 2 Pic(X)⌦Q over X, the linear system induces a rational map �m : X 99K P(H0(X,L⌦m))

which for su�ciently large and divisible m gives rise to the “Iitaka fibration” (see 2.1 in (6)).

Two line bundles L1 and L2 are called Mori equivalent if they give rise to equivalent Iitaka
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fibrations �L
1

and �L
2

. In a Mori dream space X we have that N1(X)⌦Q = Pic(X)⌦Q, and

the Mori chambers are the closures of the equivalence classes of Mori equivalent line bundles.

As a consequence of the discussion above, the moduli space X will have finitely many

equivalence classes of maps �D : X 99K Y , where D 2 E↵(X). The closure of the image of a

map �D will be called a model of X. More precisely,

Definition 1.1. Let X be a smooth projective variety and let D be a Cartier divisor on X.

Assume that the algebra R(X,D) :=
L

m�0H
0(X,mD) is finitely generated. We define the

model of X induced by D,

X(D) := Proj R(X,D) .

Those divisors D for which the map �D is an isomorphism in codimension one are called

small modifications of X and are of special importance: they give rise to divisorial contractions

and flips of X (definition 3.4). Such divisors are called movable and they form the so-called

movable cone Mov(X), to be defined in 3.2.

In sum, the fact that X is a Mori dream space means we can run the MMP on X and

expect finitely many Mori equivalent models X(D) as the divisor D varies in E↵(X). However,

Mori chambers, which control such models X(D), are very di�cult to compute. So, in order

to describe the Mori chamber decomposition we use the fact that the Mori chambers can be

identified by looking at the stable base locus of the respective divisors. This relation among

Mori chambers and the stable base locus decomposition has been studied in (9; 10). Let X be

the moduli space of complete quadric surfaces. In Proposition 3.3 we determine the stable base
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locus decomposition of the cone of e↵ective divisors E↵(X). Once we have such a decomposition

it is natural to ask, can we explicitly describe the small modifications of X? Are such small

modifications compactifications of the family of smooth quadric hypersurfaces? Are the small

modifications of X derived from classical constructions? We provide a constructive answer.

Theorem B. The cone of e↵ective divisors of the space of complete quadric surfaces has eight

Mori chambers. Furthermore, we find a moduli interpretation for many of the birational models

induced by divisors in the movable cone Mov(X).

This result contains one of the main goals of this dissertation: Theorem B makes a con-

nection between the birational geometry of the space X and its moduli theory. Remarkably,

models obtained by running the MMP on a moduli space often have themselves a moduli in-

terpretation. A priori, there is no reason for this to be the case. However, Hassett and Keel

first exhibited this phenomenon in the context of the Deligne-Mumford compactification of the

moduli space of Riemann surfaces Mg (11), (12), (13). This has been the leading example, and

it drives a good deal of the research on the birational geometry of moduli spaces.

Another example of this phenomenon, which is closely related to complete quadrics and

will be relevant to this dissertation, is the following. Let M = M0,0(G(1, 3), 2) denote the

Kontsevich moduli space of stable maps of degree two into the Grassmannian. Chen and Coskun

run the MMP on this moduli space and describe its small modifications (14). Moreover, they

found that such modifications of M have a moduli structure. For example, the Hilbert scheme
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Hilb = Hilb2x+1(G(1, 3)) of conics in the Grassmannian is the flip of M0,0(G(1, 3), 2) over C,

the Chow variety of conics in the Grassmannian. Schematically,

M

��

flip
// Hilb

ch
��C

(1.1)

where ch denotes the Hilbert-Chow morphism.

Theorem B says that the same remarkable phenomenon, first found by Hassett and Keel,

holds true for the models of the moduli space of complete quadric surfaces. Finding a moduli

interpretation for the models X(D) will be called Mori’s program for complete (n� 1)-quadrics

throughout the dissertation.

Observe that all of the models X(D) in Theorem B are derived from classical constructions.

For example, we get the model X(H2) = Chow2(1, X) by associating a quadric line-complex

to a smooth quadric (see section 3.4). This is a particular case of the following construction.

The second order Chow variety Chow2(k,X) parametrizes tangent k-planes to complete

(n � 1)-quadrics. In other words, if Q ⇢ P(V ) is a smooth quadric, then the tangent k-planes

to Q are parametrized by the Chow form CFQ ⇢ G(k, n), which is a degree 2 divisor. Thus

[CF ] is an element in |OG(2)| ⇢ P(S2(⇤kV )). The association Q 7! CFQ, induces a birational

morphism

⇢k : X ! P(S2(⇤kV )) .
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We define the second order Chow variety Chow2(k � 1, X) as the image of ⇢k.

Theorem C. Let X be the space of complete (n � 1)-quadrics. The birational model X(Hk)

induced by any generator of the nef cone Nef(X) is isomorphic to Chow⌫
2(k � 1, X) the nor-

malization of the second order Chow variety.

We now want to look at the space of complete quadrics from the perspective of representation

theory. For a detailed treatment on wonderful varieties we refer the reader to (5).

It is known that the space of complete (n� 1)-quadrics X is isomorphic to the “wonderful

compactification” of the Lie quotient X� = SL(n + 1,C)/S̃O(n + 1). This compactification

is constructed by finding a suitable irreducible representation of SL(n + 1,C) and a vector v,

whose stabilizer is the subgroup S̃O(n+1). This construction recovers the model X(D) where

D is an ample divisor.

A natural question is whether the birational models X(D) studied in this thesis are also

compactifications for the same quotient X�. This is the case for all the instances in this

dissertation. Hence, it motivates the following question: do all the models X(D) arise in

a similar representation-theoretic fashion? In other words, if D ⇢ X is a movable divisor

(Definition 3.2), what are the representations of SL(n+1,C) which give rise to compactifications

of X� that are isomorphic to the model X(D)? In Chapter 4, we comment on these ideas in

more detail and explain how they lead to future directions of research.



CHAPTER 2

CYCLES ON THE SPACE OF COMPLETE QUADRICS

In this chapter we prove Theorem A. This result exhibits generators for E↵(X) and Nef(X), the

cone of e↵ective divisors and nef divisors, respectively. The strategy used in the proof of this

theorem can be used to analyze higher codimension cycles. In section 2.2 we compute E↵2(X),

the cone of codimension-two e↵ective cycles on the space of complete conics.

2.1 Cycles of codimension one

The following result yields an alternative description for the space of complete (n � 1)-

quadrics X. Let PN , where N =
�
n+2
2

� � 1, be the space parametrizing quadric hypersurfaces

in Pn. We can stratify PN in terms of the rank of the quadrics hypersurfaces,

�1 ⇢ · · · ⇢ �n�1 ⇢ �n ⇢ PN ,

where �i denotes the locus of quadrics of rank at most i. The space of complete quadrics is

obtained as a sequence of blowups of PN along all the �i’s, for i  n� 1.

Theorem (Vainsencher). Let PN = X0 and Xk = Bl�̃k
Xk�1, where �̃k denotes the strict

transform of the locus of quadrics of rank at most k. The space of complete (n� 1)-quadrics X

is isomorphic to X ⇠= Bl�̃n�1

Xn�2.

Proof. This is a particular case of Theorem 1.2 in (15).

8
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It follows from this result that the points along the boundary of X parametrize quadrics

which are marked by another quadric over its singular locus. In other words, if Q 2 X is a

complete quadric of rank k, then Q = (Q0, q) where Q0 is a quadric hypersurface in Pn of rank

k, and q is a complete quadric over Sing(Q0) ⇠= Pn�k. In this case Q 2 Ek, for 1  k  n� 1.

The divisor En is the strict transform of �n ⇢ PN , hence, Q 2 En represents a quadric of rank

n.

Example:

Let X be the space of complete 2-quadrics. A quadric of rank 1 whose marking consists of

a double line with two marked points can be represented as Q = (x20, x
2
1, (ax2 + bx3)2).

Example:

The family of n � 1-quadrics Xt = {x20 + t(F (x1, . . . , xn))} has as its central fiber, (t = 0),

the double (n� 1)-plane with a marking X0 = (x20, F (x1, . . . , xn)).

Vainsencher’s result implies that Pic(X)⌦Q is generated by boundary divisors hE1, . . . Eni.

We show more; the cone of e↵ective divisors E↵(X) is also generated by boundary divisors.

Proof of Theorem A. We make use of the following strategy. Let NE(X) be the dual cone of

Nef(X); this is the Mori cone of e↵ective curves (see (6)). If the divisors Hi are basepoint-

free, then hH1, . . . , Hni ⇢ Nef(X). The opposite containment is equivalent to hH1, . . . , Hni_ ⇢

Nef(X)_ ⇠= NE(X). We show this latter statement holds by showing that the dual curves to

hH1, . . . , Hni are e↵ective curves.
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The divisors Hi are basepoint-free. In other words, given ⇤i a linear subspace of dimension

i � 1 and Q 2 X such that Hi(⇤i) vanishes on Q, then we can find a distinct ⇤0
i such that

Hi(⇤0
i) does not vanish on Q. Indeed, if Q is smooth or dim Sing(Q) < codim ⇤i, then it is

clear. If dim Sing(Q) � codim ⇤i, then ⇤i is tangent to the complete quadric Q = (Q0, q)

as long as the restriction ⇤i|Sing(Q) is tangent to the marking-quadric q [See, (16)]. If the

marking-quadric q is smooth, then Hi(⇤0
i) does not vanish on Q if the restriction ⇤0

i|Sing(Q) is

not tangent to q. In case the marking-quadric q is singular, we repeat the previous argument for

the restriction ⇤i|Sing(q). So, inductively, we can find ⇤0
i such that the complete quadric Q is

not tangent to ⇤0
i, and consequently Hi(⇤0

i) does not vanish on Q. Hence, Hi is basepoint-free

and hH1, . . . , Hni ⇢ Nef(X).

Let us show the opposite containment. Consider the following flag,

Fl� = {pt = F1 ⇢ F2 ⇢ · · · ⇢ Fn+1 = Pn} ,

where each Fi stands for a linear subspace of dimension i� 1 contained in Fi+1.

Observe that a complete quadric of rank 1 whose nested markings all have rank 1 is sup-

ported on a flag Fl�. Hence, by letting the subspace Fi vary inside Fi+1 such that it contains

Fi�1, we get a rational curve Fli ⇢ X for each 1  i  n. Observe that Fli.Hj = �ij . This

implies that the curves hFl1, . . . ,Flni span the dual cone to hH1, . . . , Hni. Since the Fli are

e↵ective, the result follows.
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Let us now prove the claim about the e↵ective cone. It is clear that hE1, . . . Eni ⇢ E↵(X).

To show that this is an equality, we consider a general e↵ective divisor D and show that it can

be written as a linear combination D = a1E1+ · · ·+anEn, where ai � 0 for all i. In order to do

that, consider the following curves which sweep out each boundary divisor Ek, for 1  k  n�1.

Let us denote by Bk the 1-parameter family of complete quadrics Q = (Q0, q) 2 Ek, such that

Q0 is fixed and the marking quadric q ⇢ Pn�k ⇠= Sing(Q0) varies in a general pencil of dual

quadrics. In other words, the following intersection numbers hold,

Bk.Ek  0 and Bk.Ek+1 > 0 , (2.1)

and zero otherwise. In fact, the number Bk.Ek+1 = n� k + 1, as it is the number of times the

marking quadric q becomes singular. On the other hand, observe that Bk ⇢ Ek and the normal

bundle NEk/X
⇠= O(�1) for 1  k  n� 1. Thus, Bk.Ek = c1(OBk(�1)) = �(n� k).

Let D = a1E1 + · · ·+ anEn be a general e↵ective divisor, so that it does not contain any of

the curves Bk. It follows that Bk.D � 0, and by the inequalities (1), (n�k)ak  (n�k+1)ak+1

for 1  k  n� 1. This implies that

a1  n
n�1a2  . . .  nan .

By intersecting D with a general pencil G ⇢ PN , we get that 0  a1. This finishes the proof.

The following corollary guaranties that the MMP yields finitely many models when applied

to X.
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Corollary. The space of complete (n� 1)-quadrics is a Mori dream space.

Proof. Vainsencher’s Theorem implies that one can compute the canonical class ofX recursively

as follows.

KX = KXn�2

+ 2En�1

...

KXi = KXi�1

+ (�i � 1)Ei

...

KX
1

= KPN + (�1 � 1)E1

where N =
�
n+2
2

� � 1 and �i denotes the codimension of the locus �i ⇢ PN . From (5, p. 38),

it follows that Ei = 2Hi �Hi�1 �Hi+1 for 1 < i < n. We can write the canonical class KX in

terms of the generators of the nef cone,

KX = �2H1 �H2 � · · ·�Hn�1 � 2Hn .

Hence, X is Fano by Theorem A. In (7) it is shown (in great more generality) that any smooth

Fano variety is a Mori dream space. The corollary follows.

2.2 Cycles of codimension two on the space of complete conics

In this section we use the techniques from the proof of Theorem A in order to study higher

codimension cycles. We compute E↵2(X), the cone of codimension-two cycles on the space of

complete conics.
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LetX denote the space of complete conics in P2. The spaceX has the following stratification

in SL3-orbits. X = U [ (E� [��) [ E�, where U is an open dense subset, and E� and ��

are SL3-orbits of codimension 1. The unique closed orbit is E� [see, (5)]. The e↵ective cone

of divisors E↵(X) = hE,�i, where E parametrizes double lines with two marked-points. The

divisor � parametrizes reducible conics. The nef cone Nef(X) = hH,T i, where H parametrizes

all the conics which pass through a fixed point, and T denotes the closure of all the conics

tangent to a fixed line.

Cycles of Codimension Two

Proposition. The space A2(X) ⌦ Q has dimension 3. The e↵ective cone is generated by the

following classes

E↵2(X) = hHE, T�, E�i.

Proof. We make use of the following strategy. Since we know hHE, T�, E�i ⇢ E↵2(X), it

su�ces to show that the opposite containment holds. The latter containment is equivalent to

the inclusion of the dual cones hHE, T�, E�i_ ⇢ E↵2(M)_, where by definition E↵2(X)_ =

Nef3(X). We have thus reduced the proposition showing that the classes in hHE, T�, E�i_

are nef. This is what we prove next.

Let us compute the cone hHE, T�, E�i_. This dual cone consists of all the classes ↵ 2

A2(X) such that ↵ · � � 0, where � 2 hHE, T�, E�i. This intersection, in terms of the basis

hH2E, T 2�, H3i for A2(X), reads as follows. We need a, b, c 2 Q such that (aH2E + bT 2� +

cH3)(lHE + rT�+ sE�) � 0 , where r, l, s � 0. We can split this inequality in three,
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HE.↵ = HE(aH2E + bT 2�+ cH3)

= a0 + 12b+ 0c � 0 ,

T�.↵ = T�(aH2E + bT 2�+ cH3)

= 8a+ 0b+ 6c � 0 , and

E�.↵ = E�(aH2E + bT 2�+ cH3)

= �8a� 8b+ 0c � 0 .

From these three inequalities, we have that the cone hHE, T�, E�i_ is generated by the fol-

lowing three classes,

↵1 = 3H2E � 4H3,

↵2 = �3H2E + 3T 2�+ 4H3, and

↵3 = H3 .

Using the equations E = 2H � T , � = 2T �H, and 2H3 � 3H2T + 3HT 2 � 2T 3 = 0, which is

the linear relation imposed in A2(X), we have

↵1 = 3H2E � 4H3,

= 2(2H3 � 3H2T ),

= 2(H + T )E�,

and
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↵2 = �3H2E + 3T 2�+ 4H3

= 4T 3 .

Since H3 and T 3 are nef classes, the theorem follows if the class ⌧ = (H + T )E� is nef. In

other words,

E↵2(X) = hHE, T�, E�i if and only if ⌧ is a nef class.

This is proved in the next lemma, which completes the proof of the proposition.

Lemma. The class ⌧ = (H + T )E� 2 A2(X) is nef.

Proof. Throughout this proof Z denotes an irreducible threefold. Recall X is stratified in

SL3C-orbits with desirable properties (5). The proof is carried out by analyzing all the cases

in which an irreducible threefold Z intersects the SL3-strata. The first case is the following.

If Z intersects all the strata transversally, then by Kleiman’s Transversality Theorem, the

intersection Z.⌧ is generically transversal, dim Z.⌧ = 0, and the result follows. However, the

intersection of Z with ⌧ may not be transversal, so Kleiman’s Theorem does not apply directly.

Since ⌧ is a surface in E\�, it su�ces to analyze the cases for dimZ \E and dimZ \E\�

listed below. The rows of the following table display the possibilities we are going to examine

and re cases in which Kleiman’s Theorem does not apply directly.
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Case dim E \ Z dim E \� \ Z Geometry

(1) 2 1 ⌧ 2 Nef1(E�)

(2) 3 3 , 2 ⌧ 2 Nef2(M)

(3) 2 2 ⌧ 2 Nef2(E)

(1) Suppose now dim Z \ E = 2 and dim Z \ E \ � = 1. Since H + T is the hyperplane

section of the embedding X ⇢ P9 ⇥ P9⇤, ⌧ is a very ample divisor in E�. Since Z \ E�

is a curve, Z.⌧ > 0.

(2) Suppose dim Z\E = 3 and dim Z\� = 3. Then, Z ⇢ E� and irreducibility implies that

Z = �E� for some � > 0. Hence, Z.⌧ � 0 follows. Secondly, suppose dim Z\E = 3 and

dim Z \� = 2. Since Z is irreducible and the complement of the SL3-orbit E\E� = E�,

Z is a divisor in E. This means Z can be written as linear combination of the generator

for the e↵ective divisor of E. Namely Z = ↵HE + �E� where �,↵ � 0. Observe now

that (HE.H +HE.T )E� = 0, thus we have the following,

Z.⌧ = (↵HE + �E�).⌧

= (↵HE + �E�).(H + T )E�

= (↵HE + �E�).(HE�+ TE�)

= ↵E�(HE.H +HE.T ) + �(E�.HE�+ E�.TE�)

= (�E�)(H + T )E� � 0 .

(2.2)

Note the last equality above brings us to the case in which Z = �E�.
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(3) Suppose now dim Z \ E = 2 and dim Z \ E� = 2. Observe first that E = P2[2], the

Hilbert scheme of 2 points in P2. In which case we have the Chow morphism

ch : P2[2] �! P2(2)

where P2(2) is the symmetric product (singular) and P2[2] is a desingularization. It is

known that Pic(E)Q = hC,Bi where C := ch⇤(h), h is the hyperplane section and B

is the exceptional divisor. This means C is a nef divisor, hence C2 is a nef cycle of

codimension 2 in E. Therefore, C2.Z 0 � 0 for any irreducible surface Z 0 ⇢ E. Taking

Z 0 = (Z\E), we can conclude that Z 0.C2 � 0 for any Z 0 (which is irreducible by Kleiman’s

Theorem.) Thus the result follows from the the following claim.

Claim: If we consider the codimension-two cycle C2 ⇢ E as a codimension-three cycle

in M , then

8C2 = ⌧ .

In order to prove this claim, it su�ces to compute the class of C2 as a codimension-three

cycle ofM . That is, we must find numbers a, b, c 2 Q such that C2 = aH2E+bT 2�+cH3.

Observe C2 admits the following geometric description,

C2 = {subschemes of length 2 in P2 whose support intersects two lines} (as a cycle in E)

= {double lines whose marked points intersect two lines L1, L2} (as a cycle in M).
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It follows that we have the following intersections numbers in M ,

C2.H2 = 1, C2.HT = 1, C2.T 2 = 2 .

Indeed, C2.H2 = 1 is the number of double lines containing the two points (imposed by

H2) and whose (unordered) marked points intersect the two lines L1, L1. The other two

are similar.

This completes the proof of the lemma.

Corollary. The nef cone in codimension three is generated by the following classes Nef3(X) =

hH3, T 3,↵i, where ↵ = (H + T )E�.



CHAPTER 3

MORI’S PROGRAM FOR COMPLETE (N � 1)-QUADRICS

In this Chapter we prove Theorem B and Theorem C. The former gives a moduli interpretation

to many models X(D), where D is a movable divisor and X is the space of complete 2-quadrics.

The latter gives a modular interpretation to the model X(Hk), where Hk is any generator of

the nef cone Nef(X) and X denotes the space of complete (n� 1)-quadrics.

3.1 Mori’s program in arbitrary dimensions.

Since the entries of ⇤kQ 2 P(S2(⇤kV )) are the (k ⇥ k)-minors of Q, it follows that the

kth-projection ⇢k : X ! P(S2(⇤kV )) is a bijection over the locus of non-singular quadrics.

Indeed, given two non-singular matrices A and B, if each of the respective (k⇥ k)-minors of A

and B are equal, then A = �B for some non-zero �.

Definition 3.1. Let Q ⇢ Pn be a smooth quadric hypersurface. The second order Chow form

CFQ 2 PH0((G(k, n),O(2)) ⇢ P(S2(⇤kV )) parametrizes tangent k-planes to Q.

Lemma. Let Q ⇢ Pn be a smooth quadric hypersurface. The second order Chow form CFQ =

⇤kQ is equal to the k-th wedge of Q.

Proof. Let L ⇢ Pn be a k-plane and q = Q|L be the restriction of Q to L. If L is not contained

in Q, then the k-plane L is tangent to Q if q is singular, which is equivalent to det q = 0.

19
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Observe that the k-plane L 2 G(k, n) belongs to the zero locus of the Chow form CFQ if and

only if L belongs to the zero locus of the quadric ⇤kQ. Indeed,

Lt(⇤kQ)L =⇤k(LtQL)

=⇤kq

=det(q) .

(3.1)

It follows that det q = 0 if and only if L is in the zero locus of ⇤kQ. Hence, CFQ and ⇤kQ

define the same divisor on G(k, n)

This lemma implies that the image of the projection ⇢k : X ! P(S2(⇤kV )) carries a moduli

interpretation: it parametrizes tangent (k � 1)-planes to complete quadrics. We define the

second order Chow variety Chow2(k � 1, X) as the image of ⇢k(X) ⇢ P(S2(⇤kV )).

Theorem C. Let Hk be a generator of Nef(X), the nef cone of X. For each 1  k  n, the

model

X(Hk) = Proj

0

@
M

m�0

H0(X,mHk)

1

A ⇠= Chow2(k � 1, X)⌫

is isomorphic to the normalization of the second order Chow variety.

Proof. By definition X ⇢ P(S2(V )) ⇥ P(S2(⇤2V )) ⇥ . . . ⇥ P(S2(⇤nV )), and the morphism

⇢k : X ! P(S2(⇤kV )) is the projection onto the kth-factor. In order to establish that X(Hk) ⇠=

⇢k(X)⌫ , it su�ces show that both ⇢k and the induced map �Hk : X ! X(Hk) contract the

same extremal rays in NE(X). (See, (6) for a proof of this fact.) By Theorem B, we know that

�Hk contracts the classes Flj for j 6= k, which generate the Mori cone of curves NE(X). In
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order to show that the morphism ⇢k contracts those same curve classes, we use a parametric

representation of them. Let us describe such a parametrization.

This description follows (2) and (17) closely. We write a complete quadric as Q = M tqM ,

where the matrix M = (Mij) has 1’s along the diagonal, and Mk,k+1 = tk are a�ne parameters

above the diagonal, and zero otherwise. For example, M has the following form in case n = 3,

M =

0

BBBBBBBBBB@

1 t1 0 0

1 t2 0

1 t3

1

1

CCCCCCCCCCA

.

The matrix q = [1, q1, q1q2, . . . , q1 · · · qn] is a diagonal matrix where qj are a�ne parameters.

Observe that the matrix M as described above and qr = 0, for 1  r  n, gives rise to the

complete quadric

Q = M tqM = ((x0 + t1x1)
2, (x1 + t2x2)

2, . . . , (xn�1 + tnxn)
2)

where the marking has rank 1.

We obtain a parametrization of the representatives for the curve classes Fj 2 NE(X), when

q1 = · · · = qn = 0 and tk = 0 for all k 6= j, (17). Hence, the parameter tj in the expression of

M is an a�ne parameter of the curve Flj .
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In order to conclude that ⇢k contracts Flj for j 6= k, it su�ces to show that tl = 0 for l 6= j

(in particular tk = 0), make the form ⇤kQ = ⇤kM t(⇤kq)⇤kM constant. For example, consider

n = 3. From matrix

⇤2Q =

0

BBBBBBBBBBBBBBBBBBB@

1 t2 0 t1t2 0 0

t2 1 0 t1t22 0 0

0 0 0 0 0 0

t1t2 t1t22 0 t21t
2
2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCA

,

it follows that ⇢2 contracts F1 = {t2 = t3 = 0} and F3 = {t1 = t2 = 0}. The fact that

q = [1, 0, . . . , 0] simplifies the computation of ⇤kQ in general. We omit the details since no

di�culty arises. This completes the proof.

Remark. The previous result considers the projection of X onto the kth-factor. One can

consider other projection morphisms. For instance, let i = (i1, . . . , in), for 1  il < ij  n.

One can project ⇢i : X ! Pi
1

⇥ · · · ⇥ Pij , where Pij = P(S2(⇤ijV )). Assuming that ⇤0V = C,

and using this notation the projection morphisms in the previous result are of the form ⇢i, where

i = (0, . . . , k, . . . , 0).
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By the observation at the beginning of section 3.1, the projection maps ⇢i are birational mor-

phisms. The ⇢i provide, in general, a number of birational models of X. A good deal of this

thesis is devoted to fully understanding all these projection maps in the case when n = 3.

3.2 Mori’s program for complete quadric surfaces

Semple (1),(2) studied in detail the space of complete quadric surfaces X. The rest of this

dissertation is devoted to further studying X by applying the Minimal Model Program (MMP)

on it.

Definition 3.2. Let Y be a smooth projective variety over C. The movable cone Mov(Y ) ⇢

N1(Y ) is the closure of the cone generated by classes of e↵ective Cartier divisors L such that the

base locus of |L| has codimension at least two. We say that a divisor is movable if its numerical

class lies in Mov(Y ).

We will be able to interpret the spaces studied by Semple as models X(D) where D 2

Nef(X). This section contains the preliminaries needed to show more; we aim to describe all

the models X(D), where D is in the movable cone Mov(X), and exhibit such models as moduli

spaces.

Let us recall some well-known properties of the space X. Following (15), the space X ⇠=

Bl�̃
2

X1, where X1 is a blowup of P9 along �1, the locus of symmetric matrices of rank 1, and

�̃2 denotes the strict transform of the locus of symmetric matrices of rank 2. We can also

obtain X by blowing up P9⇤, the space of dual quadrics in P3, in the same manner.
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The divisor class Hi in Pic(X), as defined in 1.2, coincides with the class of the strict

transform of a generator of the ideal of �i ⇢ P9. Indeed, let us denote by p : X ! P9 the

blowup map, clearly p⇤(OP9(1)) = H1. Moreover, let h1 and h2 be two generators of the ideals

I(�1) and I(�2), respectively. Since

p⇤([h1]) = 2H1 � E1,

p⇤([h2]) = 3H1 � 2E1 � E2,

in Pic(X), we can compare these classes with those of H2 and H3.

Lemma. Let H2, H3 be the divisors as defined in 1.2. Their classes in Pic(X) are

H2 = 2H1 � E1,

H3 = 3H1 � 2E1 � E2.

(3.2)

Proof. Let G,C2, L2 ⇢ X be the following test curves. The curve G stands for a general pencil,

C2 is defined by the product of a fixed plane P0 and a pencil of planes Pt such that C2 = {P0Pt}.

The curve L2 is defined by fixing two planes whose intersection is the line l and letting one of

the two marked points on l vary.
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The following numbers determine the class of Hi for i = 2, 3.

G.H1 = 1 C2.H1 = 1 L2.H1 = 0

G.H2 = 2 C2.H2 = 0 L2.H2 = 0

G.H3 = 3 C2.H3 = 0 L2.H3 = 1

G.E1 = 0 C2.E1 = 2 L2.E1 = 0

G.E2 = 0 C2.E2 = �1 L2.E2 = �1

The normal bundle NE
2

\X ⇠= OE
2

(�1). The restriction to the generic line L2 ⇢ E2 is isomorphic

to OP1(�1), hence L2.E2 = �1. Similarly C2.E2 = �1. If we write Hi = aH1 + bE2 + cE3 for

i = 2, 3, and use the test curves G,C2, L2 to find the values of a, b, c, then the result follows.

In the following proposition, we denote by H1 the pull-back of OP9(1) and H2 the pull-back

of a generator of the ideal I(�1). The information provided by this proposition is put into

context in section 3.5 and Chapter 4.

Proposition. If X1 = Bl�
1

P9, then the nef cone is generated by Nef(X1) ⇠= hH1, H2i.

Proof. H1 is clearly an extremal ray of the nef cone. The divisor H2 is basepoint-free by

definition and we have that H2.S = 0, where S denotes a pencil Q1+ tQ0
1 of quadrics of rank 1.

Since the curve S sweeps out the secant variety Sec(�1) = �2, H2 induces a small contraction

�1 : X1 ! Z.
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The canonical divisor KX
1

= �10H1 � 5E1 = �5H2. Hence, KX
1

.S = 0 and X1 is a flop of

a space Y1 over Z in the following diagram.

X
⇡
2

��

⇡
1

��

X1

��

flop

//

�
1

��

Y1
�
2

��

��

P9 Z P9⇤

(3.3)

where X1 is as above, and Y1 = Bl�
1

P9⇤. The morphism �1 is induced by the sub-linear series

of (2⇥ 2)-minors cutting out �1 ⇢ P9 scheme-theoretically. Observe that the both morphisms

⇡1 and ⇡2 contract the divisor E2.

The following divisor class, and the model induced by it, was not analyzed in (2). To the

best of our knowledge, this constitutes new information about the birational geometry of X.

Definition 3.3. Let P denote the closure in X of smooth quadrics Q such that the induced

2-plane ⇤Q ⇢ P5 by one of the rulings of Q has non-empty intersection with a fixed 2-plane in

the Plucker embedding of G(1, 3).

Lemma. The divisor class of P is

[P ] = 2(2H1 �H2 + 2H3) .

Proof. The assertion follows from the following intersection numbers

P.C⇤
1 = 0, P.R2 = 4, P.C3 = 0 ,
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where the curves C⇤
1 , R2, C3 are defined as follows. The curve C⇤

1 is defined as a double plane

with a pencil of dual conics on it. Let R2 denote the strict transform to X of the pencil

Q2 + �Q0
2, where Q2 and Q0

2 denote quadrics of rank 2 in P3. The curve class C3 is defined by

a cone over a general pencil of conics.

Let us compute the intersection number P.R2. Since R2.E2 = 2 and R2.E1 = R2.E3 = 0,

it induces a 2-fold cover of curves �(�) ! R2(�) where �(�) represents the curve of 2-planes

induced by the pencil R2. Indeed, for each �, the lines contained in the complete quadric

quadric Q(�) 2 R2(�) form two curves C�, C 0
� in the Grassmannian G(1, 3). This is the Fano

variety of lines F1(Q) (or a flat limit of it). Each of the curves C� is contained in a unique

2-plane ⇤C� ⇢ P5. Consequently, P.R2 = deg(�) as a subvariety of G(2, 5). On the other hand,

the class of the surface S that a curve C� sweeps out in the Grassmannian G(1, 3) (as we vary

�), is [S] = �2 + �1,1 2 A2(G(1, 3)). Thus,

P.R2 = deg � in G(2, 5)

= 2S.�2
1

= 2(�1,1 + �2)�
2
1 in G(1, 3)

= 4

The numbers P.C⇤
1 = 0 and C3.P = 0 follow from the fact that all the conics induced by them

lie in a fixed plane.
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3.3 Stable base locus decomposition

In this section, we compute the stable base locus decomposition of E↵(X). In order to do

that, we need curve classes and their intersection numbers with divisors. We summarize the

intersection numbers in the following table, then describe each curve class.

Curve class C.H1 C.H2 C.H3 C.E1 C.E2 C.E3 Deformations

G 1 2 3 0 0 4 X

G⇤ 3 2 1 4 0 0 X

C1 0 1 2 �1 0 3 E1

C⇤
1 0 2 1 �2 3 0 E1

C2 1 0 0 2 �1 0 E2

C3 1 2 0 0 3 �2 E3

C1,2 0 1 0 �1 2 �1 E1 \ E3

L2 0 0 1 0 �1 2 E2

Let G (respectively, G⇤) denote the curve defined by the strict transform to X of a general

pencil in P9 (respectively, P9⇤). The curve C1 (respectively, C⇤
1 ) is defined by considering a

general pencil of conics (respectively, dual conics) on a fixed double plane. The curve C2 is

defined as the product of a fixed plane P0 and a pencil of planes Pt such that the marking is

fixed. Let C3 be the curve defined by the cone over the pencil of conics in a fixed plane. Let
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C1,2 denote the curve defined by a pencil of rank 2 conics on a double plane. Such a pencil of

conics is a fixed line l0 and a pencil of lines whose base-locus is on l0. Similarly, the curve L2 is

defined by fixing two planes whose intersection is the line l and letting one of the two marked

points on l vary.

Notation. We denote by C(H1, P ) the positive linear combinations aH1 + bP such that

0  a and 0 < b.

Proposition. The stable base locus decomposition partitions the e↵ective cone of X into the

following chambers:

(1) In the closed cone spanned by non-negative linear combinations of H1, H2 and H3, the

stable base locus is empty.

(2) In the domain bounded by H1, H3 and P union c(H1, P )[ c(H3, P ), the stable base locus

is E1 \ E3 and consists of double planes marked with a rank 2 singular conic.

(3) In the domain bounded by H3 , E3 and P union c(H3, E3)[c(P,E3), the stable base locus

consists of the divisor E3.

(4) In the domain bounded by H1 , E1 and P union c(H1, E1)[c(P,E1), the stable base locus

consists of the divisor E1.

(5) In the domain bounded by P , E1 and E3 union c(E1, E3), the stable base locus consists

of the union E1 [ E3.

(6) In the domain bounded by H3 , E3 and E2 union c(E3, E2), the stable base locus consists

of the union E3 [ E2.
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(7) In the domain bounded by H1 , E1 and E2 union c(E1, E2), the stable base locus consists

of the union E1 [ E2.

(8) In the domain bounded by H1, H2, H3 and E2 union c(H1, E2)[ c(H3, E2), the stable base

locus consists of the divisor E2.

Figure 1. Stable base locus decomposition of E↵(X).
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Proof. We will make use of the symmetry induced by the map ⇠ : X ! X defined by sending

the quadric Q to ⇤3Q,

⇠ : Q 7�! ⇤3Q .

Note that ⇠ maps E1 (respectively, H1) to E3 (respectively, H3) and keeps E2 (respectively,

H2) fixed. The stable base locus of the divisor ⇠⇤(D) is equal to the inverse image under ⇠ of

the stable base locus of D. The symmetry given by ⇠ will simplify our calculations.

By Theorem B, any divisor contained in the closed cone generated by H1, H2, and H3 is

basepoint-free, hence its (stable) base locus is empty.

Let D be a general divisor D = aH1+ bH2+ cH3. Consider the curves C1 and C3 as defined

above. Then,

C1.D = b+ 2c, C3.D = a+ 2b . (3.4)

Since the curve C1 (respectively, C3) covers E1 (respectively, E3), it follows that E1 (respec-

tively, E3) is in the base locus of any divisor D satisfying b+ 2c < 0 (respectively, a+ 2b < 0).

On the other hand, ⇠ maps the plane b + 2c = 0 to the plane b + 2a = 0. Consequently,

E3 is in the base locus of any divisor satisfying b + 2a < 0. Similarly, E1 is in the base locus

of the linear system |D| if c + 2b < 0. We conclude that E1 is in the base locus of any divisor

contained in the region bounded by E1, E2, H1 and E3. Similarly, E3 is in the base locus of any

divisor contained in the region bounded by E3, E2, H3 and E1.
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Now let the curve classes C2 and L2 be as defined above. We have the following intersection

numbers:

C2.D = a, and L2.D = c . (3.5)

Since both the curves C2 and L2 cover the divisor E2, then E2 is in the base locus of any

divisor D satisfying a < 0 as well as c < 0. The inequality a < 0, tells us that E2 [ E3

is in the base locus of any divisor in the region bounded by E3, H3 and E2 unioned with

c(E3, E2) [ c(H3, E2). Similarly, the union E2 [ E1 is in the base locus of any divisor in the

region bounded by E1, E2, H1 union c(E1, E2) [ c(H1, E2). By intersecting these two regions,

the union E3 [E1 is in the base locus in the region bounded by E1, P and E3 union c(E1, E3).

By equation (5) above, E3 is in the base locus in the region bounded by E3, H3 and P , union

c(P,E3) [ c(H3, E3). Symmetry implies that E1 is in the base locus in the region bounded by

P , H1 and E1 union c(P,E1) [ c(H1, E1).

Let C1,2 be the curve as defined above. We have that

C1,2.D = b .

Since deformations of C1,2 cover the intersection E1\E3, this locus E1\E3 is in the base locus

of any divisor contained in the region bounded by H1, H3 P and c(H1, P ) [ c(H3, P ). Finally,

E2 is in the base locus for any divisor |D| in the region bounded by H1, H2, H3 and E2. This

completes the description of the base locus decomposition of E↵(X).
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In order to finish the proof, we need to show that the stable base locus does not get any

bigger than our description of it above.

(i) The divisors H1, H2, H3 are basepoint-free by Theorem B. Hence, for divisors contained

in the closed cone generated by H1, H2, H3 the base locus is empty.

(ii) Since H1 and H3 are basepoint-free, it follows that for any divisor D in the interior of

the cone generated by H1, H2, and P the base locus of the linear system |D| is contained in

that of |P |. The same applies for the walls c(H1, P ) and c(H3, P ). Observe that the base locus

of |P | is the locus in X parametrizing those complete quadric surfaces whose rulings induce a

double line in G(1, 3). Indeed, for any complete quadric Q inducing either rank 3 or 2 conics

in G(1, 3), there is a unique 2-plane in P5 containing them. The indeterminacy of |P | does not

get bigger because for any pair of 2-planes ⇤i (i=1,2) in P5 we can find another 2-plane missing

them both. It follows that for Q a quadric defining a 2-plane ⇤ ⇢ P5, there is a D 2 |P |, such

that D does not vanish at Q. We conclude that the quadrics inducing double lines in G(2, 4)

are in the base locus of P i.e., E1 \ E3.

(iii-iv) Since P can be written as P = E3 + 2H1 = E1 + 2H3, it follows that for any divisor

D contained in the interior of the cone of E3, H3 and P or along the wall c(H3, P ), the base

locus of D must be contained in E3. Similarly for any divisor D contained in the interior of the

cone of E1, H1 and P or along the walls c(H1, P ), the base locus of D must be contained in E1.

(v) From the previous argument, any divisor D in the interior of the cone E1, E3 and P the

base locus must be contained in E1 [ E3.

(vi-vii) Follows easily from what we said above.
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(viii) Any divisor D in the interior of the cone generated by H1, H3 and E2 the base locus

of D must be contained in E2. However, since we know the nef cone, then the base locus of any

divisor in the complement of nef cone must be contained in E2. This completes the proof.

Corollary. The movable cone Mov(X) of X is the closed cone spanned by non-negative linear

combinations of H1, H2, H3 and P .

3.4 Birational models of complete quadric surfaces

In this section we describe some birational models of the space X. We present the results

very explicitly at the risk of making proofs longer than optimal. This approach will exhibit the

moduli structure on the birational models constructed.

Second Order Chow Variety Chow2(1, X)

We define the second order Chow variety Chow2(1, X) as the parameter space of tangent

lines to complete quadric surfaces. More precisely, let Q 2 X be a smooth complete quadric

and let TQ denote the set of tangent lines to it in the Grassmannian G = G(1, 3). Since the

class [TQ] = 2�1 2 A1(G), it follows that the subvariety TQ is defined by an element in the

linear system |OG(2)|. Consequently, we have a map Q 7! TQ 2 PH0(G,O(2)) ⇠= P19. The

subvariety TQ is called a quadric line-complex.

Lemma. Let X� ⇢ X be the open subset parameterizing smooth quadric surfaces. Then, we

have an embedding

� : X� ! P(H0(G,O(2)) ⇠= P19
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by mapping a smooth quadric Q 7! TQ to its associated degree 2 hypersurface TQ ⇢ G(1, 3).

Proof. Let Q and Q0 be two distinct smooth quadrics. Then there exists a point x 2 Q which is

not in Q0. The tangent space TxQ contains a 1-parameter family of lines tangent to Q among

which only 2 are also tangent to Q0. This says that TQ 6= TQ0 as desired. The fact that � is

a morphism is clear as we can write down the equations defining it, and that is precisely what

we do next.

Proposition. The map � extends to a morphism ⇢2 : X ! Chow2(1, X).

Proof. By Serre’s criteria (18, p. 283) the rational map � extends to a complement of a subset

of codimension 2. Furthermore, the space X is stratified by SL4-orbits as follows. There is an

open dense orbit X�, codimension 1 and 2 orbits E�
i and E�

i \ E�
j (i 6= j) respectively, and a

unique closed orbit E1 \E2 \E3. Therefore, the result follows if the map � extends to each of

the Ei’s, i.e., �(Ei) is well-defined for i = 1, 2, 3.

Let us show that the map � : (X�) ! P19 extends to the divisor E1 by performing the

explicit computation. First, we exhibit the extension of the map � to the open SL4C-orbit E�
1 .

To simplify the computations, let us assume Qt ⇢ P3 is the family Qt = {x2+ t(ay2+ byz+

cyw+ dz2+ ezw+ f2w2) = 0}. The limit as t ! 0 is a complete quadric (Q0, q[y : z : w]) 2 E1.

We compute the Chow form TQt from the definition. A line in l ⇢ P3 is the image of the

morphism

[↵,�]
g7�! [a1↵+ b1� : · · · : a4↵+ b4�] 2 P3 .
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The line l is tangent to a quadric Q as long as the the restriction of Q to l consists of a single

point (with multiplicity two). Therefore, the discriminant B2 � 4AC = 0 of the quadratic

polynomial in [↵,�],

g⇤Qt = A↵2 +B↵� + C�2

= (a21 + t(aa22 + ba2a3 + · · ·+ fa24))↵
2+

+ (2aa2b2 + t((a2b3 + a3b2)b+ · · · )↵� + (b21 + t(ab22 + · · · ))�2

describes the equations desired, which in Plücker coordinates is

TQt = {ap20 + bp0p1 + dp21 + cp0p2 + ep1p2 + fp22 + t(extra terms) = 0} (3.6)

This shows that � : X� ! P19 can be extended to the whole of E1. Similar computations show

that there are extensions to all of E2 and E3. Indeed, Since E2 is SL4C-invariant, then we can

assume that Qt = xy + t(az2 + bzw + cw2) and analyze the normal directions at this point.

Following the same argument as above, we find that the associated hypersurface, in Plücker

coordinates is

⌃1(Qt) = {p20 + t(other terms) = 0} .

It follows that the (radical of the) limit as t ! 0 coincides with the Schubert cycle ⌃1(L) ⇢

G(1, 3) where L = {x = y = 0}. This gives the natural extension for �|E
2

as desired. The case

for E3 is clear. This completes the proof.
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Semple’s notation for X(H2) is C92
9 [19]. He showed (2, p. 283) that ⇢2(X) is normal. Hence,

the following result follows for Theorem B.

Corollary. The morphism ⇢2 : X ! Chow2(1, X) ⇢ P19 contracts the divisor E2. Furthermore

X(H2) ⇠= Chow2(1, X).

Remark. The degree of Chow2(1, X) ⇢ P19 has enumerative significance. It is the number of

smooth quadric hypersurfaces in P3 which are tangent to 9 fixed lines in general position. The

number of such lines is 92.

The Flip of X

We now aim at constructing the flip X+ of the space of complete quadric surfaces. We will

do so by analyzing a Z/2-action on Hilb2x+1(G(1, 3)).

Definition 3.4. Let f : X ! Y be a proper birational morphism such that the exceptional

set Exc(f) has codimension at least two in X. Assume furthermore that KX is Q-Cartier and

�KX is f -ample. A variety X+ together with a proper birational morphism f+ : X+ ! Y is

called a flip of f if

(1) KX+ is Q-Cartier,

(2) KX+ is f+-ample, and

(3) the exceptional set Exc(f+) has codimension at least two in X+.

Definition 3.5. Let Hilb = Hilb2x+1(G(1, 3)) denote the Hilbert scheme parametrizing sub

schemes of G(1, 3) ⇢ P5 whose Hilbert polynomial is P (x) = 2x+ 1.
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Proposition. Let Hilb be as defined above, then

Hilb ⇠= BlOG(G(2, 5))

where OG ⇢ G(2, 5) denotes the Orthogonal Grassmannian inside the Grassmannian of 2-planes

in P5.

Proof. Observe that a generic smooth curve with Hilbert polynomial P (x) = 2x + 1 in P5

is a plane conic C. Thus, its ideal IC ⇢ k[p0, ..., p5] is generated by a quadric F and three

independent linear forms L1, L2, L3. Since C ⇢ G = G(1, 3), the equation F is the quadric

corresponding to the Grassmannian G ⇢ P5 under the Plücker embedding. This description

gives rise to a rational map

f : G(2, 5) 99K Hilb

by assigning the 2-plane P defined by the independent linear forms (L1, L2, L3) to the ideal

hL1, L2, L3i+hF i ⇢ k[p0, ..., p5]. Observe that the exceptional locus of f consists of planes in P5

such that there is a containment of ideals hF i ⇢ hL1, L2, L3i i.e., planes P which are contained

in the quadric G ⇢ P5. We denote the locus parametrizing such planes by OG. This locus is

precisely the Orthogonal Grassmannian. Now, we resolve the rational map f ,

BlOG(G(2, 5))

G(2, 5)
✏✏

⇡

f
// Hilb
''

f̃
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The morphism f̃ is an isomorphism. Indeed, the rational map f is birational as it has an

inverse morphism g : Hilb ! G(2, 5) defined as follows: let [C] 2 Hilb be a generic element,

then the ideal I(C) = (F ) + (plane)
g7! (plane) 2 G(2, 5). It is clear that f � g = Id, hence f

and consequently f̃ are birational. Furthermore, f̃ is a bijection. Indeed, since the exceptional

divisor E ⇢ BlGO(G(2, 5)) is a P5-bundle over OG, then we can write p = (P,C) where P ⇢ P5

is a 2-plane and C ⇢ P is a plane conic. Thus, Zariski’s Main Theorem implies that f̃ is an

isomorphism.

Corollary. Let Hilb be as above, then Pic(Hilb) ⇠= hH+, E+
2 , E

+
1,2i where H+ is the pullback

of �1 2 A(G(2, 5)) and the E+’s are the exceptional divisors of the blowup.

Proof. The orthogonal Grassmannian OG has two components, hence the result follows.

If the field k is algebraically closed, then for a given a smooth quadric Q ⇢ P3, the Fano

variety of lines F1(Q) ⇢ G(1, 3) consists of two smooth conics. By exchanging such conics we

get a Z/2-action on Hilb2x+1(G(1, 3)).

Lemma. There is a nontrivial globally defined Z/2-action on Hilb2x+1(G(1, 3)).

Proof. Let Q ⇢ P3 be a smooth quadric hypersurface. The Fano variety of lines F1(Q) is the

zero locus of a section of the following bundle,

Sym2(S⇤)

⇡

✏✏

G(1, 3).

Q|L

==
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A smooth conic in P5 determines uniquely a 2-plane, thus in the Plücker embedding G(1, 3) ⇢

P5, we have that

(1) F1(Q) determines two 2-planes if rank(Q) is either 4 or 2,

(2) F1(Q) determines a single 2-plane if rank(Q) is either 1 or 3.

Exchanging such planes gives rise to a Z/2-action on G(2, 5), the Grassmannian of 2-planes in

P5. Such a Z/2-action on G(2, 5) preserves the Orthogonal Grassmannian OG, hence inducing

a Z/2-action on the blowup Hilb2x+1(G(1, 3)).

Observe that there is a SL4C-action on Hilb induced by the action of SL4 on P3. This

action stratifies Hilb in SL4-orbits compatible with the divisors E+
1,1, E

+
2 . Notice that Z/2 acts

trivially (as the identity) over SL4-orbits of codimension 2. In codimension 1, we have that

Z/2 acts as the identity on the exceptional divisors E+
2 and E+

1,1.

Definition 3.6. Considering the Z/2-action defined above, let us denote the quotient space

X+ := Hilb/(Z/2).

Let M = M0,0(G, 2) be the Kontsevich moduli space of degree 2 stable maps into the

Grassmannian G = G(1, 3).

Lemma. There is a nontrivial globally defined Z/2-action on the Kontsevich moduli space

M0,0(G(1, 3), 2).
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Proof. Observe we have a generic 2-1 morphism from the Kontsevich moduli space M =

M0,0(G(1, 3), 2) = {(C,C⇤} to the space X of complete quadric surfaces defined by

(C,C⇤) 7!
 
[

L2C
L,C⇤

!

where (S,C⇤), following the notation of the proposition 2.1, stands for a surface S and the

curve C⇤ as the marking. This map is 2 to 1 over the open subset parametrizing smooth

quadric surfaces as well as over the divisor of complete quadrics of rank 2. Indeed, if
S

L2C L

sweeps out a smooth quadric S, then L is a ruling of S. The other ruling induces another conic

C 0 which gets mapped to S. The situation is similar over the locus of complete quadrics of rank

2. Notice that this map is 1-1 outside such two regions. We now define the Z/2-action on M

by identifying the two curves C and C 0.

Corollary. The quotient of M0,0(G, 2) by the Z/2-action is isomorphic to X. In particular,

the quotient is smooth.

Proof. Let Z denote the quotient of M by the Z/2-action defined above. Observe that X and

Z are birational and there is a bijection between them. Zariski Main Theorem implies the

corollary.

3.5 Proof of Theorem B
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The movable cone Mov(X) is the closed cone bounded by H1, H2, H3 and P . In this section

we describe all the models X(D), where D 2 Mov(X). Moreover, we interpret the spaces

constructed thus far as X(D) for some D in Mov(X)

Proposition. There is a morphism from X+ := Hilb/(Z/2) to the Z/2-Chow variety defined

by forgetting the scheme structure and only remembering its cycle class. Likewise, there is

morphism from the space of complete quadrics X to the same Z/2-Chow variety.

Proof. Consider the following spaces. Let I = {(C,C⇤,⇤)} be the incidence correspondence

such that C is a connected, arithmetic genus zero, degree two curve in G(1, 3) \ ⇤ and C⇤

is the dual curve in ⇤. Let M0,0(G, 2) be the Kontsevich space of degree two stable maps

into the Grassmannian G = G(1, 3). Let C denote the Chow variety of conics in P5 which are

contained in G(1, 3). The incidence correspondence I admits a map to both M0,0(G, 2) and

Hilb by projection to the first two factors, and by projection to the first and third factors. By

projection to the first factor, we get a map to C. Since the morphisms Kh and Ch are small
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contractions, and Z/2 acts trivially in SL4-orbits of codimension 2 and higher, then the Chow

variety C inherits a Z/2-action. We thus have the following,

I

��

��

M0,0(G, 2)

Kh

��

Z/2

✏✏

Hilb

Ch

��

Z/2
✏✏

X

⇡
1

��

C

✏✏

X+

⇡
2

��

C/(Z/2)

(3.7)

The existence of morphisms ⇡1 and ⇡2 follows from the fact that X as well as X+ are Z/2-

quotients.

In the main theorem of this section we list only the models X(D) for which we have found

a moduli interpretation.

Theorem B. Let D be an e↵ective divisor in the space of complete quadric surfaces X and let

X(D) = Proj

0

@
M

m�0

H0(X,mD)

1

A

be the model induced by D. Then, we have the following models for X(D),

1. X(D) ⇠= X for D contained in the cone bounded by H1, H2 and H3.

2. X(H1) ⇠= Hilb(x+1)2(P3) ⇠= P9 and f : X ! X(H1) contracts the divisors E1 and E2.
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3. X(H3) ⇠= Hilb(x+1)2(P3⇤) ⇠= P9⇤ and g : X ! X(H3) contracts the divisors E3 and E2.

4. X(H2) ⇠= Chow2(1, X) and � : X ! X(H2) contracts the divisor E2.

5. X(D) ⇠= C/(Z/2) where C is the Chow variety of Proposition 21 and D = tH1+(1� t)H3

for 0 < t < 1. The map �1 : X ! C/(Z/2) is a small contraction where the intersection

E1 \ E3 gets contracted.

6. X(D) ⇠= X+ for D contained in the domain bounded by H1, H3 and P . The map �2 :

X+ ! C/(Z/2) is the flip of �1, where the flipping locus consists of subschemes supported

on a line.

7. X(P ) ⇠= G(2, 5)/(Z/2) for P as defined in page 8.

The result above can be best seen from the following diagram:

P9 X2
oo

�
1

5

��

4

✏✏

3

��

flip
6

// X+

7

��

�
2

��

P9⇤ Chow2 C/(Z/2) G(2, 5)/(Z/2) .

where �1 and �2 are small contractions and the other maps, except for the flip, are all divisorial

contractions. Observe that from corollary 3.4 and proposition 3.2 we know abstractly all the

divisorial contractions of X or X+ induced by Mov(X). In Theorem B, we list only those

models for which we are exhibiting a moduli structure.

Proof of Theorem B. (1), (2), (3) follow from Theorem A, which is the description of the nef

cone Nef(X), as well as from Vainsencher’s Theorem.
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(4) This is established by the corollary 3.4 in section 3.4.

(5) Let C1,2 be the curve defined in table on page 9, and whose deformations cover the

codimension 2 subvariety E1 \ E3. Observe that for any divisor D = tH1 + (1 � t)H3 where

0 < t < 1, we have that C1,2.D = 0, which says that �D contracts the codimension 2 locus

E1 \ E3. The locus which is contracted does not get any larger as the map X ! C/(Z/2)

behaves locally similar to that of the diagram (Equation 3.7) and by the observation made

about the Z/2-action on SL4-orbits, its exceptional locus behaves as in (14).

(6) By definition, the morphism �2 : X+ ! C/(Z/2) is the flip of �1 : X ! C/(Z/2), if for

any divisor D in the domain bounded by H1, H3 and P , then both �D is �1-ample and D is

�2-ample.

We remark that the Z/2-action on X+ behaves like the identity over the locus which is

flipped. Hence in the following analysis we can neglect the Z/2-action altogether.

We verify that any D as above is �2-ample. Note that ��1
2 (p) ⇠= P1. Indeed, for L ⇢ G(1, 3),

where L denotes a line, consider the tangent space TLG(1, 3) ⇠= P3. Now TLG(1, 3) \ G(1, 3)

is a quadric of rank 1 (a double plane) with a double line 2L on it. The pencil of planes

containing L are di↵erent points of Hilb, however they all map to the same point [2L] of the

Chow variety C. This means that the fiber of �2 over the point [2L] is a pencil of planes,

hence P1. Now let D = aH1 + bH3 + cP for positive a, b, c 2 Q and where H1 and H3 are

defined in Pic(Hilb) as follows. H1 = {(C,⇤)| C \ �2(Pl) 6= ;} for a fixed plane Pl ⇢ P3,
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and H3 = {(C,⇤)|C \ �1,1(p) 6= ;} for a fixed point p 2 P3. Consequently, for the curve

� = ��1
2 (2L), we have

�.D = �.(aH1 + bH3 + cP )

= c(�.P )

= c(�.�1) in G(2, 5)

> 0 .

Thus, D is �2-ample.

Let us now describe the fiber ��1
1 (p). By Nakai’s ampleness criterion �D will be �1-ample

if and only if D.� < 0 for any curve � contained in the fiber of �1. The curve C1,2 is contained

in such a fiber as it is contracted by �1. Hence,

C1,2.D = C1,2.(aH1 + bH3 + cP )

= c(C1,2.P )

= �c(C1,2.H2)

< 0 .

Thus �D is �1-ample.

(7) Follows by construction. This completes the proof of Theorem B.



CHAPTER 4

PREVIOUS AND FUTURE WORK

Let us comment on the relation of Semple’s work to the results in this thesis. Additionally,

let us elaborate on the relation of our work to GIT theory and the theory of wonderful varieties.

Consider the space of complete quadric surfaces X ⇢ P9⇥P20⇥P9⇤ = P1⇥P2⇥P3. Theorem

B says that the image of the projection map ⇢i : X ! Pi is isomorphic to X(Hi), for 1  i  3.

One can also consider the projection

⇢i,j : X ! Pi ⇥ Pj ,

for 1  i < j  3. Semple focused on the projections ⇢2 and ⇢1,3. For example, he denotes the

space ⇢2(X) by C92
9 [19] and carefully studies its singularities. By proposition 3.2, the projection

⇢1,2(X) (respectively, ⇢2,3(X)) is a divisorial contraction isomorphic to X1 (respectively, Y1).

The projection ⇢1,3(X) is of a di↵erent kind. It is a small contraction which Semple denotes

by W9. He carefully analyzes the singularities of W9 as well as its geometry. Thus far, we may

categorize the study of these spaces as analyzing the models arising from divisors in the nef

cone of X.

Birational models of X not analyzed in (2) arise when we study models X(D) induced by

divisors D which are not nef, but which are contained in the movable cone. One such example

is the flip of X over ⇢1,3(X).

47
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On the other hand, the space of complete (n � 1)-quadrics can be obtained as a GIT

quotient. Indeed, De Concini and Procesi in (5) constructed the “wonderful compactification”

of a symmetric variety. Viewing SLn+1C ⇠= SLn+1C⇥ SLn+1C/� as a symmetric variety, one

can consider the wonderful compactification G = SLn+1C. This is an H-variety, where H is

the fixed subgroup of the SLn+1-involution which permutes the factors. Thus, we can take the

GIT quotient G
ss
//H. This quotient is a compactification of SLn+1/H which, for a suitable

choice of linearization of H, is isomorphic to complete (n�1)-quadrics (19). This point of view

suggests that we might understand Theorem B and C as a variation of GIT. We would like to

comeback to this point in the future.

In the same vein, Theorem B has an interpretation in terms of representation theory and

the theory of wonderful varieties. Indeed, the family of smooth quadric hypersurfaces in Pn,

which we denote by X�, has the structure of a symmetric variety. That is to say, X� =

SLn+1/S̃O(n + 1), where S̃O(n + 1) is the fixed subgroup of the involution �(A) =tA�1. We

get the wonderful compactification of X� by looking at representations of SLn+1 such that there

is a vector v whose stabilizer is precisely S̃O(n + 1). De Concini and Procesi (5) showed in a

great deal of generality that such a representation of SLn+1 exists and that it coincides with

the space of complete (n� 1)-quadrics. Then, it is natural to ask: what kind of representations

of SLn+1C give rise to the birational models X(D)? In particular, which gives rise to the flip

of X. Ideas contained in (5) realize the models X(D), where D 2 Nef(X), as compactifications

arising from representations of SL4C, it may happen that all the models X(D) arise this way.
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For example, the space of complete 2-quadrics is a wonderful compactificationX = SL4/S̃O(4).

The flip X+, as defined in 3.6, has two closed SL4-orbits. This implies that X+ is not a won-

derful variety, for such varieties have a unique closed orbit. Observe that sl4 = so(6) are

isomorphic as Lie algebras. Then, we may try to investigate irreducible representations of

SO(6) with suitable invariants in order to find X+. We should keep in mind that SO(6) is

not a Lie group of adjoint type and consequently the theory of wonderful varieties as in (5)

does not apply. That is to say, there is no wonderful compactification for SO(6) or quotients

of it. Nonetheless, the “log homogeneous compactification” of SO(6) introduced by M. Brion

(20) is expected to have two closed orbits (21), which suggests that X+ may be closed related

to a certain compactification SO(6)/H for a suitable subgroup H. Since numerous flips of the

wonderful variety X = SLn+1/S̃O(n+ 1) are expected to exist, the previous example suggests

there exist certain representations of groups isogenous to SLn+1 which are not considered by

the theory of wonderful varieties, but that nonetheless give rise to flips of wonderful varieties.

We would like to pursue these ideas in the future.
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9. Ein, L., Lazarsfeld, M., Mustaţă, M., Nakamaye, M., and Popa, M.: Asymptotic invariants
of base loci. Ann. Inst. Fourier, 56(6):1701–1734, 2006.
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