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When the shadow of the sash appeared on the curtains it was between
seven and eight oclock and then I was in time again, hearing the watch. It
was Grandfather’s and when Father gave it to me he said I give you the
mausoleum of all hope and desire; it’s rather excruciating-ly apt that you
will use it to gain the reducto absurdum of all human experience which can
fit your individual needs no better than it fitted his or his father’s. I give it
to you not that you may remember time, but that you might forget it now
and then for a moment and not spend all your breath trying to conquer it.
Because no battle is ever won he said. They are not even fought. The field
only reveals to man his own folly, and despair, and victory is an illusion of
philosophers and fools.

William Faulkner, The Sound and the Fury.

Dipinte in queste rive
Son dell’umana gente
Le magnifiche sorti e progressive.
Qui mira e qui ti specchia,
Secol superbo e sciocco,
Che il calle insino allora
Dal risorto pensier segnato innanti
Abbandonasti, e volti addietro i passi,
Del ritornar ti vanti,
E proceder il chiami.

Giacomo Leopardi, La ginestra.





To the memory of Professor Giuseppe Vigna Suria, who made me discover
the beauty of Math.
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Introduction

The main ambition of Birational Geometry is to classify algebraic varieties
up to birational equivalence. Recall that a birational map f : X 99K Y is
an (algebraic) isomorphism between two open dense subsets of the varieties
X and Y .

A first step to reach such a classification is to find, in any birational
class, a special element which is simple to study. The intuitive definition of
such an element, and the first historical one, is the following. We consider
a partial order ≥ on the class of varieties, saying that X ≥ Y if there exists
a birational morphism f : X → Y , and we call X minimal if it is minimal
respect to this order, that is, if X ≥ Y , then X ∼= Y . It turned out that a
better definition is the following: X is a minimal model if KX is nef, i.e. if
KX intersects non-negatively every curve C on X. It is not difficult to see
that if f : X → Y is a birational morphism between smooth varieties such
that KX is nef, then f is actually an isomorphism.

The simplest birational morphism is the blow-up of a point: if X is a
smooth variety of dimension n and p ∈ X is a point, then the blow-up f :
Y → X replaces p with a divisor E ∼= Pn−1 ⊂ Y , which is called exceptional
divisor, and f : Y \ E → X \ p is an isomorphism. Note that any curve C
contracted by f , i.e. C ⊂ E, has the property that KY .C < 0. Therefore, to
have a minimal model, we need at least to blow-down exceptional divisors.

The way of finding minimal models goes back to the turn of the nine-
teenth century, when the Italian school of geometry headed by Castelnuovo,
Enriques and Severi, obtained the so called Enriques classification of al-
gebraic surfaces. A (−1)-curve on a smooth surface X is a curve C such
that C ∼= P1 and C2 = −1. Castelnuovo’s contraction theorem assures us
that any (−1)-curve on X is the exceptional divisor of a blow-up. One
can also show that if KX is not nef, then either there exists a (−1)-curve
on X or there is a morphism with connected fibres f : X → Z such that
dimZ < dimX and such that −KX is ample on any fibre of f . In the latter
case, we say that ϕ : X → Z is a Mori fibre space and we stop here. In
the former case we consider f : X → Y the blow-down of C, we replace
X with Y and we control whether KY is nef or not. If KY is nef, we have
found a minimal model, otherwise we continue as before. This procedure
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is called Minimal Model Program. Denote by N1(X) the real vector space
of 1-cycles modulo numerical equivalence and by ρ(X) = dimN1(X) the
Picard number of X. Since ρ(X) is a non-negative integer and decreases
by 1 at each step, we know that the our procedure terminates either with a
minimal model Y (that is KY is nef) or with a Mori fibre space.

In higher dimension the situation is far more complicated, but the basic
plan is the same. The two main differences are the appearance of singu-
larities and of contractions whose exceptional locus is not a divisor. The
latter ones lead to varieties which are too singular to work with. We will
explain the main ideas of the MMP in subsection 1.1.2, here we just sketch
a picture.

The pioneers in this field have been S. Mori, Y. Kawamata, J. Kollár,
M. Reid and V. Shokurov: their intuition was to study the extremal rays
of the cone of effective 1-cycles NE(X) ⊂ N1(X). A morphism f : X → Z
arising as the contraction of an extremal ray R ⊂ NEKX<0 (i.e. f contracts
exactly the curves C whose numerical classes are in R and KX .R < 0)
is called Fano-Mori contraction. If KX is not nef, then, by a deep result
of Mori, Kawamata and Shokurov, there exists a Fano-Mori contraction
f : X → Z associated to an extremal ray R ⊂ NEKX<0. If dimZ < dimX,
then f : X → Z is said to be a Mori fibre space and we stop here, otherwise
f is birational. If the exceptional locus of f is a divisor, then we can replace
X with Z and go on. If the exceptional locus has codimension greater than
1, then on Z we can not even define the intersection number between KZ

and a curve (KZ is not Q-Cartier) and we can not proceed the MMP with
Z. The solution, proposed by Mori, is to perform a flip and then to go
on. A flip is a kind of thorny surgery that replaces the curves contracted
by f with curves on which the canonical divisor is positive. The existence
of flips in all dimensions has been proven only recently by C. Birkar, P.
Cascini, C. Hacon and J. McKernan in [BCHM10] (and in [CL12], [CL13]
by P. Cascini-V. Lazić and A. Corti-V. Lazić).

In conclusion, an MMP is a sequence of maps

X = X0 99K X1 99K · · · 99K Xm

such that each map φi : Xi 99K Xi+1 is a birational morphism or a flip
associated to an extremal ray Ri and either KXm is nef (Xm is a minimal
model) or Xm has the structure of a Mori fibre space. The question about
the existence of an MMP (that is, the non-existence of infinite sequence of
flips) is a very delicate matter. Thanks to [BCHM10] we know that under
suitable conditions on X, there exists an MMP which terminates.

Assuming the existence of an MMP, two natural questions are the fol-
lowing: can we describe explicitly each step and the final result? How does
X change under an MMP? These two questions are strictly connected, both



asking to investigate the properties of Fano-Mori contractions. Chapters 2
and 3 of this dissertation are dedicated to two aspects of these birational
maps, whereas chapter 4 focuses on some properties of pluricanonical maps.
We now describe the content of the Thesis.

First chapter. In this chapter we develop the basic concepts and results
that will be used in the rest of the Thesis. The effort is to make the exposi-
tion readable, partially self-contained and to insert our results in the right
mathematical context. All the material presented is already known, except
for subsection 1.3.2, in which we slightly extend the concept of weighted
blow-ups along smooth subvarieties. Roughly speaking, a weighted blow-up
is a generalization of the classical blow-up in which the exceptional divisor
is a weighted projective space.

Section 1.1 contains useful background material for all the three other
chapters. In particular we collect the main properties of log-pairs and the
definitions of the singularities that appear in the MMP. We then explain
how to run an MMP.

Section 1.2 is preparatory for chapter 2 and summarizes the state of the
art about the classification of Fano-Mori contractions with high nef-value.
It also introduces the notion of local adjoint contraction, which will be used
in the main theorems of chapters 2.

Subsection 1.3.1 is preliminary to chapter 4, while subsection 1.3.2 is
necessary for understanding chapter 2.

Second chapter. Let ϕ : X → Z be a Fano-Mori contraction, where X
is a terminal projective variety. Then there are an ample line bundle L and
a positive rational number τ such that ϕ is supported by KX +τL, that is ϕ
is given by the linear system |m(KX + τL)| for m� 0. The content of this
chapter is the study of ϕ depending on τ . For this goal we use methods of
adjunction theory, which studies polarized varieties, i.e. pairs (X,L), where
L is an ample line bundle on X. The basic idea is to apply induction on a
suitable element X ′ ∈ |L|. By adjunction

(KX + τL)|X′ = KX′ + (τ − 1)L|X′

and we have a Fano-Mori contraction in one dimension less. Then, by in-
duction, we try yo lift properties of (X ′, L′) to (X,L). We will also need the
local set-up as developed by Andreatta and Wisniewski, that is, to study
ϕ : X → Z we fix a fibre F and restrict to an affine neighbourhood of the
image of the fixed fibre. The global contraction can then be obtained by
gluing different local descriptions.

Our first result completes the classification of birational Fano-Mori con-
tractions when τ > n− 2.



Theorem (2.1.1). Let X be a normal projective variety with Q-factorial
terminal singularities and let L be an ample Cartier divisor on X. Let R be
an extremal ray in NE(X)(KX+(n−2)L)<0 and let f : X → Z be its associated
contraction. Assume that f is birational. Then f is a weighted blow-up of a
smooth point with weight σ = (1, 1, b, . . . , b), where b is a positive integer.

The strategy of the proof is the following. By means of horizontal slicings
with good elements of |L|, we reduce to the surface case, where we get a
Castelnuovo contraction. Then we lift the ideal sheaf of the blow-up to
f : X → Z.

Next we classify divisorial contractions associated to extremal rays R
such that R.(KX +rL) < 0, where r is a non-negative integer, and the fibres
of f have dimension less or equal to r + 1:

Theorem (2.1.2). Let X be a normal projective variety with Q-factorial
terminal singularities and let L be an ample Cartier divisor on X. Let R be
an extremal ray in NE(X)(KX+rL)<0 where r ∈ N is a non-negative integer
and let f : X → Z be its associated contraction. Assume that f is divisorial
and that all fibres have dimension less or equal to r + 1. Let E be the
exceptional locus of f and set C := f(E) ⊂ Z.

1. Then codimZC = r+ 2, there is a closed subset S ⊂ Z of codimension
al least 3 such that Z ′ = Z\S and C ′ = C\S are smooth, and f ′ :
X ′ = X\f−1(S) → Z ′ is a weighted blow-up along C ′ with weight
σ = (1, 1, b, . . . , b, 0, . . . , 0), where the number of b’s is r.

2. Let I ′ be a σ-weighted ideal sheaf of degree b for Z ′ ⊂ X ′ and let
i : Z ′ → Z be the inclusion; let also I := i∗(I ′) and I(m) be the m-th
symbolic power of I. Then X = Proj

⊕
m≥0 I(m).

These theorems are based on the existence of good elements in the linear
system |L|. More precisely, Andreatta and Wisniewski ([AW93]) proved
that, under our conditions, L is relatively basepoint free. In subsection
2.2.1 we will prove the following.

Theorem (2.2.7). Let f : X → Z be a local divisorial Fano-Mori contraction
supported by KX + τL. Assume that X has log terminal singularities and
n < τ + 3. Then dimBs|L| ≤ 1.

We hope to be able to apply this theorem to understand birational con-
tractions with τ > (n − 3) > 0. In section 2.2 we start the investigation of
these contractions, obtaining some partial results.

This chapter collects the contents of the joint paper [AT13] and of a
work in progress with M. Andreatta.



Third chapter. Let X be a complex projective manifold of dimension
n and let ci = ci(X) be its Chern classes. More than fifty years ago, Hirze-
bruch asked which Chern numbers (product of Chern classes of total degree
n) are topological invariants. The problem has been completely settled by
Kotschick ([Kot12]), who proved that a rational combination of Chern num-
bers is invariant if and only if it is multiple of the Euler characteristic cn.

In this chapter we face the subsequent question posed by Kotschick: does
c3

1 = −K3
X assumes only finitely many values on the 3-dimensional projective

algebraic complex structures with the same underlying 6-manifold?
If X is a variety of dimension n then the volume of X is defined as

vol(X) := lim sup
m→+∞

n!h0(X,mKX)
mn

,

and X is called of general type if vol(X) > 0.
Note that on a minimal model X, we have K3

X = vol(X). Recalling that
vol(X) is a birational invariant and applying a Bogomolov-Miyaoka-Yau
inequality we can prove the following.

Theorem (3.1.3). Let Let X be a smooth projective 3-fold of general type
and let

X = X0 99K . . . 99K Xm

be a minimal model program for X. Then

vol(X) = K3
Xm ≤ 64

(
b1(X) + b3(X) + 2

3b2(X)
)
,

where bi(X) = dimH i(X,Q) are the Betti numbers of X. This implies that
the volume takes only finitely many values on projective algebraic structures
of general type with the same underlying 6-manifold.

The idea is then to boundK3
X by some topological invariant ofX running

an MMP X 99K Xm and comparing K3
X with K3

Xm
. It is easy to see that the

Betti numbers are in general not enough to bound K3
X . To any threefold X

we can associate an integral cubic form FX , which comes from the trilinear
intersection form on H2(X,Z). If f : Y → X is a divisorial contraction to a
smooth curve in a the smooth locus of Y , then

FY (x0, . . . , xn) = ax3
0 + x2

0(
∑

bixi) + FX(x1, . . . , xn),

where x0, x1, . . . , xn are coordinates on H0(Y,Z) = Z[E]⊕H0(X,Z) and
a = E3.

Denote by ∆F the discriminant of a form F . Our principal technical
result is the following.



Theorem (3.2.28). Let F ∈ Z[x0, . . . , xn] be a non-degenerate cubic form
with integral coefficients such that ∆F 6= 0. Then, modulo the action of
SL(Z, n) on (x1, . . . , xn), there are only finitely many triples (a, (b1, . . . , bn), G)
such that F can be written as

F = ax3
0 + x2

0(
∑

bixi) +G(x1, . . . , xn).

Moreover ∆G 6= 0.

The proof is composed by two step: first we demonstrate that we can
reduce to the case of binary and ternary cubics and then we apply Faltings
and Siegel Theorems to show our claim. Roughly speaking, this says that
the possible values of E3 are bounded and, combining everything, we can
finally state our main theorem:

Theorem (3.3.5). Let X be a projective smooth threefold of non-negative
Kodaira dimension and let F be its associated cubic. Assume that ∆F 6= 0
and that there is an MMP for X composed only by divisorial contractions to
points and blow-down to smooth curves in smooth loci.

Then there exists a constant D depending only on the topology of X such
that

|K3
X | ≤ D.

The plan for the future is to extend this result to general divisorial
contractions to curves and to flips and flops. Actually, by a recent result
of Chen ([Che13]), any MMP of a terminal Q-factorial threefold may be
factored into a sequence of flops, blow-downs to smooth curves in smooth
loci and divisorial contractions to points (or their inverses). Hence, the main
question left is about flops.

All this is the content of a work in progress with P. Cascini.

Fourth chapter. In this chapter we construct varieties of general type
with either many vanishing plurigenera, or with many non-birational pluri-
canonical maps or with assigned volume. The importance of these three
objects is that they depend only on the birational properties of X.

Let X be a projective normal variety of general type. For any number
r, the dimension of H0(X, rKX) is called the r-plurigenera of X. The first
question is up to which r ∈ Z the space |H0(X, rKX)| may be empty. We
construct, for every n, smooth varieties of general type of dimension n with
the first bn−2

3 c plurigenera equal to zero.
Then one wants to investigate the pluricanonical map φr associated to

the pluricanonical system |rKX |. Hacon-McKernan, Takayama and Tsuji
have recently shown that there are numbers rn such that for all r greater
or equal to rn, the r-pluricanonical map of every variety of general type
of dimension n is birational. Our examples show that rn grows at least
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quadratically as a function of n. They also show that the minimal volume
of a variety of general type of dimension n is smaller than 3n+1/(n− 1)n.

In addition we prove that for every positive rational number q there are
smooth varieties of general type with volume q and dimension arbitrarily
big. For every n we also give an example of a smooth variety X of dimen-
sion n with ample canonical divisor such that the kth-canonical map is not
birational for k < n+ 3 if n is even and k < n+ 2 if n is odd.

All our examples come from hypersurfaces in weighted projective spaces.
These results are collected in a paper in collaboration with E. Ballico

and R. Pignatelli ([BPT13]).
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Chapter 1

Preliminaries

We start by fixing some standard notations. We generically refer to [KM98].

• By the term variety we mean a separated, reduced, irreducible scheme
of finite type over C, which is always our base field.

• Let X,Y be schemes. A rational map f : X 99K Y is a morphism
f : U → Y , where U ⊂ X is an open dense subset.
A rational map with rational inverse is called birational map. The
exceptional locus Exc(f) of a birational map f : X 99K Y is the set of
points of X where f is not an isomorphism.

• Let X be a normal scheme. We denote by WDiv(X) the group of
(Weil) divisors on X, by Div(X) the group of Cartier divisors and by
Pic(X) the group of invertible sheaves. A Q-divisor is an element of

WDivQ := WDiv⊗Z Q

and a Q-Cartier divisor is an element of

DivQ := Div⊗Z Q.

A Q-divisor is Q-Cartier if an integral multiple is Cartier. The sym-
bols ∼ and ∼Q stand for linear equivalence and Q-linear equivalence
respectively.

• Let Z1 be the group of 1-cycles on X, that is the free group generated
by irreducible curve on X. If L is a Cartier divisor on X and C is
an irreducible curve, we define the intersection L.C as degL|C . This
gives rise to an intersection pairing

Div(X)× Z1(X)→ Z,

which extends to a product in R

N1(X)×N1(X)→ R

1



2 CHAPTER 1. PRELIMINARIES

where
N1(X) := (Div(X)/ ≡)⊗Z R,

N1(X) := (Z1(X)/ ≡)⊗Z R

and ≡ is the equivalence relation induced by the intersection. The
vector spaces N1(X) e N1(X) are dual and have finite dimension, which
is called Picard number of X and it is denoted by ρ(X).

• We denote by NE(X) ⊂ N1(X) the cone of effective 1-cycles. If L is a
Q-Cartier divisor on X, we set NE(X)L≥0 := {z ∈ NE(X) : L.z ≥ 0}.
An extremal face of a cone C is a face F such that x+ y ∈ F implies
x, y ∈ F for any x, y ∈ C.

• A normal varietyX is Q-factorial if any Q-divisorD onX is Q-Cartier.

• Let X be a normal variety and let U ⊂ X be the smooth locus of
X. Since the singular locus of X has codimension at least 2, it is
well defined the canonical (Weil) divisor class KX as extension of the
canonical class KU . We refer to KX as the canonical divisor of X.

• Let D be a Q-Cartier divisor on a projective variety X. D is called
pseudoeffective if the numerical class of D is in the closure of the
effective cone (i.e. the cone in N1(X) generated by effective divisors).
D is called nef if D.C ≥ 0 for any curve C in X.

• The volume of Q-Cartier divisor D on a normal variety X is defined
as

vol(X;D) := lim sup
m→+∞

n!h0(X,mD)
mn

and D is said to be big if vol(D) > 0. A variety X is called of general
type if vol(X) := vol(X;KX) > 0.

• Let ∆ =
∑
diDi be a Q-divisor. Then we define integral part of D as

b∆c =
∑
bdicDi, where bdic is the minimum integer less or equal to

di. Similarly for dDe.

1.1 Minimal model program
We refer to [KM98] for details and proofs, if not otherwise stated.

Subsection 1.1.1 is dedicated to the singularities that appear in the
context of the MMP, to the notion of log-pair and to related concepts that
we will use hereinafter.

In subsection 1.1.2 we recall the main definitions and theorems needed
to run an MMP in the category of klt pairs.
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1.1.1 Log-pairs and Singularities

Definition 1.1.1 (SNC divisors). Let X be a non-singular variety of di-
mension n. A divisor D =

∑
Di (where Di are prime distinct divisors) is

an SNC divisor (or D has simple normal crossings) if each Di is smooth
and if D is defined in a neighbourhood of any point by an equation in local
analytic coordinates of the type

z1 · . . . · zk = 0

for some k ≤ n. A Q-divisor
∑
aiDi has simple normal crossings support if∑

Di is an SNC divisor.

Definition 1.1.2 (Log resolutions). Let X be a variety and let D =
∑
aiDi

be a Q-divisor on X. A log resolution of (X,D) is a projective birational
morphism

µ : X ′ → X

with X ′ non-singular, such that µ∗(D) + Exc(µ) has simple normal crossing
support, where Exc(µ) denotes the sum of the exceptional divisors of µ.

We recall that, by Hironaka’s fundamental result, for any pair (X,∆)
there exists a log resolution.

Definition 1.1.3 (Log pairs). A log pair (X,∆) consists of a normal variety
X together with a Weil Q-divisor ∆ =

∑
diDi on X such that KX + ∆ is

Q-Cartier.

Let X be a variety. A model of X is a proper birational morphism
µ : X ′ → X, where X ′ is a normal variety. Any divisor D on a model of X
is called divisor over X.

Let (X,∆) be a log pair and let µ : X ′ → X be a model of X. Let m be
a positive integer such that m(KX +∆) is Cartier. Let Ei be the irreducible
exceptional divisors and µ−1

∗ ∆ be the birational transform of ∆.
Since the two line bundles

OX′(m(KX′ + µ−1
∗ ∆))|X′−E and µ∗OX(m(KX + ∆))|X′−E

are naturally isomorphic, there are rational numbers a(Ei) = a(Ei, X,∆)
such that ma(Ei) are integers, and

OX′(m(KX′ + µ−1
∗ ∆)) ∼= µ∗OX(m(KX + ∆))(

∑
i

ma(Ei)Ei).

We set a(∆i, X,∆) = −di and a(D,X,∆) = 0 for any divisor D ⊂ X
which is different from the Di.

Using numerical equivalence we can write

KY + µ−1
∗ ∆ ≡ µ∗(KX + ∆) +

∑
Ei exceptional

a(Ei)Ei.
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The rational number a(Ei) is called discrepancy of Ei with respect to
(X,∆) and does not depend on the map µ, but only on (the valuation
induced by) Ei.

A valuation ν : k(X)→ Z is called geometric if ν = multE, where E is a
prime divisor on a model Y → X. Divisors E ⊂ Y → X and E′ ⊂ Y ′ → X
define the same valuation if and only if the induced birational map Y 99K Y ′

is an isomorphism at the generic point of E and E′. The centre on X of
a geometric valuation ν associated to a divisor E on a model f : Y → X
is cXν = cXE = f(E). We often identify a geometric valuation ν and the
corresponding divisor E.

We define the discrepancy of (X,∆) as

discrep(X,∆) := inf
E
{a(E,X,∆) : E is an exceptional divisor over X}.

Definition 1.1.4. Let (X,∆) be a log pair. We say that (X,∆) is
terminal
canonical
klt if discrep(X,∆)
lc


> 0
≥ 0
> −1 and b∆c = 0
≥ −1

Here klt stays for Kawamata log terminal and lc for log canonical.
If ∆ = 0 then klt is called lt (log terminal).

The strong motivation behind this definition is that the smallest over-
category of smooth varieties in which is possible to run an MMP is that
of terminal varieties. Canonical models of smooth varieties has in general
canonical singularities. The introduction of log pairs is mainly due to the
possibility of applying inductive arguments.

Many important results in birational geometry are in fact attained by
induction on suitable subvarieties. A recurring and crucial problem is that
of obtaining a global section of a certain linear system |L| on a variety X.
Usually one tries, roughly speaking, to produce a section of L on a suitable
subvariety V ⊂ X and then lift this section to X.

The vanishing theorems are fundamental results to succeed in this proce-
dure, since basically we are looking for a surjection H0(X,L)→ H0(V,LV ).
The archetype is Kodaira vanishing which predicts that if L is an ample line
bundle on a smooth variety X, then H i(KX + L) = 0 for i > 0. Starting
from this, there have been many generalizations: for big and nef divisor, for
singular varieties, for log pairs and for relative settings. We will mainly use
Kawamata-Viehweg vanishing.

Theorem 1.1.5 (Relative Kawamata-Viehweg). Let (X,∆) be a log termi-
nal pair, f : X → S be a projective morphism onto a variety S and A be an
f -ample Q-divisor on X such that KX + ∆ +A is an integral divisor. Then

Rif∗OX(KX + ∆ +A) = 0 for i > 0.
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We will also need the notion of multiplier ideal, for which the most useful
vanishing is Nadel vanishing.

Definition 1.1.6 (Multiplier ideals). Let (X,∆) be a log pair and let D be
a Q-Cartier divisor on X and let µ : X ′ → X be a log resolution for (X,D).
The multiplier ideal of D (respect to the log pair (X,∆)) is defined as the
sheaf

J (D) = J (X,∆;D) = µ∗OX′(KX′ − dµ∗(KX + ∆ +D)e).

It does not depend on the log-resolution chosen.

If ∆ and D are effective divisors, then J (X,∆;D) is actually an ideal
sheaf.

Theorem 1.1.7 (Nadel). Let (X,∆) be a log pair and let D be a Q-Cartier
divisor on X.

1. If µ : X ′ → X is a log resolution of (X,∆ +D), then

Rjµ∗OX′(KX′ − dµ∗(KX + ∆ +D)e) = 0 for j > 0.

2. If N is an integral Cartier divisor on X such that N − (KX + ∆ +D)
is nef and big, then

H i(X,OX(N)⊗ J (X,∆;D)) = 0 for i > 0.

The suitable subvarieties from which we want to lift sections arise from
the “bad locus” of log pairs (intuitively, if a divisor L has high multiplicity
in a point x ∈ X, then we may be able to construct section of L at x).

Definition 1.1.8. Let (X,∆) be an lc pair. The non-klt locus of (X,∆) is
nklt(X,∆) = Supp(OX/J (∆)).

A non-klt centre is a centre W of a geometric valuation such that W ⊂
nklt(X,∆); therefore J (∆) ⊂ IW . Since in our situation (X,∆) is lc, a non
klt-centre W is also called log canonical centre. The set of all log canonical
centres is denoted by CLC(X,∆) and the non-klt locus is also denoted by
LLC(X,∆).

A non-klt centre W is isolated if for any geometric valuation E on X
such that a(E,X,∆) = −1, cXE = W . A non-klt centre W is exceptional
if it is isolated and if there is unique geometric valuation E on X such that
a(E,X,∆) = −1.

The importance of isolated non-klt centres is given by the following ob-
servation.

Lemma 1.1.9. If W is an isolated non-klt centre, then J (∆) = IW .
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Note that for any x ∈ nklt(X,∆) there is a well defined minimal non-klt
centre through x. In fact, if µ : X ′ → X is a log resolution of (X,∆) and
Ei ⊂ Y are prime divisors such that a(Ei, X,∆) = −1 for i = 1, . . . , k,
then the non-klt centres are the images µ(∩i∈Iµ(Ei)), where I ⊂ {1, . . . , k}.
Furthermore, if W1,W2 ∈ CLC(X,∆) and W is an irreducible component
of W1 ∩W2, then W ∈ CLC(X,∆).

The following is the main tool to isolate non-klt centres (see Proposition
8.7.1 in [Kol97b]).

Proposition 1.1.10 (Tie-breaking). Let (X,∆) be a klt pair and D a Q-
Cartier divisor on X such that (X,∆+D) is lc. Let W be a minimal non-klt
centre of (X,∆+D) and let A be an ample divisor. Then there are arbitrarily
small ε, η > 0 and a divisor D′ ∼Q A such that W is an exceptional non-klt
centre of (X,∆ + (1− ε)D + ηD′).

Finally, we need to know what happens when we restrict to non-klt
centres:

Theorem 1.1.11 (Kawamata’s subadjunction). Let (X,∆) be an lc pair,
W an exceptional non-klt centre of (X,∆) and A an ample R-divisor. Then
W is normal and for every ε > 0, there is an effective divisor ∆W on W
such that

(KX + ∆ + εA)|W ∼R KW + ∆W

and (W,∆W ) is klt.

Definition 1.1.12 (Log canonical threshold). Let (X,∆) be a log pair and
let x ∈ X be a point. The log canonical threshold of (X,∆) at x is defined
as

lct(X,∆, x) = sup{c ∈ R : (X, c∆) is lc in the neighbourhood of x}.

The log canonical threshold of the pair (X,∆) is

lct(X,∆) = sup{c ∈ R : (X, c∆) is lc}.

1.1.2 Running an MMP

The following three results are the basic ingredients to run an MMP in higher
dimension. Their proofs were developed by several authors in the 1980s
decade, the main contributions are due to Kawamata, Mori and Shokurov.

Theorem 1.1.13 (Kawamata-Shokurov basepoint free). Let (X,∆) be a klt
pair and let L be a nef and big line bundle on X. Assume that there exists
p > 0 such that pL− (KX + ∆) is nef and big. Then the linear system |mL|
is basepoint free for all integers m� 0.

Theorem 1.1.14 (Cone Theorem). Let (X,∆) be a projective klt pair.
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1. There are countably many rational curves Ci such that 0 < (KX +
∆).Ci ≤ 2 dimX, and

NE(X) = NE(X)(KX+∆)≥0 +
∑

R≥0[Ci].

2. For any ε > 0 and ample Q-divisor H,

NE(X) = NE(X)(KX+∆+εH)≥0 +
∑
finite

R≥0[Ci].

Theorem 1.1.15 (Contraction Theorem). Let (X,∆) be a projective klt
pair and let F ⊂ NE(X) be (KX + ∆)-negative extremal face. Then there
is a unique morphism ϕ : X → Z to a projective variety Z such that

1. ϕ∗OX = OZ ;

2. an irreducible curve C ⊂ X is contracted to a point if and only if
[C] ∈ F ;

3. if L is a Cartier divisor on X such that L.C = 0 for every curve C
with [C] ∈ F , then L = ϕ∗LZ for a Cartier divisor LZ on Z.

The morphism ϕ is called Fano-Mori contraction associated to F (or
simply extremal contraction of F ). If F has dimension 1 then F is called
extremal ray and ϕ is called elementary (extremal) contraction. In this case
we have an exact sequence

0→ Pic(Z)→ Pic(X)→ Z,

where the last map is given by the multiplication by a fixed curve C with
[C] ∈ R.

Cone and contraction theorems were first proved by Mori in the smooth
threefold case.

Definition 1.1.16. Let (X,∆) be a Q-factorial klt pair and let ϕ : X → Z
be a contraction of a (KX + ∆)-negative extremal ray R.

1. If dimY < dimX, then ϕ : X → Z is called a Mori fibre space (or
simply Mori fibration);

2. if dimY = dimX and codimXExc(ϕ) = 1, then Exc(ϕ) is actually a
prime divisor and ϕ is called divisorial contraction;

3. if dimY = dimX and codimXExc(ϕ) ≥ 2 (i.e. ϕ is a small map), then
ϕ is called flipping contraction.

Definition 1.1.17. Let (X,∆) be a log pair.
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1. If KX + ∆ is nef, then (X,∆) is called minimal model.

2. If KX + ∆ is not nef and there is a Mori fibration (X,∆) → Z, then
(X,∆) is called Mori fibre space.

From now on X will be assumed to be Q-factorial.
We want to run an MMP, on the model of the surface’s case. We have

already said that we are forced to admit singular varieties and so let us start,
more generally, with a klt pair (X,∆) such that KX +∆ is not nef. By cone
and contraction theorems there is a Fano-Mori contraction ϕ : X → Z
associated to an extremal ray R such that (KX + ∆).R < 0.

If ϕ : X → Z is a Mori fibre, then we stop. Note that the fibres of ϕ are
Fano varieties.

If ϕ : X → Z is a divisorial contraction, then it is not difficult to
prove that (Z,ϕ∗∆) is still a Q-factorial klt pair and hence we go on with
the MMP, replacing (X,∆) with (Z,ϕ∗∆). Moreover the Picard number
ρ(X) decreases by one, and this assures us that there can not be an infinite
sequence of divisorial contractions.

If ϕ : X → Z is a flipping contraction, then KZ + ϕ∗∆ is not Q-Cartier
(otherwise it would be KX + ∆ = f∗(KZ + ϕ∗∆), against the f -negativity
of KX + ∆) and thus we can not proceed. Mori proposed the following
solution.

Definition 1.1.18 (Flips). Let ϕ : (X,∆) → Z be a flipping contraction
with (X,∆) klt. A flip of ϕ is a commutative diagram

X //

ϕ
��

X+

ϕ+
}}

Z

where

1. ϕ+ is small and projective,

2. KX+ + ∆+ is ϕ+-ample, with ∆+ = ϕ+
∗ ∆,

3. ρ(X+/Z) = 1.

For simplicity, we call flip the induced map X 99K X+.

It is not difficult to check that in this case (X+,∆+) is a Q-factorial
klt-pair and hence we proceed the MMP, replacing (X,∆) with (X+,∆+).
Two major problems of the past 30 years in birational geometry have been
to show that flips exist and that there can not be infinite sequences of flips.

Conjecture 1.1.19 (Existence of flips). Let ϕ : (X,∆) → Z be a flipping
contraction such that (X,∆) is klt. Then there exists the flip X 99K X+.
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Conjecture 1.1.20 (Termination of flips). There is no infinite sequence of
flips.

In conclusion, if (X,∆) is klt and existence and termination of flips hold,
then there is an (KX + ∆)-MMP

(X0,∆0) = (X,∆r) 99K (X1,∆1) 99K · · · 99K (Xs,∆s)

where each fi : Xi 99K Xi+1 is a birational map (divisorial contraction
or flip) associated to an extremal ray Ri. Any (Xi,∆i) is klt and each Xi

is Q-factorial. The end result (Xs,∆s) is either a minimal model or a Mori
fibre space.

The problem about the existence of flips has been completely settled in
[BCHM10] and in the papers [CL12], [CL13]. In the tridimensional case, the
existence of flips was first proved by Mori ([Mor88]), while the termination
is due to Shokurov ([Sho85]).

Theorem 1.1.21. ([BCHM10, Cor. 1.4.1]) Let (X,∆) be a projective klt
pair and let ϕ : (X,∆) → Z be a flipping contraction. Then the flip of ϕ
exists.

Termination is proved under some conditions in [BCHM10] and in the
papers [CL12], [CL13].

Theorem 1.1.22. ([BCHM10, Thm. 1.2, Cor. 1.3.3]) Let (X,∆) be a
projective klt pair such that KX + ∆ is big (or ∆ is big and KX + ∆ is
pseudo-effective). Then there exists a MMP for (X,∆) which ends with a
minimal model.

Let (X,∆) be a projective klt pair such that KX + ∆ is not pseudo-
effective. Then there exists a MMP for (X,∆) which terminates with a
Mori fibre space.

1.2 Adjunction theory

We start this section with an introduction to the methods and ideas of
adjunction theory. For a detailed treatment from the classical point of view
see the book [BS95].

Subsection 1.2.1 develops the notion of local adjoint contraction fol-
lowing [AW93]. We will use this set-up in most of the results of chapter
2.

In subsection 1.2.2 we sum up the state of the art for what concerns
classification of contractions with high nef-value. At the same time we sum-
marize part of the content of the paper [And13], which shows the strict
connection between adjunction theory and MMP of klt pairs.
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The basic idea of adjunction theory is to understand properties of X via
the study of adjoint bundles KX + tL, where t is rational positive number
and L is an ample line bundle on X. More precisely, adjunction theory looks
at the pair (X,L).

The original setting is that of a variety X and an embedding φ : X ↪→ Pn
such that L = φ∗OX(1), i.e. L is very ample. The special role of these ad-
joint bundles became clear already in the past century, when Castelnuovo
and Enriques were studying projective surfaces by relating the geometry of
a projective surface S to the geometry of its hyperplane sections. In higher
dimension the first results in this field may be considered some characteri-
sations of projective spaces.

Definition 1.2.1. A polarized variety (or polarized pair) is a pair (X,L),
where X is a projective variety and L is an ample line bundle.

If L is just big and nef, then we say that (X,L) is a quasi-polarized
variety.

The following are classical invariants associated to a polarized variety.
They are very useful for classification results (see, for example, the book
[Fuj90]).

Definition 1.2.2. The Hilbert polynomial of the quasi-polarized pair (X,L)
is given by

χ(X, tL) =
∑
j≥0

(−1)jhj(X, tL) =
n∑
j=0

χjt
[j]/j!,

where t[j] = t(t+ 1) · · · (t+ j − 1), t[0] = 1 and χ0, . . . , χn are integers.
By Riemann-Roch Theorem we have that χn = Ln (which is called the

degree d(X,L) of (X,L)) and, if X is normal, that −2χn−1 = (KX + (n −
1)L).Ln−1, for a canonical divisor KX on X.

The sectional genus of the pair (X,L) is g(X,L) = 1− χn−1.
The ∆-genus is defined as ∆(X,L) = n+ χn − h0(X,L).

Another important invariant associated to a quasi-polarized pair (X,L)
is its nefvalue. Let f : X → Z be a projective morphism onto a variety
Z. Let L be an f -ample Cartier divisor on X. The f -nef value of (X,L) is
defined as

τ(X,L, f) := inf{t ∈ R : KX + tL is f -nef}.

Assume now that Z is a point. Then τ(X,L, f) is simply called nef-value
and denoted by τ(X,L). The following theorem is a very useful instrument
to study the nef-value of a pair.
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Theorem 1.2.3 (Kawamata’s rationality theorem). Let X be a normal,
irreducible projective variety of dimension n with terminal singularities and
let e = index(X) be the index of singularities of X. Let f : X → Z be a
projective morphism onto a variety Z. Let L be an f -ample Cartier divisor
on X. If KX is not f -ample then τ = τ(X,L, f) is a rational number.
Furthermore, if we write eτ = u/v with u, v coprime positive integers, we
have u ≤ e(b+ 1) where b = maxz∈Z{dim f−1(z)}.

By the basepoint free theorem we know that, for m� 0, |m(KX + τL)|
defines a morphism g : X → P. Let g = s ◦ ϕ be the Stein factorization of
g where ϕ : X → Y has connected fibres and s : Y → Pn is a finite-to-one
morphism. For m big enough the morphism ϕ does not depend on m and
we call ϕ the nefvalue morphism of (X,L).

By Kleiman’s ampleness criterion it is easy to check that τ is the nefvalue
of a pair (X,L) if and only if KX + τL is nef but not ample.

Clearly, a nefvalue morphism ϕ is a Fano-Mori contraction associated to
an extremal face F .

Also the viceversa holds. In fact let ϕ : X → Z be a Fano-Mori con-
traction of an extremal face F = H⊥ ∩ (NE(X)\{0}), where H is a nef
Q-divisor. Let e be the index of X. Then L := eaH − eKX is an ample
Cartier divisor for some a > 0. Assuming that ϕ is not an isomorphism, we
have that eaH = eKX +L is nef and not ample. Hence, τ(X,L) = 1/e and
ϕ is the nefvalue morphism of (X,L)

In this context a basic tool is the so-called Apollonius Method, which
allows to apply inductive arguments. More precisely we construct an in-
ductive process considering (when possible) a general element D ∈ |L| to
obtain a polarized pair (D,L|D) of one dimension less. By adjunction,
KD + (t − 1)L|D = (KX + tL)|D. Typical and instructive examples are
the following theorems.

Proposition 1.2.4. Let (X,L) be a polarized variety such that dimX = n,
Ln = 1 and h0(X,L) ≥ n+ 1. Then (X,L) ∼= (Pn,O(1)).

Proof. We give a proof assuming that X has at most Cohen-Macaulay sin-
gularities.

The proof is by induction on n. If n = 1 then it is easy, thus we assume
n ≥ 2. Let D ∈ |L|, then D is a reduced and irreducible divisor (if L =
L1 + L2 then Ln ≥ 2). Since D is Cartier, it is Cohen-Macaulay, and so it
has no embedded component and it is easy to conclude that D is a variety.

By the exact sequence

0→ OX(−L)→ OX → OD

we get h0(D,LD) ≥ n and by induction (D,LD) ∼= (Pn−1,O(1)) and h0(X,L) =
n + 1. Therefore the restriction map H0(X,L) → H0(D,LD) is surjective
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and hence L is globally generated. Thus |L| gives a morphism φ : X → Pn
which is finite because L is ample. We also have deg(φ) = Ln = 1 and
hence φ is birational. By Zariski’s main theorem we conclude that φ is an
isomorphism.

Theorem 1.2.5 (Kobayashi-Ochiai). Let X be an n-dimensional normal
projective variety and let L be an ample line bundle on X. Then

1. (X,L) ∼= (Pn,O(1)) if KX + (n+ 1)L ∼ OX

2. (X,L) ∼= (Q,O(1)), Q quadric in Pn+1, if KX + nL ∼ OX .

Proof. We prove just (1).
We actually prove that if −(KX+nL) is ample then (X,L) ∼= (Pn,O(1)).

By Kodaira’s vanishing we have H i(X, tL) = 0 for i > 0 and t ≥ −n.
Therefore χ(t) =

∑
i(−1)ihi(X, tL) = 0 for −n ≤ t < 0 and χ(0) = 1. Hence

χ(t) = (t+1) · · · (t+n)/n!, from which Ln = 1 and h0(X,L) = χ(1) = n+1.
By Proposition 1.2.4 we are done.

1.2.1 Local adjoint contractions

In this subsection we introduce the notion of local contraction as developed
in [AW93]. This local set-up will be crucial in our study of Fano-Mori
contraction of high length.

Recall that a contraction is a surjective morphism, f : Y → T , such that
X,T are normal varieties and f has connected fibres.

For a contraction f : Y → T a Q-Cartier divisor H such that H = f∗A
for some ample Q-Cartier divisor on T is called a supporting divisor of the
contraction.

Let L be an ample Cartier divisor on a normal projective variety X with
log terminal singularities. Let r be a positive rational number such that
KX + rL is Q-Cartier and nef, then by the basepoint free Theorem we know
that KX + rL is semiample. In particular the linear system |m(KX + rL)|
for m� 0 gives rise to a projective contraction ϕ : X → Z where

Z = Proj
⊕
m≥0

H0(X,m(KX + rL)).

The basic idea of [AW93] to study ϕ is to fix a fibre and understand the
contraction locally, i.e. restricting to an affine neighbourhood of the image
of the fixed fibre. The global contraction can then be obtained by gluing
different local descriptions. To explain formally this idea, we first analyse
the local affine structure of ϕ : X → Z. Set

R = R(X,KX + rL) =
⊕
m≥0

H0(X,m(KX + rL)).
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The variety Z has an affine covering given by sets Zh = D+(h) ∼= SpecR(h),
where h is a homogeneous form and R(h) denotes the subring of elements
of degree 0 in the localization. Let Xh the pull-back of Zh via ϕ and ϕh,
Lh the restrictions of ϕ and L to Xh. Then Lh is ϕh-ample and Xh is
projective over Zh. Since the section of m(KX + rL) associated to multiples
of h do not vanish on Xh, we have that m(KXh +Lh) is a unit in PicXh and
hence, possibly shrinking Xh, we may assume that KXh + Lh is isomorphic
to OXh . The morphism ϕh : Xh → Zh is given by the evaluation map
H0(Xh,KXh + rLh)→ (KXh + Lh) and so is described by

Xh 3 x 7→ ideal of sections of KXh + rLh vanishing at x.

Let us imitate this construction in general. For any scheme X over C
set Γ(X) := SpecH0(X,OX). The evaluation of global functions yields a
morphism ϕΓ : X → Γ(X) defined as follows

x 7→ ideal of global functions vanishing at x.

Lemma 1.2.6. In the above situation the following statements hold:

1. if X is affine then ϕΓ is an isomorphism,

2. (ϕΓ)∗OX = OΓ(X),

3. if X is separable over C then ϕΓ is separable,

4. if X is normal then Γ(X) is normal.

Proof. The first two points follows by definition.
The third assertion is a consequence of Corollary 4.6(e) in [Har70].
If X is normal then H0(X,OX) is integrally closed and hence Γ(X) is

normal.

Hence we state the following:

Definition 1.2.7. Let X be a normal variety with at most log terminal
singularities and assume that KX is Q-Cartier. Let L be a Cartier divisor
and τ ∈ Q such that KX + rL has a nowhere vanishing section. The mor-
phism ϕΓ : X → Γ(X) is called a local (adjoint) contraction supported by
KX + τL.

Let f : Y → T be a contraction supported by KX +τL; fix a fibre F of f
and take an open affine Z ⊂ T such that f(F ) ∈ Z and dim f−1(z) ≤ dimF ,
for z ∈ Z. Set X = f−1Z, then f : X → Z is a local (adjoint) contraction
around F supported by KX + τL.
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Note that Z is a normal affine variety and the fibres of ϕ are connected.
Let G be a generic non-trivial fibre of f . The dual index of f is

d(f) := dimG− τ,

the character of f is

γ(f) :=
{

1 if dimX > dimZ,

0 if dimX = dimZ,

and the difficulty of f is

Φ(f) = dimF − τ.

We will say that (d(f), γ(f),Φ(f)) is the type of f .

To apply inductive arguments we need the following two slicing results,
which are consequences of Bertini’s theorem and vanishing theorems.

Theorem 1.2.8 ([AW93], Lemma 2.5). (Vertical slicing) Let ϕ : X → Z
be a local contraction supported by KX + τL, with τ ≥ −1 + εγ(ϕ) and ε
a sufficiently small positive rational number. Assume that X has LT sin-
gularities and let h be a general function on Z. Let Xh = ϕ∗(h), then the
singularities of Xh are not worse than those of X and any section of L on
Xh extends to X.

Proof. The statement about the singularities is just a version of Bertini’s
Theorem.

The second assertion follows considering the usual exact sequence

0→ OX(L−Xh)→ OX(L)→ OXh(L)→ 0

and noting that H1(X,L − Xh) = H1(X,L) = 0 by Kawamata-Viehweg
vanishing.

Theorem 1.2.9 ([AW93], Lemma 2.6). (Horizontal slicing) Let ϕ : X → Z
be a local contraction around {F} supported by KX + τL. Let Hi ∈ |L| be
generic divisors and Xk = ∩k1Hi be a scheme theoretic intersection; assume
that dimXk = n − k > 0 and that (τ − k) ≥ 0; note that since Xk is a
complete intersection it is Q-Gorenstein, i.e. KXk is Q-Cartier.

i) Let ϕ|Xk = g ◦ ϕk be the Stein factorization of ϕ|Xk : Xk → Z; then
ϕk : Xk → Zk is a proper morphism with connected fibres, around
{F ∩ (∩k1Hi)}, supported by KXk + (τ − k)L|Xk and Zk is affine. In
particular, if Xk is normal then ϕk is a local contraction.
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Assume that X has LT singularities and, if ε is a sufficiently small positive
rational number, that τ ≥ εγ(ϕ) and k ≤ r + 1− εγ(ϕ).

ii) Outside of the base locus Bs|L|, Xk has singularities which are of the
same type of the ones of X and any section of L on Xk extends to a
section of L on X.

Proof. The first point is clear.
For the second statement it is enough to show that H1(Xi,OXi) = 0 for

i ≤ r − εγ(f). Using inductively the exact sequence

0→ OXi(−L)→ OXXi → OXi+1 → 0

we are reduced to prove that Hj(X,−iL) = 0 for i ≤ r − εγ(f) and j > 0,
which follows from Kawamata-Viehweg vanishing.

We will often apply the following lower bound on the dimension of a
fibre.

Theorem 1.2.10 ([And95], Theorem 2.1). Let ϕ : X → Z be a local con-
traction supported by KX + τL and let F be an irreducible component of a
general non-trivial fibre.

If ϕ is birational, then dimF ≥ s := bτc and equality implies F ∼= Ps.

Corollary 1.2.11 (cfr. [BHN13], Lemma 2.1). Let ϕ : X → Z be a bira-
tional local contraction supported by KX + τL and let F be an irreducible
component of a general non-trivial fibre. Let XG be the Gorenstein locus of
X. If F ∩XG 6= ∅, then dimF ≥ τ .

We finally state a basepoint free theorem, which will be crucial for our
inductive arguments.

Theorem 1.2.12. ([AW93]) Let ϕ : X → Z be a local contraction supported
by KX + τL. If ϕ is birational and dimF ≤ τ + 1, then L is ϕ-base point
free.

1.2.2 MMP and reductions

We have already seen how adjunction theory and Mori theory are strictly
connected. The relation between them is also highlighted in the recent
paper [And13], in which Andreatta shows how the minimal model program
with scaling is related to the concepts of zero and first reduction. In this
subsection we would like to summarize these results.

We will assume that X is terminal and Q-factorial, if it is not otherwise
stated.
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Definition 1.2.13. Two quasi-polarized pairs (X1, L1) and (X2, L2) are
said to be birationally equivalent if there is a variety Y with birational
morphisms ϕi : Y → Xi such that ϕ∗1L1 = ϕ∗2L2.

Lemma 1.2.14. Let (X,L) be a terminal Q-factorial quasi-polarized pair.
Let r be a positive rational number. Then there is an effective Q-divisor
∆r ∼Q rL such that (X,∆r) is klt.

Proof. Since L is big and nef, we may write rL ∼Q A+E, where A is ample
and E is effective. Choose ε > 0 small enough so that (X, εE) is klt. Then

rL ∼Q (1− ε)rL+ εA+ εE.

Since (1− ε)rL+ εA is ample, the lemma follows by Bertini.

By [BCHM10] we can run a KX + ∆r-MMP for (X,∆r)

(X0,∆r
0) = (X,∆r) 99K (X1,∆r

1) 99K · · · 99K (Xs,∆r
s)

Each ϕi : Xi 99K Xi+1 is a birational map (divisorial contraction or flip)
associated to an extremal ray Ri. Note that any (Xi,∆r

i ) is klt and each
Xi is terminal Q-factorial. If KX + ∆r is pseudo-effective then KXs + ∆r

s is
nef, otherwise (Xs,∆r

s) is a Mori fibre space.
The major question is

Question 1.2.15. Can we describe explicitly the steps of the MMP and the
final result?

When r ≥ (n− 2) (and L is ample), a complete answer to this question
is given by Theorem 2.1.1.

We start reviewing the case r ≥ n−1. We show that, for any i = 0, . . . , s,
∆r.Ri = 0 and that there exists a nef and big Cartier divisor Li on Xi such
that ϕ∗iLi+1 = Li and ∆r

i ∼Q rLi.
The proof is by induction on i. Assume by contradiction that Li.Ri > 0,

that is Li is ϕi-ample. By adding to L the pull back of a sufficiently ample
line bundle from Xi+1 we can simply assume that Li is ample. Let Fi be a
generic non-trivial fibre of ϕi, then, by Corollary 1.2.11, we get that F is a
divisor and r < n − 1, a contradiction. Hence Li.Ri = 0 and by Corollary
3.17 of [KM98] there exists a nef and big Cartier divisor Li+1 on Xi+1 such
that ϕ∗iLi+1 = Li. In particular each (Xi, Li) is a quasi-polarized variety.

Definition 1.2.16. Assume that r = n − 1. The pair (X ′, L′) := (Xs, Ls)
is called a zero-reduction of (X,L).

For the zero-reduction the situation is summarized by Theorem 5.1 in
[And13], which we report. We first recall the classification of Mori fibre
spaces with nef value higher than n− 2.
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Theorem 1.2.17 ([And13]). Let X be a normal variety with terminal Q-
factorial singularities and L be a nef and big line bundle on X. Let ϕR :
X → Z be a Mori fibre space associated with the extremal ray R = R+[C]
and r be a positive rational number such that (KX + rL).C < 0. Note
that this implies that τ(X,L) > r (possibly adding to L the pull-back of a
sufficiently ample line bundle from Z).

A) If r ≥ (n− 1) then (X,L) is one of the following pairs:

• (Pn,O(1)) and r < (n+ 1),

• (Q,O(1)|Q), where Q ⊂ Pn+1 is a quadric and r < n,

• Cn(P2,O(2)), a generalized cone over (P2,O(2)), and r < n,

• ϕR gives to X the structure of a Pn−1-bundle over a smooth curve C
and L restricted to any fibre is O(1) and r < n.

B) If r ≥ (n− 2) then (X,L) is one of the following pairs:

• one of the pair in the previous list,

• a del Pezzo variety, that is −KX ∼Q (n−1)L with L ample, r < (n−1),

• (P4,O(2)),

• (P3,O(3)),

• (Q,O(2)|Q), where Q ⊂ P4 is a quadric,

• ϕR gives to X the structure of a quadric fibration over a smooth curve
C and L restricted to any fibre is O(1)|Q, r < (n− 1),

• ϕR gives to X the structure of a Pn−2-bundle over a normal surface S
and L restricted to any fibre is O(1), r < (n− 1),

• n = 3, Z is a smooth curve, the general fibre of ϕR is P2 and L
restricted to it is O(2).

Theorem 1.2.18 ([And13]). Let (X,L) be a quasi-polarized variety such
that X has at most terminal Q-factorial singularities.

1. KX + (n+ 1)L is pseudo-effective and on a zero-reduction (X ′, L′) the
Q-Cartier divisor KX′ + (n+ 1)L′ is nef.

2. If KX + nL is pseudo-effective, then on a zero-reduction (X ′, L′) the
Q-Cartier divisor KX′ + nL′ is nef.
KX + nL is not pseudo-effective if and only if any zero-reduction
(X ′, L′) is (Pn,O(1)).
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3. If KX + (n− 1)L is pseudo-effective then on a zero-reduction (X ′, L′)
the Q-Cartier divisor KX′ + (n− 1)L′ is nef.
KX + (n−1)L is not pseudo-effective if and only if any zero-reduction
(X ′, L′) is one of the pairs in 1.2.17 A).

The zero-reduction is useful to contract the curves C on which −KX is
ample and L is not ample. In fact on a zero-reduction, KX′ + (n + 1)L′ is
nef and hence L′.C > 0 for any curve C ⊂ X ′ such that KX′ .C < 0.

We go now a step further considering the first reduction. Let (X,L) be
a quasi-polarized pair with at most terminal Q-factorial singularities and
let (X ′, L′) be the zero-reduction of (X,L). Consider a rational number
r′ ≥ n− 2 and an effective Q-divisor ∆r′ ∼Q r

′L′ such that (X ′,∆r′) is klt.
We can run a KX′ + ∆r′-MMP

(X ′0,∆r′
0 ) = (X ′,∆r′) 99K (X ′1,∆r′

1 ) 99K · · · 99K (X ′s′ ,∆r′
s′).

By induction and by Theorem 2.1.1, we have that each step ϕ′i : X ′i →
X ′i+1 is a weighted blow-up of a smooth point with weight (1, 1, b, . . . , b) and
that we have nef and big divisors L′i on X ′i such that

ϕ′∗i L
′
i+1 = L′i + bEi.

Thus for each i = 0, . . . , s′ we have a quasi-polarized pair (X ′i, L′i) with
terminal Q-factorial singularities such that ∆r′

i ∼Q r
′L′i.

Definition 1.2.19. Assume that r′ = n−2. The pair (X ′′, L′′) = (X ′s′ , L′s′)
is called a first-reduction of (X,L).

The conclusion is the following.

Theorem 1.2.20. ([And13, Thm. 5.7] ) Let (X,L) be a quasi-polarized
variety such that X has at most terminal Q-factorial singularities.

1. If KX+(n−2)L is pseudo-effective then on any first-reduction (X ′′, L′′)
the divisor KX′′ + (n− 2)L′′ is nef.

2. KX + (n−2)L is not pseudo-effective if and only if any first-reduction
(X ′′, L′′) is one of the pairs in 1.2.17 A) or B).

We show a nice application of these results for immersed projective va-
rieties.

Corollary 1.2.21. ([And13]) Let X ⊂ PN be a non degenerate projective va-
riety of dimension n ≥ 3 and of degree d. Assume that d < 2codimPN (X)+2.
Then either (X,O(1)) is birationally equivalent to one of the quasi-polarized
pair in Proposition 1.2.17 A) or the first-reduction of the resolution of X is
one of the quasi-polarized varieties in Proposition 1.2.17 B).
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Proof. Let π : X̃ → X be a resolution of the singularities of X and let
L̃ := π∗L. The divisor L̃ is globally generated and h0(X̃, L̃) ≥ N + 1. Take
L1, . . . , Ln−1 general members in |L̃| and let C := L1∩. . .∩Ln−1; Lemma A.2
in [Mel02] says that (KX̃ + (n− 2)L̃).C < 0. By Theorem 0.2 in [BDPP13]
this implies that KX̃ + (n− 2)L̃ is not pseudo-effective.

By Theorem 1.2.20 we are done.

1.3 Weighted projective spaces and blow-ups

1.3.1 Weighted projective spaces

We collect here some basic definitions and known results about weighted
projective space, that will be used later on (mainly in chapter 4). We prin-
cipally follow [IF00].

Let a0, . . . , an be positive integers and let S = S(a0, . . . , an) be the
graded polynomial ring C[x0, . . . , xn], graded by deg xi = ai. The weighted
projective space P(a0, . . . , an) is defined as

P(a0, . . . , an) = ProjS.

Let An+1 be the affine n+ 1-space and let x0, . . . , xn be coordinates for
An+1. Consider the action of C∗ on An+1 via

λ · (x0, . . . , xn) = (λa0x0, . . . , λ
anxn) for λ ∈ C∗.

Then
P(a0, . . . , an) = (An+1\{0})/C∗

and x0, . . . , xn are homogeneous coordinates on P(a0, . . . , an).

Definition 1.3.1 (Cyclic quotient singularities). Let r > 0, b1, . . . , bn inte-
gers and let x1, . . . , xn coordinates on An. Consider the action of Zr on An
given by

xi 7→ εbixi

where ε is a primitive r-th root of unity. Denote the quotient by An/Zr(b1, . . . , bn)
or simply An/Zr if there is no ambiguity. A singularity Q ∈ X is said to be
of type 1

r (b1, . . . , bn) if (X,Q) is isomorphic to an analytic neighbourhood
of the origin of (An)/Zr.

For any i = 1, . . . , n let Ui = {xi 6= 0} ⊂ P(a0, . . . , an). Then

Ui = SpecC[x0, . . . , xn, x
−1
i ] ∼= SpecC[u0, . . . , ûi, . . . , un]Zai = An/Zai

where the group Zai acts via

uj 7→ εajuj



20 CHAPTER 1. PRELIMINARIES

for j 6= i and for ε a primitive ai-th root of unity. The coordinates uj are
given by uj = xj/x

aj/ai
i (see [KSC04] for details).

We say that P(a0, . . . , an) is well-formed if for each i, gcd(a0, . . . , âi, . . . , an) =
1. By the following proposition we may often assume that a weighted pro-
jective space is well-formed.

Proposition 1.3.2. Let P(a0, . . . , an) be a weighted projective space. Then
there are positive integer b0, . . . , bn such that P(a0, . . . , an) ∼= P(b0, . . . , bn)
and P(b0, . . . , bn) is well-formed.

Definition 1.3.3. Let I ⊂ S be an ideal generated by a regular sequence
{fi} of homogeneous elements of S. Define

XI = ProjS/I ⊂ P(a0, . . . , an).

XI is called a weighted complete intersection of multidegree {di = deg fi}.
We denote by Xd1,...,dk ⊂ P a sufficiently general element of the family of
weighted complete intersections of multidegree {di}.

Note that if Xd in P(a0, . . . , an) is such that d = ai for some i, then
Xd
∼= P(a0, . . . , âi, . . . , an).
We now look at the singularities of P(a0, . . . , an) from a toric point of

view. Let Pi = [0, . . . , 0, 1, 0, . . . , 0] be the i-th coordinate point. We in-
dicate with Pi1 · · ·Pik the toric stratum determined by Pi1 , . . . , Pik and by
∆ the fundamental simplex of P (that is the union of all the hyperplane
P0 . . . P̂i . . . Pn).

Singularities only appear on ∆ and codimP(Psing) ≥ 2. The vertex
Pi is a singular point of type 1

ai
(a1, . . . , âi, . . . , an). Each generic point P

of an edge PiPj has an analytic neighbourhood U which is analytically
isomorphic to (0, Q) ∈ A1 × Y , where Q ∈ Y is a singularity of type

1
hi,j

(a0, . . . , âi, . . . , âj , . . . , an). Similar results hold for higher dimensional
strata.

Definition 1.3.4. A subvariety X in P(a0, . . . , an) of codimension c is well
formed if P(a0, . . . , an) is well-formed and X contains no codimension c+ 1
singular stratum of P(a0, . . . , an).

Lemma 1.3.5. The hypersurface Xd ⊂ P(a0, . . . , an) is well-formed if and
only if P(a0, . . . , an) is well-formed and

gcd(a0, . . . , âi, . . . , aj , . . . , an)|d

for all distinct i, j.

LetX ⊂ P(a0, . . . , an) be a subvariety and let p : An+1\ {0} → P(a0, . . . , an)
be the canonical projection. The affine cone CX over X is defined as the
completion of p−1(C) in An+1.
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Definition 1.3.6. A subvariety X in P(a0, . . . , an) is quasi-smooth if its
affine cone CX is smooth outside its vertex.

If X ⊂ P is a quasi-smooth subvariety, then the singularities of X are
due to the C∗-action and hence are quotient singularities.

We will often apply the following criterion by Reid to determine whether
a quotient singularity is terminal or not.

Theorem 1.3.7 ([Rei87], Thm. 4.11). A quotient singularity of type 1
m(a1, . . . , an)

is terminal if and only if

1
m

∑
i

kai > 1, for k = 1, . . . ,m− 1,

where t̄ denotes the smallest residue of t mod m.

It is also important to recall that if Xd1,...,dc ⊂ P(a0, . . . , an) is well-
formed and quasi-smooth, then by adjunction ωX ∼= OX(

∑
di −

∑
ai) (see

[IF00, 6.14]).

1.3.2 Weighted blow-ups

In this subsection we define and study weighted blow-ups along smooth
subvarieties; they are a straightforward generalization of weighted blow-ups
of points as defined, for example, in Section 10 of [KM98] or in Section
3 of [Hay99]. This material appeared in a joint paper with M. Andreatta
([AT13]).

Let σ = (a1, . . . , ak, 0, . . . , 0) ∈ Nn such that ai > 0 and gcd(a1, . . . , ak) =
1. Let M = lcm(a1, . . . , ak). We denote by P(a1, . . . , ak) the weighted pro-
jective space with weight (a1, . . . , ak). Let X = An = SpecC[x1, . . . , xn] and
Z = {x1 = . . . = xk = 0} ⊂ X.

Consider the rational map

ϕ : An → P(a1, . . . , ak)

given by (x1, . . . , xn) 7→ (xa1
1 : . . . : xakk ).

Definition 1.3.8. The weighted blow-up of X along Z with weight σ is
defined as the closure X in An × P(a1, . . . , ak) of the graph of ϕ, together
with the morphism π : X → X given by the projection on the first factor.

The map π is birational and contracts an exceptional irreducible divisor
E to Z. Moreover for any point z ∈ Z we have π−1(z) = P(a1, . . . , ak).

We now describe a convenient affine covering for X̄.
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One can see that

Ui ∼= SpecC[x̄1, . . . , x̄n]/Zai(−a1, . . . ,
i-th
1 , . . . ,−ak, 0, . . . , 0)

∼=
(

SpecC[x̄1, . . . , x̄k]/Zai(−a1, . . . ,
i-th
1 , . . . ,−ak)

)
× An−k.

and

π|Ui : Ui 3 (x̄1, . . . , x̄n) 7→ (x̄1x̄
a1
i , . . . ,

i-th
x̄aii , . . . , x̄kx̄

ak
i , x̄k+1, . . . , x̄n) ∈ X.

In the affine set Ui, E is defined by {x̄i = 0}/Zai and hence ME is a
Cartier divisor on X.

It is worthy to give a toric description of the above construction. Let M
be the free abelian group Zn and N = HomZ(M,Z) its dual. By identifying
m = (m1, . . . ,mn) ∈ M with xm1

1 · · ·xmnn , we refer to M as the lattice of
monomials and toN as the lattice of weights. Let {ei}i=1,...,n be the standard
basis of of NR and let τ =

∑n
i=1 R≥0ei ⊂ NR be the positive quadrant.

Let σ = (a1, . . . , ak, 0, . . . , 0) ∈ N such that ai > 0 and gcd(a1, . . . , ak) =
1. Consider the fan ∆(σ) consisting of the cones

τi(σ) =
∑
j 6=i

R≥0ej + Rσ

for i = 1, . . . , k, together with all their faces. The weighted blow-up of
X = An along Z = {x1 = . . . = xk = 0} ⊂ X with weight σ corresponds
to the toric variety defined by ∆(σ) together with the associated birational
morphism φ : X → X. This morphism is obtained by gluing the morphisms

φi : SpecC[τi(σ)∨ ∩M ]→ An,

for k = 1, . . . , k.
To show that this construction gives the weighted blow-up as defined

before, it is enough to check that, for any i = 1, . . . , k, we have

C[z1, . . . , zn]Zai ∼= C[τi(σ)∨ ∩M ],

where Zai acts on C[z1, . . . , xx] as

zj 7→ ε−ajzj for j 6= i and zi 7→ εzi,

and ε is a primitive aj-th root of unity. As usual, C[z1, . . . , zn]Zai denotes
the subring of invariants of C[z1, . . . , zn] under the action of Zai .

This follows by the correspondence

zbii
∏
j 6=i

z
bj
j 7→ x

(bi−
∑

j 6=i bjaj)/ai
i

∏
j 6=i

x
bj
j ,
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since

C[z1, . . . , zn]Zai = C[zbii
∏
j 6=i

z
bj
j : bi −

∑
j 6=i

ajbj ≡ 0 mod ai].

We can look at weighted blow-ups also from a more algebraic point of
view. Define the function

σ-wt : C[x1, . . . , xn]→ N

as follows. For a monomial T = xs1
1 . . . xsnn we set σ-wt(T ) :=

∑k
i=1 siai. For

a polynomial f =
∑
I αITI , where αI ∈ C and TI are monomials, we set

σ-wt := min{σ-wt(TI) : αI 6= 0}.

Definition 1.3.9. Let σ = (a1, . . . , ak, 0, . . . , 0) ∈ Nn such that ai > 0 and
gcd(a1, . . . , ak) = 1. For any d ∈ N we define the σ-weighted ideal of degree
d as

Iσ,d = {g ∈ C[x1, . . . , xn] : σ-wt(g) ≥ d} = (xs1
1 · · ·x

sn
n :

k∑
j=1

sjaj ≥ d).

Lemma 1.3.10. Let π : X → X be the weighted blow-up of X = An along
Z = {x1 = . . . = xk = 0} with weight σ = (a1, . . . , ak, 0, . . . , 0). Then

π∗OX(−dE) = Iσ,d.

Therefore
X = Proj

⊕
d≥0

Iσ,d.

Proof. Let {Ui} be the standard affine covering of X.
As the exceptional divisorE is effective, we have that J := π∗OX(−dE) ⊂

C[x1, . . . , xn] is an ideal. A polynomial g(x1, . . . , xn) is an element of J if
and only if for any 1 ≤ i ≤ k we have that g(x̄1, . . . , x̄n) ∈ Γ(Ui,OX(−dE)).
Since E is defined by {x̄i = 0}/Zai on the affine subset Ui, we have that x̄di
divides g(x̄1, . . . , x̄n) if and only if σ-wt(g) ≥ d, and the lemma follows.

We now look more carefully at the blows-ups we will encounter in Chap-
ter 2.

Proposition 1.3.11. Let π : X → X be the weighted blow-up of p =
(0, . . . , 0) ∈ X = An with weight σ = (1, a, b, c, . . . , c), where (a, b) = 1
and ab|c. Then

π∗OX(−dcE) = π∗OX(−cE)d

and
X = Proj

⊕
d≥0

Idσ,c.
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Proof. Let c = kab with k ∈ N.
It suffices to prove that for every integer d ≥ 1 the natural map

π∗OX(−(d− 1)cE)⊗ π∗OX(−cE)→ π∗OX(−dcE)

is surjective. For d = 1 there is nothing to prove, so we assume d ≥ 2.
Let g = xs1

1 · · ·xsnn ∈ π∗OX(−dcE) = (xs1
1 · · ·xsnn : s1 + s2a + s3b +∑k

i=4 sic ≥ dc). We claim that there exists h = xt11 · · ·xtnn ∈ π∗OX(−cE)
such that t1 + t2a + t3b +

∑n
i=4 tic = c and ti ≤ si for all 1 ≤ i ≤ n. In

fact, if there is j ∈ {4, . . . , k} such that sj 6= 0, then just set h = xj . If
sj = 0 for j = 4, . . . , k, then s1 + s2a ≥ c or s3b ≥ c. In the first we can
set t2 = min{s2, c/a} and t1 = c− t2a. In the second case the claim follows
setting h = x

c/b
3 .

Let k = g · h−1, then k ∈ π∗OX(−(d− 1)bE) and g = k · h.
The second part of the statement is a consequence of the first part and

Lemma 1.3.10.

We remark that the previous Proposition does not hold for any weight
σ as the following example shows. Nevertheless, since the algebra⊕

d≥0
Idσ,b

is finitely generated, there is always a positive integer L such that

Idσ,L = Iσ,dL

for any d ∈ N.

Example 1.3.12. Let Z = {x1 = x2 = x3 = 0} ⊂ X = An and σ =
(10, 14, 35, 0, . . . , 0). Let π : X → X be the weighted blow-up of X along Z
with weight σ. Consider

g = x5
1x

4
2x3 ∈ π∗OX(−2ME),

where M = lcm(2, 5, 7) = 70; note that σ-wt(g) = 141. It is easy to check
that there is no triple (t1, t2, t3) ∈ N3 such that 10t1 + 14t2 + 35t1 = 70 and
t1 ≤ 5, t2 ≤ 4, t3 ≤ 1 and hence

π∗OX(−140E) 6= π∗OX(−70E)2.

The following is a simple application of Reid’s criterion 1.3.7.

Lemma 1.3.13. Let π : X → X be the weighted blow-up of p = (0, . . . , 0) ∈
X = An with weight σ = (1, a, b, c, . . . , c), where (a, b) = 1 and ab|c. Then
X has terminal singularities.
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Proof. By the description of the standard open cover {Ui}i=1,...,n (see for
instance [KM98, 10.3]) we need to check that the following quotient singu-
larities are terminal:
1
a

(−1, 1,−b,−c . . . ,−c), 1
b

(−1,−a, 1,−c . . . ,−c), 1
c

(−1,−a,−b, 1,−c . . . ,−c).

We apply Reid’s criterium 1.3.7. The first two cases are immediate. For
the third case note that

1
c

(−k +−ka+−kb+ k) = 1 + 1
c

(−ka+−kb) ≥ 1 for k = 1, . . . , c− 1

and the equality is impossible: in fact we have equality only if c|ka and c|kb
and, since c = sab for a positive integer s, this implies sa|k and sb|k. As a
and b are coprime we deduce that sab|k, which is a contradiction.

We now define the symbolic powers of an ideal and check that σ-weighted
ideals behave well with respect to symbolic powers.

Definition 1.3.14. Given an ideal I ⊂ R in a Noetherian ring R and t ∈ N,
the t-th symbolic power I(t) of I is defined as the restriction of ItRS to R,
where S is the complement of the union of the minimal associated primes
of I and RS is the localization of R at the multiplicative system S.

If I is a prime ideal, then the definition of symbolic power is for instance
given in [Laz04, Definition 9.3.4] or in [AM69, Exercise 4.13]. Note that, by
definition, It ⊂ I(t); in general the inclusion might be strict.

Lemma 1.3.15. Let σ = (a1, . . . , ak, 0, . . . , 0) ∈ Nn such that ai > 0 and
gcd(a1, . . . , ak) = 1, and let L be a positive integer such that

Idσ,L = Iσ,dL.

for any d ∈ N, where Iσ,d is the σ-weighted of degree d. Set I = Iσ,L.
Then for any t ∈ N we have It = I(t).

Proof. We will use the fact that if f, g ∈ R then σ-wt(fg) = σ-wt(f) +
σ-wt(g).

We first show that I is primary: if fg ∈ I then σ-wt(f) ≥ 1 or σ-wt(g) ≥
1 and hence fm ∈ I or gm ∈ I for m big enough. Then the only prime
associate to I is its radical ideal r(I), which is r(I) = (x1, . . . , xk) since
there is always a power of xi in I for 1 ≤ i ≤ k.

Let now S = R\r(I). By Proposition 3.11 in [AM69] we have I(t) =⋃
s∈S(It : s). Using the fact that σ-wt(s) = 0, we have that for any s ∈ S

(It : s) = {g ∈ R : σ-wt(gs) ≥ tL} = {g ∈ R : σ-wt(g) ≥ tL} = It.
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The definition of weighted blow-up in 1.3.8 depends on the local coor-
dinates chosen. To construct a global weighted blow-up along a subvariety
Z of a complete variety X one needs to patch together weighted blow-ups
defined on a covering of X, in such a way that the local coordinates preserve
the weight. We propose the following.

Definition 1.3.16. Let X be a smooth variety and Z a smooth subvariety
of codimension k and let σ = (a1, . . . , ak, 0, . . . , 0) ∈ Nn such that ai > 0
and gcd(a1, . . . , ak) = 1. Let Iσ,d be ideal sheaves on X such that there is
an covering {Ui ∼= Dn}i∈I on X so that for any i ∈ I there are coordinates
x1, . . . , xn on Ui for which Z ∩ Ui = {x1 = . . . = xk = 0} and Γ(U, Iσ,d) =
{g ∈ C[x1, . . . , xn] : σ-wt(g) ≥ d}. A weighted blow-up of X along Z with
weight σ is the projectivization

π : X = Proj
⊕
d≥0
Iσ,d → X.

We call Iσ,d a σ-weighted ideal sheaf of degree d for Z in X.

Let Z ⊂ X be a smooth subvariety of codimension k in the regular locus
of a variety X; let also σ = (a1, . . . , ak, 0, . . . , 0) be a weight. The question
about the existence of a σ-weighted ideal for Z in X, and therefore of a
weighted blow-up of X along Z with weight σ, is not clear. In general it
seems a difficult problem to find sufficient conditions for a positive answer.

However, if Z ⊂ Pn is a complete intersection, then for any weight σ =
(a1, . . . , ak, 0, . . . , 0) there exists a weighted blow-up along Z with weight σ.
In fact, let F1, . . . , Fk be a regular sequence of homogeneous polynomials
generating the ideal IZ ⊂ R = C[x0, . . . , xn] of Z. We need the following
standard fact to define a weight function σ-wt on C[x0, . . . , xn].

Proposition 1.3.17. ([Mat80, Thm. 27]) Let R be a ring and let f1, . . . , fk ∈
R be a regular sequence. Consider the map

ψ : R[x1, . . . , xk]→ grIR =
⊕
j∈N

Ij/Ij+1

which sends an homogeneous polynomial G[x1, . . . , xn] ∈ R[x1, . . . , xk] of
degree j to the image of G(f1, . . . , fn) in Ij/Ij+1. Then ψ induces a map

φ : (R/I)[x1, . . . , xk]→ grIR =
⊕
j∈N

Ij/Ij+1

which is an isomorphism of graded rings.

Let now g ∈ C[x1, . . . , xn]. If g 6∈ IZ then just set σ-wt(g) = 0. If g ∈ IZ ,
then consider ḡ, the image of g in grIR, and write

ḡ =
∑
β∈Nk

hβF̄
β1
1 · · · F̄

βk
k ,
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where β = (β1, . . . , βk) ∈ Nk, hβ ∈ R/I and F̄1, . . . , F̄k are the images of
F1, . . . , Fk in grIR. This writing is unique by the previous proposition, and
hence

σ-wt(g) := min
β

{
k∑
i=1

aiβi : hβ 6= 0
}

is a well defined function and it is a valuation on C[x0, . . . , xk], that is
σ-wt(gh) = σ-wt(g) + σ-wt(h) and σ-wt(g + h) ≥ min{σ-wt(g), σ-wt(h)}.

Then, finally, for any d ∈ N, we may define the σ-weighted ideal sheaf
Iσ,d setting

Γ(U, Iσ,d) =
{
f

g
: f, g are homogeneous, g|U 6≡ 0 and σ-wt(f)− σ-wt(g) ≥ d

}
for any open subset U ⊂ Pn.
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Chapter 2

Classification of contractions

This chapter collects the results of the joint paper [AT13] and of a work in
progress with M. Andreatta.

Let X be a terminal Q-factorial projective variety and let L be an ample
Cartier divisor on X. We recall that contractions of fibre type with nef value
higher than n− 2 are completely classified (see 1.2.17), as well contractions
supported by KX + (n− 2)L (see [Mel97]).

In the first section of this chapter we will complete the description of
the extremal rays R = R+[C] contained in the cone NE(X)(KX+(n−2)L)<0
whose associated contractions are birational (Theorem 2.1.1). Then we
will classify divisorial contractions associated to extremal rays R such that
R.(KX +rL) < 0, where r is a non-negative integer, and the fibres of f have
dimension less or equal to r + 1 (Theorem 2.1.2).

In section 2.2 we study birational Fano-Mori contractions f : X →
Z supported by KX + τL, where τ > n − 3. Let F be an irreducible
component of a general non trivial fibre of f . By Corollary 1.2.11 there are
four possibilities:

1. f is a divisorial contraction to a point p ∈ Z,

2. f is a divisorial contraction to a curve C ⊂ Z, F is normal, dimF =
n− 2 and ∆(F,L) = 0,

3. f is a small contraction to a point, F is normal, dimF = n − 2 and
∆(F,L) = 0,

4. f is a small contraction to a point, F is contained in the singular locus
of X and F ∼= Pn−3.

In the first case, we can prove Theorem 2.2.11, which is an application
of Theorem 2.2.7 and in which we show how to extend Kawakita contrac-
tions in higher dimension under suitable hypotheses. This is the content of
subsections 2.2.1 and 2.2.2.

29
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The second case is already included in Theorem 2.1.2.
In subsection 2.2.3 we will start the study of the third case. It is

plausible that the forth case does not happen, but we do not have a proof
of this fact.

In the last subsection we see that an MMP for a klt pair (X,∆) such
that ∆ ∼ rL, L is nef and big and r is close enough to n − 2 is just the
classical second reduction of (X,L).

2.1 Contractions with τ > n− 2
The results of this subsection are the content of a joint paper with M.
Andreatta ([AT13]).

Theorem 2.1.1. ([AT13, Thm. 1.1]) Let X be a normal projective variety
with Q-factorial terminal singularities and let L be an ample Cartier divisor
on X. Let R be an extremal ray in NE(X)(KX+(n−2)L)<0 and let f : X → Z
be its associated contraction. Assume that f is birational. Then f is a
weighted blow-up of a smooth point with weight σ = (1, 1, b, . . . , b), where b
is a positive integer (see Definition 1.3.8).

If n = 3 the Theorem follows from the results in [And13] and the main
Theorem in [Kaw01]; our proof is however independent of [Kaw01].

Proof. Let F1 be a non trivial fibre of f . We pass to a local set-up, i.e. we
assume that f : X → Z is a local F-M contraction around F1 supported
by KX + τL, where τ is the nef value of the pair (X,L), a positive rational
number greater than n − 2. Let F be a component of F1. By Corollary
1.2.11, we get that dimF ≥ τ > n− 2; this means that dimF = n− 1 and
hence the exceptional locus of f has codimension 1. Since the exceptional
locus of a divisorial contraction is irreducible we conclude that F is the
exceptional divisor, and f is the contraction of F to a point p ∈ Z.

Since f is a KX -negative contraction, Z is terminal and Q-factorial (see
[KM98, Corollary 3.43]). Proposition 3.6 of [And13] says that p is smooth.
For the reader’s convenience we recall that proof. More precisely, by induc-
tion on n ≥ 2, we prove that p is smooth in Z and that

KX = f∗KZ + ((n− 2)b+ 1)F and τ = n− 2 + 1
b

(2.1)

for a positive integer b such that f∗f∗L = L+ bF .
If n = 2, X is smooth and in this case we can apply Castelnuovo’s

theorem, which says that f is the contraction of a (−1)-curve F to a smooth
surface Z, therefore KX = f∗KZ + F . Note that L1 := f∗L is a Cartier
divisor on Z and there is a positive integer b such that L = f∗L1−bF . From
0 = (KX + τL).F = (KX − τbF ).F = −1 + τb, we get τ = 1/b.
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Let n ≥ 3 and pick a general member X ′ ∈ |L|: by Theorem 1.2.12
and Bertini’s theorem it has terminal Q-factorial singularities. Consider the
restricted morphism f ′ := f|X′ : X ′ → Z ′; by Lemma 1.2.9 it is a divisorial
contraction supported by KX′ + (τ − 1)L|X′ . By inductive assumption,
p ∈ Z ′ is smooth; by [Mel97, Lemma 1.7] we conclude that p ∈ Z is smooth,
L1 := f∗L is Cartier and L = f∗L1 − bF for a positive integer b. Denoting
by F ′ the exceptional divisor of f ′, by induction we have

KX′ = f∗KZ′ + ((n− 3)b+ 1)F ′ and τ − 1 = n− 3 + 1
b
,

from which (2.1) follows.

Let X ′ ∈ |L| be again a general element and f ′ := f|X′ : X ′ → Z ′

be the restricted morphism. Since Z and Z ′ = f∗X
′ are smooth at p we

may choose local coordinates x1, . . . , xn around p such that Z ∼= Dn and
f∗X

′ = {xn = 0}.
Note that OX(−bF ) is f -ample and that the map f is proper; thus we

have that
X = Proj(⊕d≥0f∗OX(−dbF )).

By Lemma 1.3.10, X will be the weighted blow-up we are looking for if

f∗OX(−dbF ) = Iσ,d = (xs1
1 · · ·x

sn
n : s1 + s2 +

n∑
j=3

bsj ≥ db).

The proof of this is by double induction on n and d, starting with n = 2
and d = 0.

Consider the exact sequence

0→ OX(−L− dbF )→ OX(−dbF )→ OX′(−dbF )→ 0.

Note that

−L− dbF ∼f −(d− 1)bF ∼f KX + (n− 3 + d+ 1
b

)L.

Hence, pushing down to Z the above exact sequence and applying the rela-
tive Kawamata-Viehweg Vanishing, we have

0→ f∗OX(−(d− 1)bF ) ·xn→ f∗OX(−dbF )→ f∗OX′(−dbF )→ 0. (2.2)

By induction on n, we can assume that

f∗OX′(−dbF ) = (xs1
1 · · ·x

sn−1
n−1 : s1 + s2 +

n−1∑
j=3

bsj ≥ db)
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where sj ∈ N. The case n = 2 follows from Castelnuovo’s theorem. By
induction on d, we can also assume that

f∗OX(−(d− 1)bF ) = (xs1
1 · · ·x

sn
n : s1 + s2 +

n∑
j=3

bsj ≥ (d− 1)b),

the case d = 0 being trivial.
Let g = xs1

1 · · ·xsnn ∈ f∗OX(−dbF ) be a monomial.
If sn ≥ 1 then g, looking at the sequence (2.2), comes from f∗OX(−(d−

1)bF ) by the multiplication by xn; therefore

s1 + s2 +
n−1∑
j=3

sjb+ snb ≥ (d− 1)b+ snb ≥ db.

If sn = 0, then g ∈ f∗OX′(−dbF ) and so

s1 + s2 +
n∑
j=3

sjb = s1 + s2 +
n−1∑
j=3

sjb ≥ db.

The non-monomial case follows immediately.

We can include the above Theorem in a more general statement regarding
a ray R = R+[C] contained in the cone NE(X)(KX+rL)<0, where r is a
non-negative integer, whose associated contraction is divisorial (i.e. it is
birational and its exceptional locus is a divisor) with all fibres of dimension
less or equal to r + 1. That is we prove the following Theorem, which is a
generalization of Theorem 4.9 in [KM92] (see also Theorem 3.2 in [And95]).

Theorem 2.1.2. ([AT13, Thm. 1.2]) Let X be a normal projective variety
with Q-factorial terminal singularities and let L be an ample Cartier divisor
on X. Let R be an extremal ray in NE(X)(KX+rL)<0 where r ∈ N is a non-
negative integer and let f : X → Z be its associated contraction. Assume
that f is divisorial and that all fibres have dimension less or equal to r + 1.
Let E be the exceptional locus of f and set C := f(E) ⊂ Z.

1. Then codimZC = r+ 2, there is a closed subset S ⊂ Z of codimension
al least 3 such that Z ′ = Z\S and C ′ = C\S are smooth, and f ′ :
X ′ = X\f−1(S)→ Z ′ is a weighted blow-up along C ′ with weight σ =
(1, 1, b, . . . , b, 0, . . . , 0), where the number of b’s is r (see Definitions
1.3.8 and 1.3.16).

2. Let I ′ be a σ-weighted ideal sheaf of degree b for Z ′ ⊂ X ′ (see Definition
1.3.16) and let i : Z ′ → Z be the inclusion; let also I := i∗(I ′) and
I(m) be the m-th symbolic power of I (see Definition 1.3.14). Then
X = Proj

⊕
m≥0 I(m).
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To prove Theorem 2.1.2 we need some preliminary lemmas.
The following is a local version of Theorem 2.1.2 around a general fibre.

Lemma 2.1.3. Let f : X → Z be a local contraction supported by KX +
τL, where X is terminal Q-factorial and L is an f -ample Cartier divisor.
Assume that f is divisorial and let E be the exceptional divisor. Set C =
F (E) ⊂ Z. Assume also that there exists a positive integer r such that
τ > r and that any fibre of f has dimension less or equal to r + 1. Let
F be a general non-trivial fibre. Then f(F ) is a smooth point and we may
assume that locally in f(F ) there are analytic coordinates x1, . . . , xn such
that C = {x1 = . . . = xr+2 = 0} and f is a weighted blow-up along C
with weight σ = (1, 1, b, . . . , b, 0 . . . , 0), where b is a positive integer and the
number of b’s is r.

Proof. By the assumptions and by Corollary 1.2.11, we gain that dimF =
r + 1; therefore dimC = n− r − 2.

First we prove that p = f(F ) is a smooth point of Z. Take n − r − 2
general functions hj ∈ H0(X,OX), j = 1, . . . , n − r − 2 and let Xj ⊂ X
be the divisor defined by hj . By Lemma 1.2.8, setting X” =

⋂n−r+2
j=1 Xj ,

we have that f” := f|X” : X” → Z” is a local contraction supported by
KX” +τLX”, it is birational, it contracts a divisor F to the point p = C∩Z”
and τ > r = dimX” − 2. Note that p is general in C and hence F is
a general non-trivial fibre of f . The contraction f” : X” → Z” satisfies
the assumption of Theorem 2.1.1 and hence we have that f” is a weighted
blow-up of a smooth point with weight (1, 1, b, . . . , b), where b is a positive
integer.

Therefore we may assume that Z” = f”(X”) is smooth at p. Since Z” is
an intersection of Cartier divisors in Z, we conclude that Z is smooth at p.

The proof is now by induction on the dimension of F , i.e. on dimF =
r + 1; for this we apply Lemma 1.2.9.

Assume dimF = 1. SinceX has terminal singularities, which are in codi-
mension 3, F is contained in the smooth locus of X, and hence, in the local
set-up, we may assume that X is smooth. Therefore X is a smooth blow-up
(see for instance Corollary 4.11 in [AW93]): i.e. f is, locally around p, the
blow-up of C = {x1 = x2 = 0} with weights (1, 1, 0 . . . , 0); in particular we
have that

KX = f∗KZ + E.

If dimF = r + 1 ≥ 2, let X ′ be a general element in |L|. By Theorem
1.2.12 and Bertini’s theorem, X ′ has terminal Q-factorial singularities. Con-
sider the contraction f ′ := f|X′ : X ′ → Z ′; by Lemma 1.2.9, it is a divisorial
contraction supported by KX′ + (τ − 1)L|X′ with fibres of dimension equal
to r. We have already proved that Z and Z ′ smooth in p, therefore, by
induction, we may assume that locally C = {x1 = . . . = xr+2 = 0} ⊂ Z ′ =
{xr+2 = 0} ⊂ Z and that f ′ is the smooth blow-up along C.
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Let L1 be the Cartier divisor f∗L; we have L = f∗L1− bE for a positive
integer b and bE is a Cartier divisor.

Reasoning as in the proof of Theorem 2.1.1, by horizontal slicing and by
induction on r, we get the formulae

KX = f∗KZ + (rb+ 1)E and τ = r + 1
b
.

Since OX(−bE) is f -ample we have

X = Proj⊕d≥0 f∗OX(−dbE).

By Lemma 1.3.10 we have to show that

f∗OX(−dbE) = Iσ,d = (xs1
1 · · ·x

sn
n : s1 + s2 +

r+2∑
j=3

sjb ≥ db).

The proof is by double induction on r ≥ 0 and d ≥ 0, and it is similar to
the proof of Theorem 2.1.1.

Consider the exact sequence

0→ OX(−L− dbE)→ OX(−dbE)→ OX′(−dbE)→ 0.

Note that
−L− dbE ∼f KX + (r + (d− 1) + 1

b
)L

and hence, by the Relative Kawamata-Viehweg Vanishing, we have

0→ f∗OX(−(d− 1)bE) ·xr+2→ f∗OX(−dbE)→ f∗OX′(−dbE)→ 0. (2.3)

By induction on r we can assume that

f∗OX′(−dbE) = (xs1
1 · · ·x

sr+1
r+1 x

sr+3
r+3 · · ·x

sn
n : s1 + s2 +

r+1∑
j=3

sjb ≥ db),

where sj ∈ N. We have already treated above the case r = 0. By induction
on d ≥ 0, we can assume that

f∗OX(−(d− 1)bE) = (xs1
1 · · ·x

sn
n : s1 + s2 +

r+2∑
j=3

sjb ≥ (d− 1)b),

the case d = 0 being trivial.
Let g = xs1

1 · · ·xsnn ∈ f∗OX(−dbE).
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If sr+2 ≥ 1 then, looking at the sequence (2.3), g comes from f∗OX(−(d−
1)dE) by the multiplication by xr+2 and so

s1 + s2 +
r+1∑
j=3

sjb+ sr+2b ≥ (d− 1)b+ sr+2 ≥ db.

Otherwise g ∈ f∗OX′(−bdE) and it satisfies

s1 + s2 +
r+1∑
j=3

sjb = s1 + s2 +
r∑
j=3

sjb ≥ db.

Proof of Theorem 2.1.2. First notice that, as in the first line of the proof of
2.1.1, dimC = n− r − 2.

We proceed as in [KM92, Theorem 4.9].
By Lemma 2.1.3, C ∩ Sing(Z) ( C; moreover since Z has terminal

singularities, Sing(Z) has codimension at least three. Therefore we can find
a codimension three closed subset S ⊂ Z such that Z ′ = Z\S is smooth
and f−1(S) has codimension at least two in X. Moreover, by Lemma 2.1.3,
we may assume that X ′ = X\f−1(S) is a weighted blow-up of Z ′ along
C ′ = C\S with weight σ = (1, 1, b, . . . , b, 0, . . . , 0) ∈ Nn. This proves (i).

To prove (ii), since X = Proj
⊕
m≥0 f∗OX(−mbE), we need to show that

f∗OX(−mbE) = I(m). (2.4)

Note that by Proposition 1.3.11 we have

f∗(OX(−mbE))|Z′ = (I|Z′)m.

By definition of symbolic power, and using the fact proved in Lemma
1.3.15 that (I|Z′)m = (I|Z′)(m) = (I(m))|Z′ , we obtain

i∗((I(m))|Z′) = I(m).

Therefore 2.4 follows by

i∗(f∗(OX(−mbE))|Z′) = f∗(OX(−mbE)),

which is a consequence of the following general fact.

Lemma 2.1.4. Let f : U → V be a proper morphism. Let S ⊂ V be a
closed subset such that the codimension of f−1(S) in U is at least two. Let
F be a sheaf that satisfies Serre’s condition S2 (e.g. U is normal and F is
reflexive). Then f∗F = i∗(f∗F|V \S), where i : V \S → V is the injection.
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2.2 Contractions with τ > n− 3
The results of this section are the content of a work in progress with M.
Andreatta.

2.2.1 Existence of good sections

In this subsectionX is lt and f : X → Z is a local adjoint contraction around
a fibre F , supported by KX + τL where L is an ample Cartier divisor on X
and τ is a rational number.

The following lemma is an immediate consequence of the Nadel vanishing
theorem.

Lemma 2.2.1. Let D ≡f βL be a Q-divisor such that (X,D) is lc and let
W ∈ CLC(X,D) be a minimal centre. Assume that τ − β > −1, or that
τ − β ≥ −1 if f is birational. Then the restriction map

H0(X,L)→ H0(W,L|W )

is surjective.

Proof. By the tie-breaking technique (see [Kol97b, Prop. 8.7.1]), we may
assume that W is an exceptional lc centre and hence IW = J (D), where IW
is the ideal sheaf of W and J(D) is the multiplier ideal of D. Consider the
exact sequence

0→ OX(L)⊗ IW → OX(L)→ OW (L|W )→ 0.

Since L − (KX + D) ≡ (1 + τ − β)L is nef and big, we can apply Nadel
vanishing [Laz04, Thm. 9.4.17] to obtain

H1(OX(L)⊗ IW ) = 0,

from which the conclusion follows.

Lemma 2.2.2. Let D ≡f βL be a Q-divisor such that (X,D) is lc and let
W ∈ CLC(X,D) be a minimal centre. Assume that τ − β > −1, or that
τ−β ≥ −1 if f is birational; assume also that one of the following conditions
is satisfied:

(i) dimW ≤ 2,

ii) dimW ≥ 3 and τ − β > dimW − 3.

Then H0(W,L|W ) 6= 0.
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Proof. By subadjunction formula (see Theorem 1.2 of [FG12]), there is an
effective Q-divisor DW such that (W,DW ) is klt and

KW +DW ≡ (KX +D)|W ≡ −(τ − β)L|W .

If dimW ≤ 2, then we conclude by Theorem 3.1 of [Kaw00].
If dimW ≥ 3, then (W,DW ) is a log Fano variety of index i(W,DW ) >

dimW − 3 and the result follows by the main Theorem in [Amb99].

The next is an immediate corollary of the above two lemmas; it is the
first step for proving the existence of a good section in the linear system |L|.

Corollary 2.2.3. Let D ≡f βL be a Q-divisor such that (X,D) is lc and
let W ∈ CLC(X,D) be a minimal centre. Assume that τ − β > −1 or
that τ − β ≥ −1 if f is birational; assume also that one of the following
conditions is satisfied:

(i) dimW ≤ 2,

ii) dimW ≥ 3 and τ − β > dimW − 3.

Then there exists a section of |L| not vanishing identically on W .

Proposition 2.2.4. If τ > −1 and dimF < τ + 3, then there exists a
section of |L| not vanishing identically along F .

Proof. Let {hi} ∈ H0(Z,OZ) be general functions vanishing at f(F ) and
let D =

∑
f∗(hi) such that (X,D) is not lc. Let γ = lct(X,D) and let

W ∈ CLC(X, γD) a minimal lc centre such that W ⊂ F . Since γD ≡f
0, Corollary 2.2.3 implies that there exists a section of |L| not vanishing
identically on W .

The following proposition is a generalization of Proposition 3.3 in [Mel99].

Proposition 2.2.5. Assume that dimF < τ+3, F is irreducible and τ ≥ 0.
Then the general element of |L| has lt singularities, except possibly when
τ = 0 and f is a contraction to point.

If dimF < τ + 2, then the same holds without the assumption that F is
irreducible.

Proof. Let S ∈ |L| be general and assume by contradiction that S has sin-
gularities worse than lt singularities. Then, by Proposition 7.3.2 of [Kol97b],
(X,S) is not plt. Set γ = lct(X,S) ≤ 1 and V = LLC(X, γS).

We claim that, modulo a vertical slicing, we may assume V ⊂ F . In
fact, let c = dim f(V ). Consider h1, . . . , hc general functions on Z. Set
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Xhi = f∗hi and X ′ = ∩Xhi . By vertical slicing ([AW93, Lemma 2.5]), we
get a local contraction f ′ : X ′ → Z ′ around a fibre F ′ = F ∩X ′, supported
by KX′ + τL′ where L′ = L|X′ . Set S′ = S ∩X ′. Possibly shrinking Z ′, we
have LLC(X, γS′) = V ∩X ′ ⊂ F ′ and the claimed is proved.

Note that, by Bertini, LLC(X,S) ⊂ Bs|L|.
If τ > 0, let W ∈ CLC(X, γH) be a minimal lc centre. We want to

show that there is a section of |L| not vanishing identically on W , obtaining
in this way a contradiction. By Proposition 2.2.4, W ( F ; thus dimW ≤
dimF − 1 < τ + 2. If dimW ≥ 3, then τ − γ > dimW − 3 ≥ 0 and we
can apply point (i) of Corollary 2.2.3. If dimW ≤ 2, then the contradiction
follows by point (ii) of Corollary 2.2.3.

Assume that τ = 0 and f is not a contraction to a point. LetH = εf∗(h),
where h is a general function on Z vanishing at f(F ) and 0 < ε << 1. Set
D = S + H and δ = lct(X,S) < 1. For ε small enough, we still get
LLC(X, δD) ⊂ F and, by Bertini, LLC(X, δD) ⊂ Bs|L|. Hence, we can
consider a minimal centre W ∈ CLC(X, δD) and reason as before.

Proposition 2.2.6. Assume that dimF < τ+3, F is irreducible and τ ≥ 1.
Let S ∈ |L| be a general element. If X has canonical singularities, then S has
canonical singularities. If X has terminal singularities, then S has terminal
singularities, except possibly when τ = 1 and f is a contraction to a point.

If dimF < τ + 2, then the same holds without the assumption that F is
irreducible.

Proof. Let S be a general element of |L|; by Proposition 2.2.5, S has lt
singularities. Let µ : Y → X a log resolution of the pair (X,S). We can
write

µ∗S = S +
∑
i

riEi

KY = µ∗KX +
∑
i

aiEi

KY + S = µ∗(KX + S) +
∑
i

(ai − ri)Ei

where S = µ−1
∗ S is the strict transform of S and |S| is basepoint free.

Note that since L is Cartier the ri are integers.
Assume that S has not canonical singularities (resp. terminal singulari-

ties); after reordering we can assume that a0 < r0 (resp. a0 ≤ r0). Since S
is generic, by Bertini we can assume that µ(Ei) ⊂ Bsl|L|, for all i such that
ri > 0.

LetD = S+S1, where S1 is another generic section in |L|; note that µ is a
log resolution also for the pair (X,D). (X,D) is not LC since a0+1 < r0+r1

0
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(a0 + 1 ≤ r0 + r1
0), where r1

0 ≥ 1 is the multiplicity of S1 at the centre of
valuation associated to E0. Now we can reason as in the proof of Proposition
2.2.5.

We can finally state the main result of this section.

Theorem 2.2.7. Assume that X has log terminal singularities, τ > 0 and
dimF = n− 1 < τ + 2. Then dimBs|L| ≤ 1.

Proof. By vertical slicing we may assume that Bs|L| ⊂ F .
We start by proving that |L| has no fixed components. Suppose, by

contradiction, that there is a component V of Bs|L| of dimension n − 1.
Let H ∈ |L| be a general element and set c = lct(X,H). If c < 1, then
LCC(X, cH) ⊂ Bs|L| and by Corollary 2.2.3 we get a contradiction. If
c = 1, then V ⊂ |L| is an lc centre of (X,H) and we conclude again by
Corollary 2.2.3.

The proof of the theorem is now by induction on n ≥ 3. If n = 3, we
have just proved it.

Assume n > 3. Let X ′ ∈ |L| general. Since |L| has no fixed component,
by Bertini we get that X ′ does not contain any irreducible component of
F (and that it is irreducible and reduced). Moreover, by Proposition 2.2.5,
we have that X ′ is log terminal. Hence, by horizontal slicing, f : X ′ → Z ′

is a divisorial contraction supported by KX′ + (τ − 1)L|X′ around a fibre
F ′ = F ∩ X ′. It also follows that dimBs|L| ≤ dimBs|L′|, because any
section of L′ lifts to a section of L. By induction, we are done.

Corollary 2.2.8. Assume that X has terminal singularities and that f
is a divisorial contraction of an irreducible Q-Cartier divisor E such that
dimX < τ + 3 and τ > 0. For i = 1, . . . , n − 3, let Hi ∈ |L| be general di-
visors and set X ′ = ∩Hi. Then X ′ is a terminal threefold and f ′ : X ′ → Z ′

is a divisorial contraction of an irreducible Q-Cartier divisor E′.

Proof. By horizontal slicing, f ′ : X ′ → Z ′ is a Fano-Mori contraction. The
fact that X ′ is terminal follows by Proposition 2.2.6. By Theorem 2.2.7, the
base locus of |L| has dimension at most one, and hence E′ is an irreducible
divisor. Finally, E′ is the intersection of Q-Cartier divisors and hence it is
Q-Cartier.

In the case of Gorenstein singularities we can prove a stronger result.

Proposition 2.2.9. Assume that dimF < τ+3, F is irreducible and τ ≥ 0.
If X has canonical Gorenstein singularities, then the general element of |L|
has canonical singularities, except possibly when f is a contraction to a point
and τ = 0.
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Proof. In the notation of the proof of Proposition 2.2.6, assume by con-
tradiction that S is not canonical. Then ai − ri < 0 for some i; since ai
and ri are integers, we get ai − ri ≤ −1 and hence (X,S) is not plt. Set
γ = lct(X,S) ≤ 1. Now, as in the proof of Proposition 2.2.5, we derive a
contradiction.

2.2.2 Lifting of contractions

Let X be a Q-factorial terminal threefold and let f : X → Z be a divisorial
Fano-Mori contraction of an extremal ray R to a smooth point p ∈ Z. By
an important result of Kawakita (see [Kaw01]) we know that f is a weighted
blow-up with weight (1, a, b).

We ask the following.

Question 2.2.10. Let f : X → Z be a Fano-Mori contraction of an extremal
ray R ⊂ NE(X)(KX+(n−3)L)<0 on a terminal Q-factorial variety X with L
an ample Cartier divisor. Assume that f contracts a divisor to a smooth
point p ∈ Z. Are there local coordinates for p such that f is the weighted
blow-up of p?

Thanks to the results of the previous section we can give a positive
answer under suitable (strong) assumptions.

Theorem 2.2.11. Let f : X → Z be a local contraction supported by KX +
τL, where X is n-dimensional terminal Q-factorial variety and L is an f -
ample Q-Cartier divisor. For i = 1, . . . , n−3, let Hi ∈ |L| be general divisors
and set X ′′ = ∩Hi. By Theorem 2.2.7, f ′′ := f|X′′ : X ′′ → Z ′′ is birational.
Assume that f ′′ contracts a divisor E′′ to a smooth point p := f(E′′).

Then L = f∗f∗L− cE for a positive integer c and f is a weighted blow-
up of a smooth point with weight (1, a, b, c, . . . , c), where a, b are positive
integers, (a, b) = 1 and ab|c.

Proof. LetX ′ ∈ |L| be a general element. By Theorem 1.2.12 and by Lemma
1.2.9, f ′ = f|X′ : X ′ → Z ′ is a local contraction supported by KX′ + (τ −
1)L|X′ . By a repeated application of [Mel97, Lemma 1.7], f ′ contracts a
divisor E′ to the smooth point p := f(E′) ∈ Z ′. Again by [Mel97, Lemma
1.7], p ∈ Z is smooth.

Let x1, . . . , xn local coordinates for p and note that L1 = f∗L is a Cartier
divisor and we have L = f∗L1 − cE, where c is a positive integer. We may
also assume that f∗(X ′) = {xn = 0}.

If dimX = 4 then, by Kawakita’s result, f ′ is a weighted blow-up of p
with weight (1, a, b). If dimX > 4 then, by induction on n, f ′ is a weighted
blow-up of p with weight (1, a, b, c, . . . , c).

By induction we have the formulae

L = f∗(L1)−cE, τ = (n−3)+a+ b

c
and KX = f∗(KZ)+(a+b+(n−3)c)E.
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Note that OX(−cE) is f -ample and that the map f is proper; so we
have that

X = Proj(⊕d≥0f∗OX(−dcE)).
By Lemma 1.3.10, X we need to prove that

f∗OX(−dcE) = (xs1
1 · · ·x

sn
n : s1 + s2a+ s3b+

n∑
j=4

csj ≥ dc).

The proof of this is by double induction on n and d, starting with n = 4
and d = 0.

Consider the exact sequence

0→ OX(−L− dcE)→ OX(−dcE)→ OX′(−dcE)→ 0.

Note that

−L− dcE ∼f −(d− 1)cE ∼f KX + (n− 3 + d− 1 + a+ b

c
)L,

Hence, pushing down to Z the above exact sequence and applying the
relative Kawamata-Viehweg Vanishing, we have

0→ f∗OX(−(d− 1)cE) ·xn→ f∗OX(−dcE)→ f∗OX′(−dcE)→ 0. (2.5)

By induction on n, we can assume that

f∗OX′(−dcE) = (xs1
1 · · ·x

sn−1
n−1 : s1 + s2a+ s3b+

n−1∑
j=4

csj ≥ dc),

where sj ∈ N. The case n = 3 follows from Kawakita’s Theorem. By
induction on d, we can also assume that

f∗OX(−(d− 1)bE) = (xs1
1 · · ·x

sn
n : s1 + s2a+ s3b+

n∑
j=4

csj ≥ (d− 1)c),

the case d = 0 being trivial.
Let g = xs1

1 · · ·xsnn ∈ f∗OX(−dcE) be a monomial. If sn ≥ 1 then
g, looking at the sequence (2.5), comes from f∗OX(−(d − 1)cE) by the
multiplication by xn; therefore

s1 + s2a+ s3b+
n−1∑
j=4

sjc+ snc ≥ (d− 1)c+ snc ≥ dc.

If sn = 0, then g ∈ f∗OX′(−dcE) and so

s1 + s2a+ s3b+
n∑
j=4

sjc = s1 + s2a+ s3b+
n−1∑
j=4

sjc ≥ dc.

The non-monomial case follows immediately.
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2.2.3 Flipping contractions

We now start the investigation of small contractions with nef value bigger
than (n− 3). We begin describing the exceptional locus in the case of index
2 singularities.

Proposition 2.2.12. Let X be a terminal Q-factorial variety of dimension
n. Let f : X → Z be a local contraction around F supported by KX + τL,
where L is an ample Cartier divisor.

Assume that τ > (n − 3), that dimF = n − 2 and that f is birational
and small; assume also that X has only points of index 1 and 2.

Then

• τ = 2n−5
2 and (F,L) = (Pn−2,O(1)) or

• n = 4, τ = 5
4 and (F,L) = (Qn−2,O(1)).

Proof. By Theorem 2.1 of [And95] we get that dimF = n − 2, where F is
any fibre of f . By the rationality theorem we have

2τ = u

v
≤ 2(n− 1)

v

and thus
n− 3 < τ = u

2v ≤
n− 1
v

.

If n = 4 this gives the possibilities v = 1, 2 and so u = 3 and u = 5
respectively (since u ≤ 6).

If n > 4 then v = 1 and n − 3 < u
2 < n − 2 with the only possibility

u = 2n− 5.

By [AW93, Thm. 5.1] we can suppose that L is globally generated. Pick
n − 3 general members Hi ∈ |L| (1 ≤ i ≤ n − 3) and let X ′ = ∩Hi be the
scheme intersection. Note that dimX ′ = 3 and X ′ has terminal 2-factorial
singularities: in fact 2KX′ = 2(KX + (n − 3)L)|X′ is Cartier. Consider the
restricted morphism f ′ := f|X′ : X ′ → Z ′, it is a small contraction supported
byKX′+(τ−n+3)L|X′ (see Theorem 1.2.9). Let C = ∩Hi∩F . At this point
the situation is described in [KM92], Theorem 4.2. In particular C ∼= P1, so
we deduce that F is irreducible. Moreover −KX′ .C = 1

2 .
By [And95, Thm. 2.1] we have that ∆(F,L) = 0 and there are two

possibilities.
If τ = 2n−5

2 then L|X′ .C = 1 and thus Ln−2
|F = 1. By the classification of

varieties with ∆-genus equal to zero, we get that (F,L) = (Pn−2,O(1)).
If n = 4 and τ = 5

4 , then L
n−2
F = 2 and so (F,L) = (Qn−2,O(1)).
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2.2.4 Towards a second reduction

Classically (see [BS95]), the second reduction is defined as follows.

Definition 2.2.13. Let (X,L) be a quasi-polarized pair such that KX +
(n − 2)L is nef and big and let φ : X → Z be the morphism associated to
|m(KX + (n− 2)L)| for m� 0. Consider D = (φ∗L). The pair (Z,D) with
the morphism φ is called second reduction of (X,L).

One of the problem is that D may not be a Cartier divisor. To define
a more general second reduction in the spirit of Andreatta’s zero and first
reductions (see subsection 1.2.2) we need to consider a quasi-polarized pair
(X,L) and then study the minimal model program for a klt pair (X,∆)
where ∆ ∼Q rL and r ≥ n − 3. In the last three subsections we have seen
that we are just at the beginning of the job.

In this subsection we observe that if r is close enough to n − 2, then
we fall in the case of the classical second reduction, already studied by M.
Mella (see [Mel97]).

Lemma 2.2.14. Let n ≥ 3 and e be positive integers. For any positive
rational numbers α < β the set

Nα,β := {α < τ(X,L, π) < β | dimX = n, index(X) = e}

is finite.
Moreover, any element of Nα,β can be written in the form c/d for coprime

positive integers c and d such that d < e(n+ 1)/α.
In particular, setting ε = 1

e , we have that

Nn−2−ε,n−2 = Nn−2−ε
2 ,n−2

2
= ∅.

Proof. Let τ ∈ Nα,β. By the rationality theorem we have that τ = c/d for
coprime positive integers c, d and that eτ = u/v for coprime positive integers
u, v with u ≤ e(n+ 1). This implies

eα <
u

v
≤ e(n+ 1)

v
,

hence v < (n+1)/α and d < e(n+1)/α. Finally u may assume only a finite
number of values since v does.

Theorem 2.2.15. Let (X,L) be the first reduction of a quasi-polarized va-
riety (X ,L), with X a terminal variety of dimension n ≥ 4. Let ∆ ∼Q
(n − 2 − ε)L be an effective divisor such that (X,∆) is a klt pair with
0 < ε < 1

e , where e is the index of singularity of X. Consider a (KX + ∆)-
MMP

(X0,∆0) = (X,∆) 99K (X1,∆1) 99K · · · 99K (Xs,∆s).
Then each φi : Xi 99K Xi+1 is a contraction of a divisor E, such that
(E,E|E) is isomorphic to one of the following:
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1. (Pn−1,O(−2)),

2. (Qn−1,O(−1)),

3. a singular hyperquadric in Pn with E|E = O(−1),

4. (P(1, 1, 1, 2, . . . , 2),O(−1/2))

5. φi is the blowing up of an irreducible reduced curve on Xi+1.

Moreover the composition φ : X → Xs is exactly the second reduction of
the pair (X,L) (so it is the contraction of disjoint divisors as in the list).

Proof. We may assume that KX + ∆ is not nef, otherwise there is nothing
to prove. Since (X,L) is a first reduction, KX + (n − 1)L is nef and hence
L is positive on any extremal ray R such that KX .R < 0. For any i set
Li := φi∗(Li−1)∗∗.

We prove by induction on i = 0, . . . , s, that any extremal ray R on Xi

supported on KXi + (n− 2)Li defines a contraction φR which is one of our
list.

By Lemma 2.2.14 the case i = 0 follows by Theorem 2.3 of [Mel97].
So consider φi : X→Xi+1, with i ≥ 1. By induction and by Corollary 2.4

of [Mel97] at any step the index of singularity is not worse than max{2, e}
and Lk is 2-Cartier.

Let Ri−1 be the extremal ray of the map φi−1, let Ri = R+[C] be the
extremal ray associate to φi and φRi be the associated contraction. Since
Li is φi-ample we can apply Lemma 2.2.14 to obtain that

(KXi + (n− 2)Li).Ri = 0.

Let C̃ be a strict transform of C. Let E be the divisor contracted by
φi−1 and write

KXi−1 = φ∗i−1(KXi) + aE , Li−1 = φ∗i−1(Li)− bE,

where a > 0 and b > 0. Since

0 = (KXi−1 + (n− 2)Li−1).Ri−1

we have that a = (n− 2)b and hence

(KXi−1 + (n− 2)Li−1).C̃ = 0.

The composition φi ◦ φi−1 is given by a 2-dimensional face F , which
contains Ri−1 and R̃ = R+[C̃] and so by induction we are done.



Chapter 3

Chern numbers of threefolds

This chapter collects the results of a joint work in progress with P. Cascini.
The aim of this work is to answer the following question posed by Kotschick:
does c3

1 assumes only finitely many values on the projective algebraic struc-
ture with the same underlying 6-manifold? We obtain a partial result (The-
orem 3.3.5).

We start recalling the definition of Chern numbers.

Definition-Lemma 3.0.16. Let X be a topological space. For any com-
plex vector bundle E on X of dimension k there exist elements ci(E) ∈
H2i(X,Z), called Chern classes of E, which are uniquely determined by the
following axioms:

1. c0(E) = 1 and ci(E) = 0 if i > k,

2. if f : Y → X is a continuous map, then ci(f∗E) = f∗ci(E),

3. if 0 → F → E → G is an exact sequence of vector bundles, then
ci(E) =

∑i
j=0 cj(F ) · · · ci−j(G),

4.
∑k
j=1 cj(E) = e(ER), where e(ER) is the Euler class of the underlying

real vector bundle.

When X is a complex manifold, then ci(X) = ci(TX) are simply called
Chern classes of X. If dimX = n, any product of Chern classes of total
degree n is called Chern number of X.

The study of Chern numbers is a very classical topic, in particular Hirze-
bruch raised the following question in 1954: which linear combinations of
Chern numbers are topological invariant? This has been completely settled
by Kotschick in the projective case.

Theorem 3.0.17 ([Kot12]). A rational linear combination of Chern num-
bers is a homeomorphism invariant of smooth complex projective varieties if
and only if it is a multiple of the Euler characteristic.

45
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The ensuing question posed by Kotschick is whether a Chern number
can be bounded by topological invariants.

In general let

χp = χ(Ωp
X) =

n∑
q=0

(−1)qhp,q,

where hp,q is the dimension of Hq(X,Ωp
X). By the Hirzebruch-Riemann-

Roch theorem, χp is a linear combination of Chern numbers. On the other
side, by the Hodge decomposition

H i(X,C) =
⊕
p+q=i

Hq(X,Ωp)

they are bounded above and below by linear combinations of Betti numbers.
It turns out that this is the only possibility:

Theorem 3.0.18 ([Kot12]). A rational linear combination of Chern num-
bers of smooth complex projective varieties can be bounded in terms of Betti
numbers if and only if it is a linear combination of the χp.

Let us fix dimX = 3. Then there are three Chern numbers: c3, c1c2 and
c3

1. By the Hirzebruch-Riemann-Roch theorem we have

1
24c1c2 = 1− h1,0 + h2,0 − h3,0,

thus c1c2 is bounded from below and above by linear combinations of the
Betti numbers.

On the other hand one can not expect to be able, in general, to bound
c1(X)3 = K3

X just using Betti numbers (see, for instance, example 3.2.21).
Hence we try to study the arithmetic properties of the integral cubic form
FX associated to the intersection cup on H2(X,Z). In fact, FX takes special
forms in the case of divisorial contractions to points and divisorial contrac-
tions to LCI curves (we call them reduced forms, see definition 3.2.2) and
this allows us to bound K3

X when we are dealing with these types of maps.

In the first section we show that the volume of X is bounded by a
combination of Betti numbers.

Section 3.2 is devoted to a detailed study of some arithmetic properties
of cubic forms. The main result is Theorem 3.2.28, in which we show that
for an integral cubic form F (x0, . . . , xn) such that ∆F 6= 0, there are just a
finite number of possible reduced forms.

In the last section we apply these results to prove our main Theorem
3.3.5, which states that if X is a smooth threefold and there is an MMP
for X constituted only by divisorial contractions to points and divisorial
contractions to smooth curves in smooth loci, then K3

X is bounded by a
topological invariant of X.
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By a recent result of Chen ([Che13]), any MMP of a terminal Q-factorial
threefold may be factored into a sequence of flops, blow-downs to a smooth
curve in a smooth 3-fold and divisorial contractions to points (or their in-
verses). Hence, the main question left is about flops.

3.1 Bounding the volume
Let P ∈ X be a threefold terminal singularity. Then there is a small de-
formation of P into k ≥ 1 terminal cyclic quotient singularities P1, . . . , Pk.
The number aw(P ∈ X) := k is called the axial weight of P ∈ X. We set

aw(X) :=
∑

P∈Sing(X)
aw(P ∈ X).

We may assume that the singularities Pi have type 1
ri

(1,−1, bi), where 0 <
bi ≤ r/2. The collection {P1, . . . , Pk} is known as fictitious singularities of
P or as the basket of singularities of (X,P ) and it can be written as

B(P ∈ X) = {ni × (bi, ri) | i ∈ I, ni ∈ Z+},

where ni denotes the number of times that a point Pi representing a singu-
larity 1

ri
(1,−1, bi) appears.

To a given variety X, we can associate the basket of singularities

B(X) =
⋃

P∈Sing(X)
B(P ∈ X)

and we can define the following invariants:

Ξ(P ∈ X) =
aw(P∈X)∑

i=1
r(Pi), Ξ(X) =

∑
P∈Sing(X)

Ξ(P ∈ X).

By [CZ12, Proposition 3.3] we can control the singularities of a minimal
model by the topology of the initial threefold.

Proposition 3.1.1. Let X be a smooth projective threefold and assume that

X = X0 99K . . . 99K Xk = Y

is a sequence of steps for a minimal model program for X.
Then

Ξ(Y ) ≤ 2b2(X).

In particular, the inequality holds if Y is the minimal model of X.

Recently Tian and Wang have announced the following result.
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Theorem 3.1.2. If Y is a minimal projective n-fold of general type with
canonical singularities and which is smooth in codimension 2, then

(K2
Y − 2n+ 1

n
c2(Y )) ·Kn−2

Y ≤ 0.

Let X be a smooth projective 3-fold of general type. We prove that
vol(X) is bounded by some constant which depends only on the topological
Betti numbers of X.

Theorem 3.1.3. Let X be a smooth projective 3-fold of general type. Then

vol(X,KX) ≤ 64
(
b1(X) + b3(X) + 2

3b2(X)
)
.

Proof. Let X 99K Y be the minimal model of X. Then Y admits only
terminal singularities, and in particular it is smooth outside a finite number
of points. In addition,

vol(X,KX) = vol(Y,KY ) = K3
Y .

By the singular version of Riemann-Roch [Kaw86, Rei87], we have that

χ(Y,OY ) = 1
24(−KY · c2(Y ) + e)

where
e =

∑
pα

(
r(pα)− 1

r(pα)

)
,

and the sum is taken over all the points of all the baskets B(Y, p) of singu-
larities of Y . Note that e ≤ Ξ(Y ). Thus,

vol(X,KX) = K3
Y ≤

8
3KY · c2(Y )

= −8
3(24(χ(Y,OY )− e))

= 64(
3∑
i=0

(−1)i+1hi(X,OX) + 1
3e)

≤ 64(b1(X) + b3(X) + 1
3Ξ(Y )).

The result follows now by Proposition 3.1.1.

Corollary 3.1.4. The volume only takes finitely many values on projective
algebraic structures of general type with the same underlying 6-manifold.

Proof. The volume vol(X,KX) is a rational number whose denominator is
bounded by the index of the minimal model of X. Thus, the claim follows
immediately from Proposition 3.1.1 and Theorem 3.1.3.
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3.2 Cubic forms

The aim of this section is to investigate elementary facts about cubic poly-
nomials, which will be useful in the study of the intersection form on a
threefold.

For any polynomial P ∈ C[x0, . . . , xn], we denote by ∂iP (x) the par-
tial derivative of P with respect to xi at the point x. Given a cubic
F ∈ C[x0, . . . , xn], i.e. an homogeneous polynomial of degree 3, let HF (x) =
(∂i∂jF (x))i,j be the Hessian of F at the point x ∈ Cn+1. Note that, for any
x ∈ C and for any λ 6= 0, the rank of HF at the point λx is constant with
respect to λ and therefore we will denote, by abuse of notation, rkHF (p)
to be the rank of HF at any point in the class of p. We say that F is
non-degenerate if rkHF is maximal at the general point of Pn.

3.2.1 Invariants

If P (x0, . . . , xn) ∈ Z[x0, . . . , xn] is a polynomial we denote by ct(P ) the
content of P , that is the gcd of the coefficients of P . As in the case of one
variable, it is easy to see that the content is multiplicative.

Let F (x0, . . . , xn) =
∑
I cIx

I be a form of degree d. Then the discrimi-
nant ∆F of F is the unique (up to sign) irreducible polynomial with integral
coefficients in the variables cI such that ct(∆F) = 1 and such that ∆F = 0
if and only if the hypersurface {F = 0} ⊆ PnC is singular.

We will need the following observation about discriminants.

Lemma 3.2.1. Let

F = ax3
0 + x2

0(
n∑
j=1

bjxj) +G(x1, . . . , xn)

be a cubic form, where G =
∑
I cIx

I . Then ∆G divides ∆F .

Proof. Let R = C[a, bj , cI ] and let Z(F ), Z(G) ⊆ PNC = ProjR be the closed
subsets defined by ∆F and ∆G respectively. Note that Z(G) ⊆ Z(F ) because
if {G = 0} has a singular point z = [z1, . . . , zn] then [0, z1, . . . , zn] is a
singular point of {F = 0}. Since ∆G is irreducible over Q by definition, and
hence Z(G) is reduced over C, we deduce that ∆F = ∆GH where H ∈ R.

We must show that H ∈ Z[a, bj , cI ]. We start assuming by contradiction
that H /∈ Q[a, bj , cI ]. Fix an order on R and consider the maximal monomial
M in H such that its coefficient is not rational. Consider now the product
between M and the highest monomial in ∆G to get a contradiction. Hence
H ∈ Q[a, bj , cI ]. Now using the fact that the content of ∆G is 1 and that
the content is multiplicative it is easy to conclude.
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3.2.2 Reduced forms

Given a cubic form F ∈ C[x0, . . . , xn] and a matrix T ∈ SL(n + 1,C), we
will denote by T · F the cubic given by

T · F (x) = F (T · x).

We set
WF = {p ∈ Pn | rkH(p) ≤ 1}

and
VF = {p ∈ Pn | rkH(p) ≤ 2}.

Definition 3.2.2. Let R be a subring of a number field K and let F ∈
R[x0, . . . , xn] be a non-degenerate cubic form. Let a ∈ R and b = (b1, . . . , bn) ∈
Rn. We say that F is in reduced form if we may write

F = ax3
0 + x2

0 ·
n∑
i=1

bixi +G(x1, . . . , xn), (3.1)

where G ∈ R[x1, . . . , xn] is a non-degenerate cubic form. For simplicity, we
will denote (3.1) as

F = (a, b,G).

We say that two reduced forms (a, b,G) and (a′, b′, G′), are equivalent
if a = a′ and there is an element M ∈ SL(n,R) such that b′ = M · b and
G′ = M ·G.

Note that if F ∈ C[x0, . . . , xn] is a cubic in reduced form, and p =
[1, 0, . . . , 0], then p ∈ VF . In addition, we can associate to F the hyperplane

HF = {
n∑
i=1

bixi = 0}.

Clearly p ∈ HF .
Viceversa assume that p ∈ VF if such that F (p) 6= 0 and p /∈ WF , and

assume that there exists M ∈ SL(n + 1, R) such that M · p = [1, 0, . . . , 0]
and M · F is in reduced form, then it is easy to check that the hyperplane
HF is uniquely determined.

Lemma 3.2.3. Let F ∈ Z[x0, . . . , xn] be a cubic and let p ∈ VF such that
F (p) 6= 0.

Then there are only finitely many non-equivalent reduced forms T · F
such that T · p = [1, 0, . . . , 0].

Proof. We may assume that p = [1, 0, . . . , 0] and that F = (a, b,G) is in
reduced form, for some a ∈ Z, b ∈ Zn and G ∈ Z[x1, . . . , xn]. We consider
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all the matrices T ∈ SL(n+1,Z) such that T ·p = p andM ·F = (aT , bT , GT )
is in reduced form, for some aT ∈ Z, bT ∈ Zn and GT ∈ Z[x1, . . . , xn].

If we write T = (tij)i,j=0,...,n with tij ∈ Z, then, since T · p = p, we have
ti0 = 0 for 1 ≤ i ≤ n. Thus, t00 = ±1 and in particular aT = ±a.

Now we need to show that the GT are in finite number. Acting on
(x1, . . . , xn) with SL(n,Z) we may assume that b = (b1, 0, . . . , 0) and bT =
(b′1, 0 . . . , 0).

Looking at the coefficients of x2
0xi and x0x

2
i we obtain the equations

3at0i + b1t1i = 0 for i = 2, . . . , n and
3at20i + 2b1t0it1i = 0 for i = 1, . . . , n.

(3.2)

Note that a 6= 0 or b1 6= 0. We divide the last part of the proof in three
cases.

If b1 = 0 then t0i = 0 for i = 2, . . . , n. By (3.2), we have

3at201 = 0

which implies t01 = 0 and we are done.

If a = 0 then by (3.2) we have t1i = 0 for i = 2, . . . , n and hence t11 = ±1,
so we can look at x0x1xi for i = 1, . . . , n to get the equations

b1t0it11 = 0

to deduce that t0i = 0 for i = 1, . . . , n and we are done again.

Finally if a, b 6= 0 then by (3.2) we have that t0i = t1i = 0 for 2 ≤ i ≤ n.
This implies that t11 = ±1 and looking at x0x

2
1 we gain that there are just

a finite number of possible t01. This means that also the possible forms GT
are finite.

We have:

Lemma 3.2.4. Let F ∈ C[x0, . . . , xn] be a cubic such that there exists a
point p ∈ Pn for which rkHF (p) = 0 (i.e. HF (p) is the trivial matrix).

Then after a suitable coordinate change, F depends on at most n vari-
ables. In particular, detHF vanishes identically on Pn.

Proof. Euler’s formula for homogeneous polynomials implies that

F (p) = ∂iF (p) = 0 for all i = 0, . . . , n.

After a suitable coordinate change, we may assume that p = (1, 0, . . . , 0).
Let f(y1, . . . , yn) = F (1, y1, . . . , yn). By Taylor’s formula, f is an homoge-
neous polynomial of degree 3. Thus, F (x0, . . . , xn) = f(x1, . . . , xn) and the
claim follows.
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Proposition 3.2.5. Let F ∈ C[x0, . . . , xn] be a cubic such that rkHF is
maximal at the generic point of Pn.

Then WF is a finite set.

Remark 3.2.6. Note that the same result does not hold under the weaker
assumption that rkHF (p) ≥ 1 for any p ∈ Pn, e.g. consider

F (x0, . . . , x4) = x4x
2
3 + x3x1x0 + x2x

2
1.

Proof. Let W ′F = WF ∩ {F = 0}. We first show that W ′F is a finite set.
Assume by contradiction that there exist an irreducible curve C inside W ′F
and let p ∈ C. We say that an hyperplane H ⊆ Pn is associated to p if:

1. detHF vanishes along H,

2. p ∈ H, and

3. if G = F|H then HG(p) is trivial.

We first show that there exists exactly one hyperplane Hp associated to p.
Lemma 3.2.4 implies that rkHF (p) = 1. After taking a suitable coordinate
change, we may assume that p = [0, . . . , 0, 1]. In particular

F (x0, . . . , xn) = x2
n · L1 + xn ·Q1 +R1

, for some homogeneous polynomials L1, Q1, R1 ∈ C[x0, . . . , xn−1] of degree
1, 2 and 3 respectively. Since p ∈WF , it follows that L1 = 0. By assumption,
Q1 is not zero. Using again the fact that p ∈ WF it follows that, after
taking a suitable coordinate change in x0, . . . , xn−1, we may assume that
Q1 = x2

n−1. We may write

R1(x0, . . . , xn−1) = x2
n−1 · L+ xn−1 ·Q+R,

for some homogeneous polynomials L ∈ C[x0, . . . , xn−1] andQ,R ∈ C[x0, . . . , xn−2]
of degree 1, 2 and 3 respectively. After replacing xn by xn + L, we may as-
sume that L = 0. Thus, we have

F (x0, . . . , xn) = xn · x2
n−1 + xn−1 ·Q+R.

Let Hp = {xn−1 = 0}. An easy computation shows that Hp is an hyperplane
associated to p. We now show that such an hyperplane is unique. Assume
that H ′ ⊆ Pn is an hyperplane associated to p. Since p ∈ H ′ we have
H ′ = {` = 0} for some linear function ` ∈ C[x0, . . . , xn−1]. If H ′ 6= Hp, after
a suitable change of coordinates in x0, . . . , xn−2, we may assume that

` = x0 − αxn−1

for some α ∈ C. Thus if G′ = F|H′ , we may write

G(x1, . . . , xn) = xnx
2
n−1 + xn−1Q(αxn−1, . . . , xn−2) +R(αxn−1, . . . , xn−2)
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and it follows that
∂n−1∂n−1G(0, . . . , 0, 1) 6= 0,

which contradicts (3).
Now let q ∈ C be a point such that Hp = Hq. We want to show that

q = p. If R = 0 then if follows easily that W ′F = {p}. Thus, by Lemma
3.2.4, after a suitable change in coordinates in x0, . . . , xn−2, we may assume
that R = R(x0, . . . , xk) for some k ≥ 0 and that there is no point z ∈ Pk
such that HR(z) is trivial. If q = [y0, . . . , yn], it follows by (3) that

y0 = · · · = yk = 0.

Since rkHF (q) = 1, it follows the that the minor spanned by the i-th and
(n−i)-th rows and columns ofHF (p) must have determinant equal to zero for
any i = 0, . . . , n− 2 and in particular, since yn−1 = 0 and HR(y0, . . . , yn−2)
is trivial, it follows that ∂iQ(y0, . . . , yn) = 0. It is easy to show that this
implies that if q 6= p then detHR vanishes identically, a contradiction.

Since by assumption detHF is a non-trivial function, there exist only
finitely many hyperplanes on which detHF vanishes and (1) implies that
Hp = Hq for infinitely many pair of points p, q ∈ C, a contradiction. Thus,
W ′F is a finite set.

Now let p ∈WF be a point such that F (p) 6= 0. After a suitable change
of coordinates, we may assume that p = [0, . . . , 0, 1] and that

F (x0, . . . , xn) = x3
n + x2

n · L+ xn ·Q+R

for some homogeneous polynomials L,Q,R ∈ C[x0, . . . , xn] of degree 1, 2
and 3 respectively. After replacing xn by xn + 1

3L we may assume that
L = 0. Since p ∈ WF it follows that Q = 0. Let q = [z0, . . . , zn] ∈ WF .
Then either q = p or zn = 0 and [z0, . . . , zn−1] ∈ WR. Thus, the result
follows by induction on n.

Fix a positive integer n and let ` and k be non-negative integers such
that n ≥ `+ 2k + 1. We will denote:

I`,k = {`+ 2i+ 1 | i = 0, . . . , k} ∪ {`+ 2k + 2, . . . , n}.

Given a finite subset I ⊆ N, we will also denote by C[xI ] the algebra of
polynomials in xi with i ∈ I.
Theorem 3.2.7. Let F ∈ C[x0, . . . , xn] be a cubic form such that rkHF
is maximal at the generic point of Pn. Let C ⊆ VF be a curve such that
F (p) 6= 0 at the general point of C.

Then, there exist non-negative integers `, k such that, after a suitable
change of coordinates, we may write

F =
∑̀
i=0

Gi +
k∑
i=1

(x2
`+2i+1 +Mi) · x`+2i +R`+k+1

where
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1. Gi ∈ C[xi, xi+1] is a cubic for any i = 0, . . . , ` with

G0 = x3
0 + x0x

2
1;

2. Mi = δix
2
`+1 for any i = 1, . . . , k with δi ∈ C;

3. R`+k+1 ∈ C[xI`,k ] is a cubic;

4. C ⊆
⋂
i∈I`,k+1

{xi = 0}.

Moreover if C 6⊆ {xl+2k+2 = 0} we may write

R`+k+1 = Mk+1 · x`+2k+2 +Rl+k+2

where

5. R`+k+2 ∈ C[xI`,k+1 ] is a cubic and Mk+1 ∈ C[x`+1, x`+3, . . . , x`+2k+1]
is a quadric.

Proof.
Step 1. By Proposition 3.2.5 there exists p ∈ C such that F (p) 6= 0

and rkHF (p) = 2. Since F (p) 6= 0, after a suitable change of coordinates
we may assume that p = [1, 0, . . . , 0] and

F = x3
0 + x2

0L+ x0Q+R

for some homogeneous polynomials L,Q,R ∈ C[x1, . . . , xn] of degree 1,2 and
3 respectively. After replacing x0 by x0 − 1

3L we may assume that L = 0.
Since rkHF (p) = 2, after a suitable change of coordinates in x1, . . . , xn, we
may assume that Q = x2

1. Thus, we have

F = G0 +R1,

where G0 = x3
0 + x0x

2
1 and R1 = R ∈ C[x1, . . . , xn]. We distinguish two

cases. If C is contained in the hyperplane {x1 = 0}, then we set k = ` = 0
and we continue to Step 3. Otherwise, we set ` = 1 and we proceed to Step
2.

Step 2. We are assuming that

F =
`−1∑
i=0

Gi +R`

where Gi ∈ C[xi, xi+1] and R` ∈ C[x`, . . . , xn] are cubics, and C is not
contained in the hyperplane {x` = 0}. We claim that after a suitable change
of coordinates in x`, . . . , xn, we may write

R` = G` +R`+1
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where G` ∈ C[x`, x`+1] and R`+1 ∈ C[x`+1, . . . , xn] are cubics. Assuming
the claim, if C is contained in the hyperplane {x`+1 = 0} we set k = 0 and
we proceed to Step 3. Otherwise, we replace ` by `+ 1 and we repeat Step
2.

We now prove the claim. By assumption, there exists q ∈ C such that
q /∈ {x` = 0}. After a suitable change of coordinates in x`, . . . , xn, we may
assume that

q = [z0, . . . , z`−1, 1, 0, . . . , 0],

for some z0, . . . , z`−1 ∈ C. We may write

R` = α`x
3
` + L`x

2
` +Q`x` +R`+1,

for some homogeneous polynomials L`, Q`, R` ∈ C[x`+1, . . . , xn] of degree
1,2 and 3 respectively. Since rkHF (q) ≤ 2, after a suitable change of coor-
dinates, we may write L` = β`x`+1 and Q` = γ`x

2
`+1 for some β`, γ` ∈ C.

We may define
G` = α`x

3
` + β`x

2
` · x`+1 + γ`x` · x2

`+1

and the claim follows.

Step 3. We are assuming that

F =
∑̀
i=0

Gi +
k∑
i=1

(x2
`+2i+1 +Mi) · x`+2i +R`+k+1

where Gi, Mi and R`+k+1 satisfy (1), (2) and (3) and

C ⊆ {x`+1 = x`+3 = · · · = x`+2k+1 = 0}.

If we also have that

C ⊆ {x`+2k+2 = · · · = xn = 0}

then we are done. In particular, if n < ` + 2k + 2, then we are done.
Otherwise, after a suitable change of coordinates in x`+2k+2, . . . , xn we may
assume that there exists

q = [z0, . . . , zn] ∈ C

such that z`+2k+2 6= 0 and z`+2k+3 = · · · = zn = 0. Since

det(∂i∂jF (p))i,j=0,1 6= 0,

we may assume that the same inequality holds for q. We may write

R`+k+1 = α`+k+1x
3
`+2k+2 + x2

`+2k+2 · L`+k+1 + x`+2k+2 ·Q`+k+1 +R`+k+2
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where α`+k+1 ∈ C, and L`+k+1, Q`+k+1, R`+k+2 ∈ C[xI`,k+1 ] are homoge-
neous polynomials of degree 1, 2 and 3 respectively.

We first assume that α`+k+1 6= 0. After replacing x`+2k+2 by x`+2k+2 −
1

3α`+k+1
L`+k+1, we may assume that L`+k+1 = 0. Since q ∈ VF , we get a

contradiction by considering the minor

(∂i∂jF (q))i,j=0,1,`+2k+2.

We now assume that α`+k+1 = 0. Since z`+2k+2 6= 0 and q ∈ VF it
follows that L`+k+1 = 0 and that after a suitable change of coordinates,
Q`+k+1 ∈ C[x`+1, x`+3, . . . , x`+2k+3]. We may write

Q`+k+1 = βkx
2
`+2k+3 + x`+2k+3 · `k +Mk

where βk ∈ C and `k,Mk ∈ C[x`+1, x`+3, . . . , x`+2k+1] are homogeneous
polynomials of degree 1 and 2 respectively. If βk 6= 0 then, after a suitable
change of coordinates, we may assume βk = 1 and `k = 0. By considering
the minor

(∂i∂jF (q))i,j=0,`+2k+2,`+2k+3

it follows that C ⊆ {x`+2k+3 = 0}. Thus, we may proceed to Step 4.
If βk = 0, then since q ∈ VF it follows that `k = 0. In case C is contained

in {x`+2k+3 = · · · = xn = 0} we are done, so we may assume that there exists
a point

q′ = [z′0, . . . , z′n] ∈ C ∩
⋂
i∈J
{xi = 0}

such that z′0 6= 0 and z′`+2k+3 6= 0, where, J = I`,k+1\{`+2k+3}. Proceeding
as above, we may write

R`+k+2 = x`+2k+3 ·Q`+k+2 +R`+k+3,

where Q`+k+2 ∈ C[x`+1, x`+3, . . . , x`+2k+1, x`+2k+4] and R`+k+3 ∈ C[xJ ] are
homogeneous polynomials of degree 2 and 3 respectively. We may write

Q`+k+2 = βk+1x
2
`+2k+4 + x`+2k+4 · `k+1 +Mk+1

where βk+1 ∈ C and `k+1,Mk+1 ∈ C[x`+1, x`+3, . . . , x`+2k+1] are homoge-
neous polynomials of degree 1 and 2 respectively.

If βk+1 = 0 then `k+1 = 0 because q′ ∈ VF . Denoting by HiF the i-
th column of HF , it follows that the vectors H`+2

F ,H`+4
F . . . ,H`+2k+2

F and
H`+2k+3
F are linearly dependent. Thus, HF does not have maximal rank

which contradicts the assumptions.
Hence we have βk+1 6= 0. After a suitable change of coordinates, we may

assume that βk+1 = 1 and `k+1 = 0. By considering the minor

(∂i∂jF (q′))i,j=0,`+2k+3,`+2k+4
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it follows that C ⊆ {x`+2k+4 = 0}. Thus we first exchange x`+2k+3 and
x`+2k+4, then we exchange x`+2k+2 and x`+2k+4. So we may write

R`+k+1 = x`+2k+2 · (x2
`+2k+3 +Mk+1) +R`+k+2

where Mk+1 ∈ C[x`+1, x`+3, . . . , x`+2k+1] is a quadric, R`+k+2 ∈ C[xI`,k+1 ] is
a cubic and C ⊂ {x`+2k+3}. We also may write

R`+k+2 = x`+2k+4 ·Mk+2 +R`+k+3

where Mk+2 ∈ C[x`+1, x`+3, . . . , x`+2k+1], R`+k+3 ∈ C[xI`,k+2 ] are homoge-
neous polynomials of degree 2 and 3 respectively.

Moreover we have a point

q′ = [z′0, . . . , z′n] ∈ C ∩
⋂
i∈J
{xi = 0}

such that z′0 6= 0 and z′`+2k+2 6= 0, where J = I`,k+1 \{`+2k+4}. Replacing
x`+2k+4 by x`+2k+4 + z′`+2k+4

z′
`+2k+2

x`+2k+2 we get a point

q = [z0, . . . , zn] ∈ C ∩
⋂

i∈Il,k+1

{xi = 0}

such that z0 6= 0, z`+2k+2 6= 0 and we may proceed to Step 4.

Step 4. We are assuming that

F =
∑̀
i=0

Gi +
k∑
i=1

(x2
`+2i+1 +Mi) · x`+2i +R`+k+1

where Gi, Mi and R`+k+1 satisfy (1), (2) and (3) and

C ⊆ {x`+1 = x`+3 = · · · = x`+2k+1 = 0}.

By Step 3 we also have that

R`+k+1 = x`+2k+2 · (x2
`+2k+3 +Mk+1) +R`+k+2

where Mk+1 ∈ C[x`+1, x`+3, . . . , x`+2k+1] is homogeneous of degree 2 and
C ⊂ {x`+2k+3 = 0}. Moreover there is a point q = [z0, . . . , zn] such that
z0 6= 0, z`+2k+2 6= 0 and

q ∈ C ∩
⋂

i∈Il,k+1

{xi = 0}.

We show that we may assume

Mk+1 = δk+1x
2
`+1
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where δk ∈ C.
Since q ∈ C and z`+2k+2 6= 0 we have det(∂i∂jF (q))i,j=0,1 = 0. Consid-

ering the minors
(∂i∂jF (q))i=0,m,`+2k+3

i=0,h,`+2k+3

for h,m = 1, . . . , n, (h,m) 6= (` + 2k + 3, ` + 2k + 3) we deduce that
∂h∂mF (q) = 0 and so, since by induction Mi = δix`+1 for i = 1, . . . k,
we have

Mk+1 =
k∑
j=0

γjkx
2
`+2j+1,

where γjk ∈ C. Since Mj = δjx`+1 for j = 1, . . . k to conclude it is enough to
replace x`+2j with x`+2j − γjkx`+2k+2 for j = 1, . . . , k. In this way we get

Mk+1 = δk+1x
2
`+1

where δk+1 = γ0
k −

∑k
i=1 γ

i
kδi.

After replacing k by k + 1, we may repeat Step 3.

Theorem 3.2.8. Let F ∈ C[x0, . . . , xn] be a cubic such that rkHF is max-
imal at the generic point of Pn.

Then the set of points p ∈ VF such that F (p) 6= 0 is a finite union of
points, lines, plane conics and plane cubics.

Proof. We may assume that there is an irreducible component C ⊂ VF such
that dimC ≥ 1 and F (p) 6= 0 at the general point p of C, otherwise we are
done. By Theorem 3.2.7 we may write

F =
∑̀
i=0

Gi +
k∑
i=1

(x2
`+2i+1 +Mi) · x`+2i +R`+k+1

where Gi, Mi and R`+k+1 are as in 3.2.7 and

C ⊆ {x`+1 = x`+3 = · · · = x`+2k+1 = 0}.

By the proof of 3.2.7 we may also assume that for any i = 1, . . . , k
there is a point qi ∈ C such that qi /∈ {x0 = 0}, qi /∈ {x`+2i = 0} and
qi ∈

⋂n
j=2i+1{x`+j = 0}.

We distinguish two cases: C ⊂ {x1 = 0} and C 6⊂ {x1 = 0}.

If C ⊂ {x1 = 0} then ` = 0. Let z = [z0, . . . , zn] ∈ C be a general point
in C.

If C ⊂ {x2k+2 = 0} then considering

(∂i∂jF (z))i=0,1,2k+1
i=0,1,2k+1
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we immediately get a contradiction because det(∂i∂jF (z))i,j=0,1 6= 0 and
z2k 6= 0.

So let C 6⊂ {x2k+2 = 0}. Then we may write

R`+k+1 = Mk+1 · x`+2k+2 +Rl+k+2

as in 5 of 3.2.7. Assume that k > 2. Then we have

det(∂i∂jF )j=0,3,2k+1
i=0,1,2k+1 =

= 6x0 · (2γ1,3x2kx2k+2 + γ1,3γ2k+1,2k+1x
2
2k+2 − γ1,2k+1γ3,2k+1x

2
2k+2 +Q)

whereQ ∈ C[x1, . . . , xn] is a quadratic form such that C ⊂ {Q = 0} (because
C ⊆

⋂
i∈I`,k+1

{xi = 0}) and where γi,j is the coefficient of x2k+2 in ∂i∂jF .
Note that γ1,3 6= 0 (because ∂3∂3F (z) 6= 0, being this last inequality true for
q2).

Since z0 6= 0 and z`+2k 6= 0 we conclude that C ⊂ {2γ1,3x2k+(γ1,3γ2k+1,2k+1−
γ1,2k+1γ3,2k+1)x2k+2 = 0}, which contradicts qk ∈ C. Hence we conclude
that k ≤ 2. Now it is easy to see that C is a line or a plane conic.

Assume now that C 6⊂ {x1 = 0}. Then ` ≥ 1. Note that for j = 3, . . . , n
we have ∂1∂jF = 0, hence for a general point z = [z0, . . . , zn] ∈ C, for
h = 2, . . . , n and for m = 3, . . . , n we may consider

(∂i∂jF (z))j=0,1,m
i=0,1,h

to conclude that ∂h∂mF (z) = 0 (because det(∂i∂jF (z))i,j=0,1 6= 0). This
implies easily that we may assume k = 0. By Step 2. of the proof of
3.2.7 for any i = 1, . . . , ` there is a point pi ∈ C such that pi /∈ {x0 = 0},
pi /∈ {xi = 0} and pi ∈

⋂n
j=i+1{xj = 0}.

Assume first that C ⊂ {x`+2 = 0} so we may write

F =
∑̀
i=0

Gi +R`+1

whereGi ∈ C[xi, xi+1], R`+1 ∈ C[x`+1, . . . , xn] are cubics and C ⊂
⋂n
i=`+1{xi =

0}.
Suppose that ` > 2. Since ∂3∂3F (p2) = 0, ∂2∂3F (p2) = 0 and ∂3∂3F (p3) =

0 we see that the monomials x2x
2
3, x2

2x3 and x3
3 do not appear in F . The

same holds for x3x
2
4 and x2

3x4 which gives a contradiction. Hence ` ≤ 2 and
it is easy to conclude.

If C 6⊂ {x`+2 = 0} then we may write

F =
∑̀
i=0

Gi + x2
`+1 · x`+2 +R`+1.
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where Gi ∈ C[xi, xi+1] and R`+1 ∈ C[xI`,1 ].
Suppose ` ≥ 2. Since ∂`+1∂`+1F (p`) = 0 we see that x2

`+1x` does not
appear in F and this implies, considering ∂`+1∂`+1F (z), that also x2

`+1x`+2
does not appear in F , which is a contradiction. Thus ` < 2 and we are
done.

Remark 3.2.9. Note that in general VF might contain surfaces, e.g. if

F (x0, . . . , xn) = x3
n + x2

n−1xn + xn−1 ·
n−2∑
i=0

x2
i

then dimVF = n− 2.

For our purposes we need to refine Theorems 3.2.7 and 3.2.8 in the
case of cubic forms with integral coefficients. If C ⊆ {x1 = 0} then it is
straightforward to reduce F to a special form acting with SL(n − 1,Z). If
C 6⊆ {x1 = 0} we have to use an SL(Q, n) transformation, but if ∆F 6= 0 we
can isolate an integral ternary cubic that gives the curve C; in this way we
can apply the results on ternary cubics. If C 6⊆ {x1 = 0} and ∆F = 0 then
we obtain a very special form.

Corollary 3.2.10. Let

F (x0, . . . , xn) = ax3
0 + bx2

0x1 +G(x1, . . . , xn)

be a non-degenerate cubic form with integral coefficients. Let C ⊆ VF be
an irreducible variety of positive dimension such that C 6⊆ {F = 0}, p =
[1, 0, . . . , 0] ∈ C and C ⊆ {x1 = 0}. Assume that C contains infinitely
many rational points. Then acting on (x2, · · · , xn) with SL(n − 1,Z) we
may assume that either

• C = {x1 = x3 = x4 = . . . = xn = 0} is a line and

F = ax3
0 + bx2

0x1 + cx2
1x2 +R

where c ∈ Z and R ∈ Z[x1, x3, x4, . . . , xn] is a cubic or

• C ⊆ Π = {x1 = x3 = x5 = x6 = . . . = xn = 0} is a conic and

F = ax3
0 + bx2

0x1 + x2M1 + x4M2 +R

whereM1,M2 ∈ Z[x1, x3] are quadric forms and R ∈ Z[x1, x3, x5, x6, . . . , xn]
is a cubic.

Proof. The proof follows the same ideas as the proof of Theorem 3.2.7.
Note that by assumption a 6= 0. Acting on (x2, . . . , xn) with SL(n−1,Z) we
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may assume that there exists a point q = [z0, 0, z2, 0, . . . , 0] ∈ C such that
z0, z2 6= 0. We may also assume that

det(∂i∂jF (q))i,j=0,1 6= 0

since this is true for p = [1, 0, . . . , 0].
Write

F = ax3
0 + bx2

0x1 + α1x
3
2 + x2

2 · L1 + x2 ·Q1 +R2

where α1 ∈ Z, and L1,M1, R2 ∈ Z[x1, x3, x4, . . . , xn] are homogeneous poly-
nomials of degree 1, 2 and 3 respectively. We claim that α1 = 0. Assume
by contradiction that α1 6= 0. After replacing x2 by x2 − 1

3α1
L1, we may

assume L1 = 0. Since q ∈ VF , we get a contradiction by considering the
minor

(∂i∂jF (q))i,j=0,1,2.

Hence α1 = 0 and since q ∈ VF we also get L1 = 0. It is straightforward
to check that rkM1 ≤ 2 and that acting on (x3, . . . , xn) with SL(n − 2,Z)
we may assume M1 ∈ Z[x1, x3].

If C is a line then C = {x1 = x3 = x4 = . . . xn = 0} and it is easy to
check that M1 = cx2

1.
If C is not a line then acting with SL(n− 3,Z) on (x4, . . . , xn) we get a

new point q1 = [y0, 0, y2, 0, y4, 0, . . . , 0] such that y0, y2, y4 6= 0 and we can
proceed as in the proof of Theorem 3.2.7. Thus, the claim follows.

Corollary 3.2.11. Let

F (x0, . . . , xn) = ax3
0 + x2

0(bx1 + cx2) +G(x1, . . . , xn)

be a non-degenerate cubic form with integral coefficients such that b 6= 0.
Assume that the line C = {x2 = x3 = . . . = xn = 0} is contained inside VF .

Then there exists T = (tij)i,j=0,...,n ∈ SL(n+ 1,Q) such that

T · F = ax3
0 + bx2

0x1 + c1x
3
1 +R(x2, . . . , xn)

where c1 ∈ Z and R ∈ Q[x2, . . . , xn] is a cubic form. Moreover we may
choose T such that t00 = t11 = 1, t0i = ti0 = 0 for i = 1, . . . , n, tij = 0 for
i = 2, . . . , n and j = 1

Proof. After replacing x1 by x1 − cx2/b, we may write

F = ax3
0 + bx2

0x1 + c1x
3
1 + Lx2

1 +Qx1 +R

where c1 ∈ Z and L,Q,R ∈ Q[x2, . . . , xn] are homogeneous polynomials of
degree 1,2 and 3 respectively. Acting on (x2, . . . , xn) we may also assume
that L = c2x2, for some c2 ∈ Q. Let q = [0, 1, 0 . . . , 0] ∈ C. We distinguish
two cases: c1 6= 0 and c1 = 0.
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If c1 6= 0 then, since b 6= 0 and rkHF (q) ≤ 2, we see that Q = c3x
2
2 for

some c3 ∈ Q and
|(∂i∂jF (q))i=1,2| = 0.

Thus, |(∂i∂jF (z))i=1,2| = 0 for any z ∈ C. Looking at (∂i∂jF (z))i=0,1,2, it
follows that c2 = 0 and therefore c3 = 0. Thus, L = Q = 0 and we are done.

If c1 = 0 then since b 6= 0 and rkHF (q) ≤ 2, it follows that c2 = 0. Since
rkHF (z) ≤ 2 at the general point z ∈ C, we have Q = 0 and we are done
again. Note that in this case ∆F = 0.

Corollary 3.2.12. Let

F (x0, . . . , xn) = ax3
0 + x2

0(bx1 + cx3) +G(x1, . . . , xn)

be a non-degenerate cubic form with integral coefficients such that b 6= 0.
Let C ⊆ VF be an irreducible variety of positive dimension such that

C 6⊆ {F = 0}, p = [1, 0, . . . , 0] ∈ C and C 6⊆ {x1 = 0}. Assume that C
contains infinite many rational points. Assume moreover that C ⊆ Π =
{x3 = . . . = xn = 0} and C is not a line.

Then there exists T = (tij)i,j=0,...,n ∈ SL(n + 1,Q) such that t00 = 1,
ti0 = t0i = 0 for i = 1, . . . , n, tij = 0 for i = 3, . . . , n and j = 1, 2,
(tij)i,j=0,1,2 ∈ SL(3,Z) and such that one of the following holds:

(a) there exist R ∈ Z[x1, x2] and S ∈ Q[x3, . . . , xn] cubic forms such that

T · F = ax3
0 + bx2

0x1 +R(x1, x2) + S(x3, . . . , xn);

or

(b)

T · F = ax3
0 + bx2

0x1 + c1x
3
1 + αx2

1x3 + βx1x
2
3 + γx2x

2
3 + S(x3, . . . , xn)

where c1 ∈ Z, α, β, γ ∈ Q and S ∈ Q[x3, . . . , xn] is a cubic form (note
that ∆F = 0).

Proof. We may assume that there is a point q = [z0, z1, 0, . . . , 0] ∈ C such
that z0, z1 6= 0. Indeed for a general m ∈ Z we may intersect the line
{mx1 +x2 = 0}∩Π with C to obtain a point of the form [z0, 1,−m, 0, . . . , 0]
where z0 6= 0. Then replacing x2 with x2 + mx1 we get our point q. Note
that this transformation is in SL(n+ 1,Z).

Then we replace x1 with x1 − c/bx3 and write

F (x0, . . . , xn) = ax3
0+bx2

0x1+c1x
3
1+c2x

2
1x2+c3x1x

2
2+c4x

3
2+x2

1L+x1Q+S(x2, . . . , xn)

where ci ∈ Z and L ∈ Q[x3, . . . , xn], and Q,G ∈ Q[x2, . . . , xn] are forms of
degree 1,2 and 3 respectively such that the coefficient of x2

2 in Q and the
coefficient of x3

2 in S are zero.
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If c2 6= 0 then, possibly replacing x2 with x2 − L/c2, we may assume
L = 0. Since b 6= 0 and q ∈ VF , it follows that Q = 0. Now considering a
general point z ∈ C{x3 = . . . = xn = 0} it is easy to see that S does not
depend on x2 and we are done.

Assume that c2 = 0 and L = 0. Then the Hessian c3x
2
2 +Q has rank not

greater than 1, which means that

c3x
2
2 +Q = c3(x2 + L1)2

for some L1 ∈ Q[x3, · · · , xn] of degree 1. Hence, replacing x2 with x2 − L1
we may assume that Q = 0. It is now immediate to conclude.

Finally assume that c2 = 0 and L 6= 0. Acting on (x3, . . . , xn) with
SL(n − 2,Q) we may write L = αx3, where α 6= 0. Note that the columns
H0
F (q) and H1

F (q) are linearly independent, which implies that c3 = 0 and
Q = βx2

3. Considering now a general point y = [y0, y1, y2, 0, . . . , 0] ∈ C it
is immediate to see that c4 = 0 and that x2 appears just in γx2x

2
3. Since

[0, 0, 1, 0, . . . , 0] is a singular point of F we conclude that ∆F = 0 and we
get (b).

3.2.3 Binary and ternary cubics

We now study reduced forms of non-degenerate binary and ternary cubics
over the integers. If F is a binary cubic the question is easily settled: there
are just a finite number of reduced forms (see Proposition 3.2.15). Let

F = ax3 + bx2y +G(y, z)

be an integral ternary cubic.
We may summarize the results of this section as follows:

• if ∆F 6= 0 then there are only finitely many reduced forms for F (see
Proposition 3.2.18);

• if ∆F = ∆G = 0 and S 6= 0 then there may be an infinite number of
reduced forms for F (see example 3.2.19);

• if ∆F = ∆G = 0 and S = 0 then we have the finiteness of ai and Gi
for the possible reduced forms (ai, bi, Gi) of F (see Lemma 3.2.22);

Let F ∈ C[x, y, z] be a cubic form. We denote by SF and TF the two
SL(3,C)-invariants of F as defined in 4.4.7 and 4.5.3 of [Stu]. Recall that
the discriminant of F satisfies

∆F = T 2
F − 64S3

F .

If there is no ambiguity we will drop the subscript F .
We recall the following result (see, for instance, Proposition 7 in [OVdV95]):
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Proposition 3.2.13. Let ∆ 6= 0 be an integer. Then there are only finitely
many classes of binary and ternary cubics over Z with discriminant ∆.

Let K be a number field, i.e. a finite field extension of Q. If W is a
finite set of valuations on K we indicate with RW the ring of W -integers of
K, that is

RW = {k ∈ K : ν(k) ≥ 0 for all ν /∈W}.

We recall two celebrated theorems that will be very useful in the current
section.

Theorem (Siegel). Let RW be a ring of integers in the number field K and
let C be an affine smooth curve defined over K such that g(C) ≥ 1. Then
there are only finitely many RW -integral points on C.

Theorem (Faltings). Let K be a number field and let C be a smooth alge-
braic curve defined over K such that g(C) ≥ 2. Then C has only a finite
number of K-rational points.

We start to investigate binary cubics.

Lemma 3.2.14. Let F (x, y) = ax3 + bx2y + cy3 ∈ RW [x, y] be a binary
cubic on a ring of integers RW such that c 6= 0. Then there are only finitely
many constants a′, b′ ∈ RW such that F can be written in reduced form with
associated triple (a′, b′, cy3).

Proof. The discriminant D of F is given by

D = 4b3c+ 27a2c2.

Assume first that D 6= 0 and set d := D/c. We are looking for the
integral points on the affine plane curve C given, in coordinates (s, t), by
the equation

4s3 + 27ct2 − d = 0.

Since d 6= 0 we have that C is a smooth curve of genus 1. By Siegel’s
Theorem the integral points of C are finitely many and so we are done.

Assume now that D = 0 (the following proof actually works also for
D 6= 0). Consider an SL(2,Z) coordinate change

x = λ1x
′ + λ2y

′

y = µ1x
′ + µ2y

′.

such that F (x, y) = a′x′3+b′x′2y′+cy′3, for a′, b′ ∈ Z. Note that F (λ2, µ2) =
c and, since c 6= 0, the equation F (x, y) = c gives a smooth plane curve of
genus 1. By Siegel’s Theorem the are only a finite number of solutions. For
(λ1, µ1) we have the two linear equations
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1 = λ1µ2 − λ2µ1,

0 = (3aλ2
2 + 2bλ2µ2)λ1 + (bλ2

2 + 3cµ2
2)µ1

and we can easily conclude.

Proposition 3.2.15. Let F (x, y) = ax3 + bx2y + cy3 ∈ Z[x, y] be a bi-
nary integral cubic with c 6= 0. Then there are only finitely many integers
a′, b′, c′ ∈ Z such that c′ 6= 0 and F can be written in reduced form with
associated triple (a′, b′, c′y3).

Proof. By Lemma 3.2.14 it is enough to show that there is only a finite
number of possible c′ ∈ Z.

If the discriminant D = 4b3c+ 27a2c2 is not zero, then c′|D and we are
done.

Assume that D = 0. We may also assume that a, b and c do not have
a common factor (otherwise just consider the cubic obtained erasing this
common factor). Suppose that there are a cubic form F ′(x′, y′) = a′x′3 +
b′x′2y′ + c′y′3 and a SL(2,Z) coordinate change

x′ = λ1x+ λ2y

y′ = µ1x+ µ2y.

such that F ′(x′, y′) = ax3 + bx2y + cy3 = F (x, y) and c′ 6= 0. We have

a = a′λ3
1 + b′λ2

1µ1 + c′µ3
1, (3.3)

b = 3a′λ2
1λ2 + b′λ2

1µ2 + 2b′λ1λ2µ1 + 3c′µ2
1µ2, (3.4)

0 = 3a′λ1λ
2
2 + b′λ2

2µ1 + 2b′λ1λ2µ2 + 3c′µ1µ
2
2, (3.5)

c = a′λ3
2 + b′λ2

2µ2 + c′µ3
2 (3.6)

and GCD(a′, b′, c′) = 1.
Let p be a prime factor of c′ such that p 6= 2, 3 and let α be a positive

integer such that pα|c′. Then, since D = 0, it follows that pα/3 divides b′. By
(3.5) we deduce that either pα/3|λ1 or pα/6|λ2 (recalling that gcd(λ1, λ2) =
1). In the first case pα|a by (3.3), in the second case pα/2|c by (3.6). Hence
pα is bounded because a, c 6= 0 are fixed. The same holds for the powers of
2 and 3. Hence c′ is bounded.

We pass now to analyse the case of ternary cubics.

Proposition 3.2.16. Let R be a subring of a number field K, F ∈ R[x, y, z]
be a cubic form and d ∈ R such that d 6= 0. Assume that ∆ 6= 0 and S 6= 0.
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Let G(y, z) = dy3 + z3. Then there are only finitely many a ∈ R and
(b, c) ∈ R2 such that F may be written in reduced form with associated triple
(a, (b, c), G).

Proof. We write

F = ax3 + (by + cz)x2 + dy3 + z3.

Then, it is easy to compute that

S = dbc and T = 27a2d2 + 4b3d+ 4c3d2.

We consider the curve C ⊆ P3 given by the ideal

I = (Sx2
3 − dx1x2, Tx

3
3 − 27d2x2

0x3 − 4dx3
1 − 4d2x3

2).

We claim that the K-rational points [a, b, c, 1] on C are in finite number
and hence the claim follows.

It is not difficult to see that C is an irreducible complete intersection.
Thus, by adjunction, the arithmetic genus of C is

pa(C) = 1
2(2 · 3)(2 + 3− 4) + 1 = 4.

The only singular point of C is P = [1, 0, 0, 0] and the tangent cone at P
is the union of the two lines s = {x1 = x3 = 0} and t = {x2 = x3 = 0}.
Therefore P is a node and by Plücker formula we get the geometric genus

g(C) = 3.

Our claim follows now by Faltings Theorem.

In the case SF = 0 we can prove something weaker, which is a conse-
quence of Lemma 3.2.14.

Lemma 3.2.17. Let RW be a ring of W -integers, F ∈ RW [x, y, z] be a
cubic form and d ∈ RW such that d 6= 0. Assume that ∆F 6= 0 and SF = 0.
Let G(y, z) = dy3 + z3. Then there are only finitely many a ∈ RW and
(b, c) ∈ R2

W such that F may be written in reduced form with associated
triple (a, (b, c), G).

First proof. Writing

F = ax3 + (by + cz)x2 + dy3 + z3

we have
S = 0 = dbc and T = 27a2d2 + 4b3d+ 4c3d2.

This implies b = 0 or c = 0. By symmetry assume c = 0. Then consider
the curve in A2 given by

27x2
0d

2 + 4x3
1d− T = 0.

By Siegel’s Theorem we are done.
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Second proof. Writing

F = ax3 + (by + cz)x2 + dy3 + z3

we have
S = 0 = dbc.

This implies b = 0 or c = 0. By symmetry assume c = 0. Let M ∈
SL(3, RW ) be a transformation such that

M · F = a1x
3 + (b1y)x2 + dy3 + z3

where a1, b1 ∈ RW .
Note q = [0, 0, 1] ∈ WF and L = {z = 0} ⊆ VF . Hence we may consider

q and L fixed by T . Thus, Lemma 3.2.14 implies the claim.

As a consequence of the previous two results we immediately obtain the
following proposition.

Proposition 3.2.18. Let F ∈ Z[x, y, z] be a cubic form such that ∆F 6= 0.
Then there are only finitely many non-equivalent triples (a, b,G) such that
F can be written in reduced form with associated triple (a, b,G).

Proof. Let (ai, bi, Gi)i∈I be non-equivalent reduced forms of F .
By Lemma 3.2.1 we have that ∆Gi |∆F and hence there are just a finite

number of possible values for ∆Gi . Moreover since ∆F 6= 0 we also have
∆Gi 6= 0. This implies, by Proposition 3.2.13, that the number of non-
equivalent Gi is finite.

Hence we may consider Gi = G fixed and we may consider a ring of
integers RW such that acting with SL(2, RW ) on (x1, x2) we may write

Fi = aix
3
0 + (Bix1 + Cix2) + dx3

1 + x2
2

where Bi, Ci, d ∈ RW . Now we conclude applying Proposition 3.2.16 and
Lemma 3.2.17.

Note that Proposition 3.2.16 does not hold if the discriminant of G is
zero, neither considering R = Z as the following example shows.

Example 3.2.19. Let

F = ax3 + bx2y + x2z − 3y2z

where a, b ∈ Z. Consider Pell’s equation

s2 − 3t2 = 1. (3.7)
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For any solution (α, β) ∈ Z2 of (3.7) we define the matrix

M =

 α 3β 0
β α 0
m31 m32 1


where m31 = β(3bβ2 + 9aαβ + 2bα2) and m32 = 3β2(3aβ + bα).

Then M ∈ SL(3,Z) and setting (x, y, z) = M · (X,Y, Z)T and acting
with M on F we get

F ·M = AX3 +BX2Y +X2Z − 3Y 2Z.

where

A = 3bα2β + 3bβ3 + aα3 + 9aαβ2 and B = 9aβ3 + 9bαβ2 + 9aα2β + bα3.

Since (3.7) has infinitely many integral solutions we conclude that there
are infinite many ways to write F in reduced form.

Nevertheless all the counter-examples over Z are of this type and we can
state the following

Lemma 3.2.20. Let

F (x, y, z) = ax3 + (by+ cz)x2 + y2(c1y+ c2z) = ax3 + (by+ cz)x2 +G(y, z)

be a cubic form with integral coefficients such that SF 6= 0. Then there are
finitely many C ∈ Z such that we may write F in reduced form with asso-
ciated triple (A, (B,C), G). Moreover for any such triple there is a solution
(α, β) ∈ Z2 of the equation

Cs2 + c2t
2 = C (3.8)

such that

A = aα(4α2 − 3) + bβ(4α2 − 1)− Cc1β(4α2 − 1)
c2

and
B = −ac2β(4α2 − 1)

C
+ bα(4α2 − 3) + Cc1(3α− 4α3 + 1)

c2
.

Proof. If F may be written in reduced form with associated triple (A, (B,C), G)
then

SF = C2c2
2

and hence we can consider c = C fixed. (Note that ∆ = 0 and hence we do
not get any more information from the invariants of F )
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Let M = (mij)i,j=1,2,3 ∈ SL(3,Z) such that, setting (x, y, z) = M ·
(X,Y, Z)T and acting with M on F we get

F ·M = AX3 + (BY + CZ)X2 +G(Y, Z).

Let C ⊆ P2 be the cubic curve given by the equation F (x, y, x) = 0.
Note that P = (0 : 0 : 1) is a singular point of C and thus we may consider
P fixed by M , which implies m13 = m23 = 0 and m33 = 1.

Working out the equations

m11m22 −m12m21 = 1, c2m
2
21 + cm2

11 = c,

cm2
12 + c2m

2
22 = c2, cm11m12 + c2m21m22 = 0

we get m11 = m22, m12 = −m21c2/c and

c2m
2
21 + cm2

11 = c. (3.9)

Finally, looking at the coefficients of Y 3 and XY 2, we have

m13 = −bm
2
12m21 + 3am11m

2
12 + 2bm11m12m22 + 3c1m21m

2
22

c2

m23 = −am
3
12 + c1m

3
22 + bm2

12m22 − c1
c2

.

Hence for any solution (α, β) ∈ Z2 of (3.9) we obtain the claimed ex-
pressions for A and B.

Note that the examples above are nodal cubics. It is worth showing that
a nodal cubic of that form (with c · c2 < 0) is indeed realizable as the cubic
form associated to a smooth threefold. Indeed we can construct a series of
examples coming from the blow-up of rational curves.

Example 3.2.21. Let W = P3, h the hyperplane class and C a line. Note
that degNC/W = 2. Let π : X → W be the blow-up of W along C and set
H = π∗h. Let {L1, L2} be the basis of H2(X,Z) given by

L1 = H and L2 = H − E

where E is the exceptional of π. We have H.E2 = −1 and hence

L3
1 = 1, L2

1.L2 = 1, L1.L
2
2 = 0, andL3

2 = 0.

Thus the intersection cubic form on H2(X,Z) is

G(y, z) = y3 + 3y2z.

Let b and c be positive integers. Assume that there is an irreducible
smooth rational curve C ′ ⊆ P3 such that C ′ has degree d and C ′∩C consists
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of exactly c points. Then D = p−1
∗ C ′ ≡ bH2 − cH · E and blowing-up X

along D we get a threefold Y with associated cubic form

F (x, y, z) = ax3 − 3(by + cz)x2 + y3 + 3y2z.

We may ensure the existence of such a curve as C ′ applying Theorem
2.15 of [EF01].

If ∆G = 0 and SF = 0 then the possible reduced forms (ai, bi, Gi) for
F may be infinitely many, but the ai and Gi are in finite number, as the
following Lemma shows. This is enough for our purposes.

Lemma 3.2.22. Let

F (x, y, z) = ax3 + (by + cz)x2 +G(y, z)

be an integral non-degenerate cubic form such that SF = 0 and G is a non-
degenerate cubic with ∆G = 0. Let (ai, (bi, ci), Hi)i∈I be reduced forms for
F where ∆Hi = 0. Then c = ci = 0 and {ai}i∈I , {Gi}i∈I are finite sets.

Proof. Since ∆G = 0 we act on (y, z) with SL(2,Z) so that we may assume

G(y, z) = c1y
3 + c2y

2z

where c1, c2 ∈ Z. If F may be written in reduced form with associated triple
(A, (B,C), H) for the same reason we may assume that

G(Y, Z) = d1Y
3 + d2Y

2Z

where d1, d2 ∈ Z. Moreover we have

0 = SF = c2c2
2 = C2d2

2

and hence we may assume c = C = 0 (because G and H are non-degenerate
and hence c2, d2 6= 0 ). Moreover, since we are always allowed to act with
SL(2,Z) on (y, z), we may replace z with z − ky where k is the smallest
nonnegative residue of c1 modulo c2 (the smallest nonnegative residue of d1
modulo d2 respectively) so that 0 ≤ c1 < c2 and 0 ≤ d1 < d2.

Let T = (tij)i,j=1,2,3 ∈ SL(3,Z) such that, setting (x, y, z) = M ·
(X,Y, Z)T and acting with T on F we get

F · T = AX3 + (BY )X2 +H(Y, Z).

Note that P = [0, 0, 1] is a singular point of {F (x, y, x) = 0} ⊆ P2

and thus we may consider P fixed by T , which implies t13 = t23 = 0 and
t33 = ±1. We may assume t33 = 1.
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Working out the equations

t11t22 − t12t21 = 1, c2t
2
21 + ct211 = c,

ct212 + c2t
2
22 = c2, ct11t12 + c2t21t22 = 0

we get t21 = 0 and we may assume t11 = t22 = 1. This implies A = a and
d2 = c2. This tells us that there are just a finite number of possible values
for c1 and d1, and hence there are only finitely many Gi and the Lemma is
proved.

Note that we have

F ·M = ax3+(3a+t12)x2y+(c2t31+2bt12+3at212)xy2+(at312+c1+c2t32+bt212)y3+c2y
2z

and hence there might be infinitely many different bi depending on t12.

Lemma 3.2.23. Let X be a smooth threefold such that K3
X 6= 0 and let F

be the cup-form of X. Let f : Y → X be the blow-up of a smooth curve
C ⊆ X. Then we may write

F (x, y, z) = ax3 + (by + cz)x2 +G(y, z)

where G is the cup-form of X, a = −deg(NC/X) and there is a non-trivial
linear relation among a,b and c depending only on G and K3

X .

Proof. By Proposition 13 in [OVdV95] we need just to prove the existence
of a linear relation among a,b and c. By Proposition 16 in [OVdV95] we
know that G(y, z) is not a cube, hence the equation G(y, z) = K3

X has only
a finite number of solutions in Z2 (apply Thue’s Theorem if G is irreducible,
otherwise it is trivial). Let (α, β) be such a solution. We have −3KX .C =
αb+ βc. On the other hand we know that

a = −deg(NC/X) = KX .C + 2− 2g(C)

and we are done.

3.2.4 General cubics

The next proposition shows that we can handle the cubics coming from
Corollay 3.2.10.

Proposition 3.2.24. Let

F (x0, . . . , xn) = ax3
0 + bx2

0x1 +G(x1, . . . , xn)

be a non-degenerate cubic form with integral coefficients. Let C ⊆ VF be an
irreducible component of positive dimension such that p = [1, 0, . . . , 0] ∈ C,
C ⊆ {x1 = 0} and C 6⊆ {F = 0}.
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Let (Fi)i∈I be non-equivalent reduced forms for F with associated triple
(ai, (bi, 0), Gi)i∈I and let (Ti)i∈I ∈ SL(n+1,Z) such that Ti ·F = Fi. Assume
that for any i ∈ I, [1, 0, . . . , 0] ∈ Ti(C).

Then {ai}i∈I and {Gi}i∈I are finite sets.

Proof. We assume by contradiction that I is infinite. By Lemma 3.2.3 the
set {T−1

i ([1, 0, . . . , 0])}i∈I is infinite. In particular, C admits infinitely many
rational points. Moreover b 6= 0 otherwise we get a contradiction Proposition
3.2.5 and Lemma 3.2.3 because p ∈WF .

By Corollary 3.2.10 there are two cases: C is a line or C spans a 2-
dimensional plane. Fix i ∈ I and set T = Ti. Write T = (thk)h,k=0,...,n.

Assume first that C is a line. By Corollary 3.2.10 we may act on
(x2, . . . , xn) with an element of SL(n − 1,Z) so that C = {x1 = x3 =
x4 = . . . = xn = 0} and

F = ax3
0 + bx2

0x1 + cx2
1x2 +H(x1, x3, x4, . . . , xn)

where H ∈ Z[x1, x3, x4, . . . , xn] is a cubic form and c ∈ Z. Since reduced
forms are considered modulo the action of SL(n,Z) on (x1, . . . , xn) we may
assume that

Fi = aix
3
0 + bix

2
0x1 + cix

2
1x2 +Hi(x1, x3, x4, . . . , xn)

where Hi ∈ Z[x1, x3, x4, . . . , xn] is a cubic form, ci ∈ Z and that T (C) = C.
Denote by S = (thk)h,k=1,...,n the submatrix of T obtained removing the

first row and column.
Since C is fixed by T , we have thk = 0 for h = 1, 3, 4, . . . , n and k = 0, 2.

Since x2 does not appear in degree 3 or 2 in F and Fi, it is easy to check
that we must have t02 = 0.

Hence detT = t00 detS and we may assume t00 = detS = 1. Since

ai = F (t00, t10, . . . , tn0)

we conclude that ai = a
Now we need to prove that there are only finitely many non-equivalent

Gi. We must have t1j = for j ≥ 0, because x2 appears only in the monomial
x2

1x2. This implies also that t11 = 1 and ci = c. It is immediate to see that
in this situation t0j = 0 for j ge2. To conclude just note that, replacing x2
with x2 + kx1 for k ∈ Z, we can keep the coefficient of x3

1 between 0 and c.

If C spans a plane Π then by Corollary 3.2.10 we may write

F = ax3
0 + bx2

0x1 + x2M1 + x4M2 +H

where H ∈ Z[x1, x3, x5, x6, . . . , xn] is a cubic form and M1,M2 ∈ Z[x1, x3]
are quadric forms. We may also assume that

Fi = aix
3
0 + bix

2
0x1 + x2N1 + x4N2 +Hi
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where Hi ∈ Z[x1, x3, x5, x6, . . . , xn] is a cubic form and N1, N2 ∈ Z[x1, x3]
are quadric forms.

Hence Π = {x1 = x3 = x5 = x6 = . . . = xn = 0} and we may consider Π
fixed by any Ti. Set T = Ti and denote by S = (thk)h,k=1,...,n the submatrix
of T obtained removing the first row and column.

Since Π is fixed by T it is immediate to see that thk = 0 for h =
1, 3, 5, 6, . . . , n and k = 0, 2, 4. Moreover since M1 6= 0 and M2 6= 0 it
easy to check, reasoning as before, that t0k = 0 for k = 2, 4 .

Since detT = t00 detS we may assume t00 = 1. Note also that

ai = F (t00, t10, . . . , tn0)

and hence ai = a.

Now we need to prove that the non equivalent Gi are a finite number.
The idea is similar as that for the case C line, but the calculation is a bit
more involved.

First note that (t22t44−t24t42) divides detT and hence, acting on (x2, x4)
with SL(2Z), we may assume t22 = t44 = 1 and t24 = t42 = 0. This implies
that T ·M = M1 and T · N = N1. Hence, looking at x2

0xk and x0x
2
k for

k = 5, . . . , n we get the equations

3at0k + bt1k = 0 and 3at20k + 2bt0kt1k = 0

which imply t1k = 0 and t0k = 0 (if a = 0, then look at x0x1xk) for k =
5, . . . , n.

Now (t11t33−t13t31) divides detT and, acting on (x1, x3), we may assume
that t11 = t33 = 1 and t13 = t31 = 0. This implies that M1 = N1 and
M2 = N2.

To conclude we need to bound the coefficients of the monomials x3
1, x2

1x3,
x1x

2
3 and x3

3 (which are the only ones that may change the equivalence class
of Gi). For this it is enough to use transformations of the type x2 + d1x1 +
d3x3 and x4 + f1x1 + f3x3 where di, fi ∈ Z (generalize the argument of the
previous case).

In the next Lemma we show that under the action of the transformations
given by Corollaries 3.2.11 and 3.2.12 we may control the last part of a
reduced form.

Lemma 3.2.25. Let s ∈ {1, 2} and let F, F1 ∈ Q[x0, . . . , xn] be non-
degenerate cubic forms such that

F = ax3
0 + bx2

0x1 +R(x1, xs) +H(xs+1, . . . , xn)

and
F1 = a1x

3
0 + b1x

2
0x1 +R1(x1, xs) +H1(xs+1, . . . , xn)
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where b, b1 6= 0.
Assume that there exists T = (thk)h,k=0,...,n ∈ SL(n+ 1,Q) such that T ·

F = F1, thk = 0 for h = s+1, . . . , n and k = 0, . . . , s and det(thk)h,k=0,...,s =
1. Then H and H1 are SL(n− s− 1,Q)-equivalent.

Proof. We prove the case s = 2, the case s = 1 is similar and easier.

We will show that thk = 0 for h = 0, 1, 2 and k = 3, . . . , n, which implies
our statement.

Set S = (thk)h,k=0,1,2 and consider the transformation T = (thk)h,k=0,...,n ∈
SL(n+ 1,C) constructed as follows:

(thk)h,k=0,1,2 = S−1 (thk)h,k=3,...,n = In−2,

(thk)k=0,1,2
h=3,...,n = 0, (thk)k=3,...,n

h=0,1,2 = 0

where In−2 ∈ SL(n− 2,C) is the identity matrix.
Note that the composition M = (mij)i,j=0,...,n = T · T acts on F giving

as result a cubic form F1 which is in reduced form with associated triple
(a, (b, 0), R+H1). Moreover

(mhk)h,k=0,1,2 = I3 (mhk)k=3,...,n
h=0,1,2 = (thk)k=3,...,n

h=0,1,2

(mhk)k=0,1,2
h=3,...,n = 0.

If a 6= 0 and b 6= 0 then for any k = 3, . . . , n, looking at the monomials
x0x

2
k and x2

0xk in F1, we get the equations

3at0k + bt1k = 0 and 3at20k + 2bt0kt1k = 0

which give t0k = t1k = 0. Let us write

R(x1, x2) = c1x
3
1 + c2x

2
1x2 + c3x1x

2
2 + c4x

3
2.

Then looking at x2
1xk, x1x

2
k and x2

2xk in F1 we get the conditions

c2t2k = 0, c3t
2
2k = 0, c4t2k = 0

from which t2k = 0 and we are done.

If a = 0 then t1k = 0 for k = 3, . . . , n. Moreover for k = 3, . . . , n
considering the monomial x0x1xk we get t0k = 0. Now we can conclude as
before.
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Proposition 3.2.26. Let

F (x0, . . . , xn) = ax3
0 + bx2

0x1 +G(x1, . . . , xn)

be a cubic form with integral coefficients such that ∆F 6= 0. Let C ⊆ VF be an
irreducible component of positive dimension such that p = [1, 0, . . . , 0] ∈ C,
C 6⊆ {F = 0} and C 6⊆ {x1 = 0}. Let (Fi)i∈I be non-equivalent reduced
forms for F with associated triple (ai, (bi, 0), Gi)i∈I and let (Ti)i∈I ∈ SL(n+
1,Z) such that Ti · F = Fi. Assume that for any i ∈ I, [1, 0, . . . , 0] ∈ Ti(C).
Then I is finite.

Proof. We assume by contradiction that I is infinite. By Lemma 3.2.3 the
set {T−1

i ([1, 0, . . . , 0])}i∈I is infinite. In particular, C admits infinitely many
rational points. Moreover b 6= 0 otherwise we get a contradiction by Propo-
sition 3.2.5 and Lemma 3.2.3 because p ∈WF .

We assume first that C is a line. Acting on (x1, . . . , xn) with SL(n,Z)
we may assume that C = {x2 = x3 = x4 = . . . = xn} and we may write

F = ax3
0 + (bx1 + cx2)x2

0 +G(x1, . . . , xn)

where b, c ∈ Z, b 6= 0 and G ∈ Z[x1, . . . , xn] is a cubic form. Since reduced
forms are considered modulo the action of SL(n,Z) on (x1, . . . , xn) we may
assume that this holds for any i ∈ I, that is

F = aix
3
0 + (bix1 + cix2)x2

0 +Gi(x1, . . . , xn)

and Ti(C) = {x2 = x3 = x4 = . . . = xn}.
Let i ∈ I and set T = Ti. Write T = (thk)h,k=0,...,n. Since {x2 = x3 =

x4 = . . . = xn} is fixed by T we have thk = 0 for h = 2, . . . , n and k = 0, 1.
By detT = 1 we may assume det(th,k)h,k=0,1 = 1.

We may find elementsM,Mi ∈ SL(n,Q) as in Corollary 3.2.11 such that

F̂ = M · F = ax3
0 + bx2

0x1 + dx3
1 +H(x2, . . . , xn)

and
F̂i = Mi · Fi = aix

3
0 + bix

2
0x1 + dix

3
1 +Hi(x2, . . . , xn)

where d, di ∈ Z and H,Hi ∈ Q[x2, . . . , xn] are cubic forms.
Moreover, setting (t̂hk) = T̂ = M−1 · T ·Mi, we have that T̂ · F̂ = F̂i.

Set
U := (t̂hk)h,k=0,1.

Note that, by the structure of T , M and Mi we have that t̂hk = 0 for
h = 2, . . . , n and k = 0, 1 and U ∈ SL(3,Z). Setting

F ′ = F̂|C = ax3
0 + bx2

0x1 + dx3
1 and F ′i = F̂i|C = aix

3
0 + bix

2
0x1 + dix

3
1
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we have that U · F ′ = F ′i and in particular ∆F ′ = ∆F ′i
.

Recall that ∆F = 0 if and only if the hypersurface {F = 0} ⊆ Pn is
singular. If ∆F ′ = 0 then we would also have a singular point of F and
hence ∆F ′ 6= 0. Since F ′, F ′i have integer coefficients we can apply Lemma
3.2.14 to conclude that there are finitely many ai, bi and di.

By Lemma 3.2.25 we also get that H and Hi are SL(n−2,Q)-equivalent,
which implies that we have a finite number of possible Gi and if C is a line
we are done.

Assume now that C is not a line. By Theorem 3.2.8 we know that C
spans a plane Π. Acting on (x1, . . . , xn) with an element of SL(n,Z) we may
assume Π = {x3 = x4 = . . . = xn = 0} and we may write

F = ax3
0 + x2

0(bx1 + cx3) +G(x1, . . . , xn)

where b, c ∈ Z, b 6= 0 and G ∈ Z[x1, . . . , xn] is a cubic.
Since reduced forms are considered modulo the action of SL(n,Z) on

(x1, . . . , xn) we may assume that this holds for any i ∈ I, that is

Fi = aix
3
0 + x2

0(bix1 + cix3) +Gi(x1, . . . , xn)

and Ti(C) ⊆ Π = {x3 = x4 = . . . = xn = 0}.
Let i ∈ I and set T = Ti. Write T = (thk)h,k=0,...,n. Since we may

consider Π = {x3 = . . . = xn = 0} fixed by T we have thk = 0 for h =
3, . . . , n and k = 0, 1, 2. By detT = 1 we may assume det(th,k)h,k=0,1,2 = 1.

We may find elementsM,Mi ∈ SL(n,Q) as in Corollary 3.2.12 such that

F̂ = M · F = ax3
0 + bx2

0x1 +R(x1, x2) +H(x3, . . . , xn)
and

F̂i = Mi · Fi = aix
3
0 + bix

2
0x1 +Ri(x1, x2) +Hi(x3, . . . , xn)

where R,Ri ∈ Z[x1, x2] and H,Hi ∈ Q[x3, . . . , xn] are cubic forms. More-
over, setting (t̂hk) = T̂ = M−1 · T ·Mi, we have that T̂ · F̂ = F̂i. Set

U := (t̂hk)h,k=0,1,2.

Note that, by the structure of T , M and Mi we have that t̂hk = 0 for
h = 3, . . . , n and k = 0, 1, 2 and U ∈ SL(3,Z). Setting

F ′ = F̂|Π = ax3
0+bx2

0x1+R(x1, x2) and Fi′ = F̂i|Π = aix
3
0+bix2

0x1+Ri(x1, x2)

we have that U · F ′ = F ′i and in particular ∆F ′ = ∆F ′i
. Recall that ∆F = 0

if and only if the hypersurface {F = 0} ⊆ Pn is singular. If ∆F ′ = 0 then
we would also have a singular point of F and hence ∆F ′ 6= 0. Since F ′, F ′i
have integer coefficients we can apply Proposition 3.2.18 to conclude that
there are finitely many ai, bi and Ri.

By Lemma 3.2.25 we also get that H and Hi are SL(n−2,Q)-equivalent,
which implies that we have a finite number of possible Gi and the claim
follows.
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Lemma 3.2.27. Let

F = bx2
0x1 +G(x1, . . . , xn)

be a non-degenerate cubic form with complex coefficients such that ∆F 6= 0.
Let p = [1, 0, . . . , 0] and let p ∈ C ⊆ VF be an irreducible component. Assume
that C ⊆ {F = 0}. Then C = p.

Proof. Since F is non-degenerate, it follows that b 6= 0. Assume by con-
tradiction that dimC ≥ 1. There are two cases: C ⊆ {x1 = 0} and
C 6⊆ {x1 = 0}.

Let us start with the case C ⊆ {x1 = 0} and write

F = bx2
0x1 + c1x

3
1 + Lx2

1 +Qx1 +R

where c1 ∈ C and L,Q,R ∈ C[x2, . . . , xn] are homogeneous polynomials of
degree 1,2 and 3 respectively. Since ∂0∂0F (z) = 0 for any z ∈ C we have
HR(z) = 0 and by Lemma 3.2.4, acting on (x2, . . . , xn), we may assume
that R does not depend on x2. If x2

2 does not appear in Q, the point
[0, 0, 1, 0, . . . , 0] is a singular point of F , in contradiction with ∆F 6= 0.
Hence we may assume that Q contains the monomial x2

2 and since

∂F

∂x1
= bx2

0 + 3c1x
3
1 + 2x1L+Q

it is easy to get a point [s, 0, t, 0 . . . , 0] which is singular for F . This prove
that C = p.

Assume now that C 6⊆ {x1 = 0}. Acting on (x1, x2, . . . , xn) we may
assume that there is point q = [q0, q1, 0, . . . , 0] ∈ C such that q0, q1 6= 0 and
that L = c2x2. Note that since C ⊆ {F = 0}, we have that C is not a line.
Thus, we may assume that Q = c3x

2
2 and we may write

F = bx2
0x1 + c1x

3
1 + c2x

2
1x2 + c3x1x

2
2 + c4x

3
2 +R

where ci ∈ C and L,Q,R ∈ C[x2, . . . , xn] are homogeneous polynomials of
degree 1,2 and 3 respectively and the monomial x3

2 does not appear in R. It
is easy to see that ∂i∂jHF (z) = 0 for i = 2, . . . , n, j = 2, . . . , n, (i, j) 6= (2, 2)
and for any point z ∈ C. If C ⊂ {x2 = 0} then, acting on (x3, . . . , xn), we
may assume that there is a point r = [r0, r1, 0, r3, 0, . . . , 0] ∈ C such that
r3 6= 0. Since ∂i∂jHF (r) = 0 for i = 2, . . . , n, j = 2, . . . , n, (i, j) 6= (2, 2), it
is immediate to check that

R = αx2
2x3 +R1(x2, x4, . . . , xn),

where α ∈ C and R1 ∈ C[x4, . . . , xn] is a cubic form. Then [0, 0, 0, 1, 0 . . . , 0]
is a singular point of F , which is a contradiction. Hence C 6⊂ {x2 = 0}
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and we may assume that there is a point s = [s0, s1, s2, 0, . . . , 0] such that
s2 6= 0. Since ∂i∂jHF (s) = 0 for i = 2, . . . , n, j = 2, . . . , n, (i, j) 6= (2, 2), we
get that R does not depend on x2 and therefore HR(z) = 0 for any z ∈ C.
By Lemma 3.2.4, we have that C ⊆ {x3 = . . . = xn = 0}.

If c4 = 0 then F is singular and again we get a contradiction, and so
we may assume that c4 6= 0. Then C is a plane cubic given, in the space
{x3 = . . . = xn = 0}, by the 3×3 minor HF j=0,1,2

i=0,1,2 . That is C is the Hessian
curve of a curve D given by

F1 = bx2
0x1 + c1x

3
1 + c2x

2
1x2 + c3x1x

2
2 + c4x

3
2 = 0

in the plane {x3 = . . . = xn = 0}. Since ∆F 6= 0 we have that D is smooth
and by C ⊂ {F = 0} we conclude that C ⊂ D, which is a contradiction.

Now we can state the main result of this section.

Theorem 3.2.28. Let F ∈ Z[x0, . . . , xn] be a non-degenerate cubic form
with integral coefficients such that ∆F 6= 0. Then there are only finitely
many non-equivalent triples (a,B,G) such that F can be written in reduced
form with associated triple (a,B,G). Moreover ∆G 6= 0.

Proof. We may assume that

F = ax3
0 + bx2

0x1 +G

where a, b ∈ Z and G ∈ Z[x1, . . . , xn] is an integral cubic form.
Let (ai, Bi, Gi)i∈I be non-equivalent reduced forms for F . Let Ti ∈

SL(n+ 1,Z) such that Ti ·F = Fi. Acting on (x1, . . . , xn) with SL(n,Z) we
may assume that Bi = (bi, 0, . . . , 0).

Let p = [1, 0, . . . , 0]. We suppose by contradiction that I is infinite. By
Lemma 3.2.3 we may assume that the set T−1

i ([1, 0, . . . , 0]) is infinite for any
i ∈ I.

Let C ⊆ VF be an irreducible component of positive dimension such
that p ∈ C. We claim that we may assume p ∈ Ti(C) for any i ∈ I.
Let C1 = C,C2, . . . , Ck be the irreducible components of VF with positive
dimension. For any j = 1, . . . , n let Ij = {i ∈ I : p ∈ Ti(Cj)} and fix
ij ∈ Ij . Note that for any j = 1, . . . , k, {Fi}i∈Ij are cubic forms such that
Fi = Ti ·T−1

ij
·Fij and p ∈ Ti(Cj). Hence, reasoning j by j, we get the claim.

If C ⊂ {F = 0} then b = 0 and by by Lemma 3.2.27 we get a contradic-
tion.

If C ⊆ {x1 = 0}, then by Proposition 3.2.10, ∆F = 0, which contradicts
our assumptions. Hence C 6⊆ {x1 = 0} and we may apply Proposition 3.2.26
to conclude.
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Definition 3.2.29. Let F ∈ Z[x0, . . . , xn] be an integral non-degenerate
cubic. We say that F is decomposable with decomposition pair (H1, H2) if
there is an element T ∈ SL(n+ 1,Z) such that

T · F = G+H

where G ∈ Z[x0, . . . , xk] and H ∈ Z[xk+1, . . . , xn] are non-degenerate cubics.
Two decompositions (H,G) and (H ′, G′) are equivalent if there is an

element T ∈ SL(n+ 1,Z) such that T ·H = H ′ and T ·G = G′.

Proposition 3.2.30. Let F ∈ Z[x0, . . . , xn] be a non-degenerate cubic.
Then F has only a finite number of non equivalent decompositions.

Proof. Let {(Gi, Hi)}i∈I be non equivalent decompositions of F and Ti ∈
SL(n + 1,Z) such that Ti · F = Fi = Gi + Hi. We may assume that
Gi ∈ Z[x0, . . . , xk] with k fixed, 0 ≤ k ≤ n− 1.

Let V m
Fi

= {p ∈ Pn | rkHFi(p) ≤ m}. Let L = {x0 = . . . = xk = 0} ⊂ Pn
and M = {xk+1 = . . . , xn = 0} ⊂ Pn. Note that for any i ∈ I, M is
an irreducible component of V k+1

Fi
. In fact, assume by contradiction that,

for some i ∈ I, there is an irreducible component S ⊂ V k+1
Fi

such that
M ⊂6= S. Then the general point s = [s0, . . . , sn] ∈ S is such that sj 6= 0 for
j = 0, . . . , k and (possibly reordering) sk+1 6= 0. Since Gi and Hi are non
degenerate, rkHGi(s) = k+ 1, which implies rkHHi(s) = 0, a contradiction
by Lemma 3.2.4. The same holds for L respect to V n−k

Fi
.

Since the irreducible components of V m
Fi

are finitely many, we may assume
that L and M are fixed by any Ti. Fix T = Ti. Writing T = (tlm)l,m=0,...,n
as a matrix it is easy to see that tlm = tml = 0 for l = k + 1, . . . , n and
m = 0, . . . , k. This implies the Theorem.

We can finally classify the possible cubics with infinitely many reduced
forms in the case C 6⊂ {F = 0}.

Theorem 3.2.31. Let F ∈ Z[x0, . . . , xn] be a cubic form such that there are
infinitely many reduced forms (ai, bi, Gi) associated to F . Assume that no
positive dimensional component of VF is contained inside {F = 0}. Then
there exists T = (tij)i,j=0,...,n ∈ SL(n+1,Q) such that t00 = 1, t10 = t01 = 0
for i = 1, . . . , n, tij = 0 for i = 3, . . . , n and j = 0, 1, 2, (tij)i,j=0,1,2 ∈
SL(3,Z) such that

1. either

T ·F = ax3
0+bx2

0x1+R(x1, x2)+S(x3, . . . , xn) = F0(x0, x1, x2)+S(x3, . . . , xn)

where R ∈ Z[x1, x2] and S ∈ Q[x3, . . . , xn] are cubic forms and ∆F0 =
0;
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2. or

T · F = ax3
0 + bx2

0x1 + αx2
1x3 + βx1x

2
3 + γx2x

2
3 + S(x3, . . . , xn)

where α, β, γ ∈ Q and S ∈ Q[x3, . . . , xn] is a cubic form.

Proof. By Theorem 3.2.28 we know that ∆F = 0.
We may assume that

F = ax0 + bx2
0x1 +G(x1, . . . , xn)

is in reduced form and that, as usual, b 6= 0. Let C be a component of
VF passing through p = [1, 0, . . . , 0]. By Lemma 3.2.3 we may assume that
dimC ≥ 1. If C ⊂ {x1 = 0} then F has only a finite number of reduced
forms by Proposition 3.2.24. So C 6⊂ {x1 = 0}.

If C is a line then we apply Corollary 3.2.11 to obtain T ∈ SL(n+ 1,Z)
such that

T · F = ax3
0 + bx2

0x1 + cx3
1 +R(x2, . . . , xn)

where c ∈ Z and R ∈ Q[x2, . . . , xn] is a cubic form. We choose T such that
t00 = t11 = 1, t0i = ti0 = 0 for i = 1, . . . , n, tij = 0 for i = 2, . . . , n and
j = 1.

Note that c 6= 0, otherwise HG = 0. If F1 is is an integral cubic form
associated to F we may assume that

F1 = a1x
3
0 + b1x

2
0x1 + c1x

3
1 +R1(x2, . . . , xn)

and that ax3
0 + bx2

0x1 + cx3
1 is SL(2,Z)-equivalent to a1x

3
0 + b1x

2
0x1 + c1x

3
1,

where a1, b1, c1 ∈ Z and R1 ∈ Q[x2, . . . , xn] is a cubic form. By Proposition
3.2.15 and Lemma 3.2.25 the reduced forms associated to F are in finite
number, which contradicts the hypothesis.

Hence C is not a line and we are in the situation (b) of Corollary 3.2.12,
i.e there is T ∈ SL(n,Z) such that T = (tij)i,j=0,...,n ∈ SL(n + 1,Q) such
that t00 = 1, ti0 = t0i = 0 for i = 1, . . . , n, tij = 0 for i = 3, . . . , n and
j = 1, 2, (tij)i,j=0,1,2 ∈ SL(3,Z) and such that

T · F = ax3
0 + bx2

0x1 + cx3
1 + αx2

1x3 + βx1x
2
3 + γx2x

2
3 +R(x3, . . . , xn)

where c ∈ Z, α, β, γ ∈ Q and R ∈ Q[x3, . . . , xn] is a cubic form. If F1 is is
an integral cubic form associated to F we may assume that

F1 = a1x
3
0 + b1x

2
0x1 + c1x

3
1 + α1x

2
1x3 + β1x1x

2
3 + γ1x2x

2
3 +R1(x3, . . . , xn).

Let M = (mij)i,j=0,...,n ∈ SL(n + 1,Q) such that M · F = F1 and that
(mij)i,j=0,1,2 ∈ SL(3,Z). We may assume that Π = {x3 = . . . = xn = 0}
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is fixed by M and hence mhk = 0 for h = 3, . . . , n and h = 0, 1, 2. Since
q = [0, 0, 1, 0, . . . , 0] ∈ WF we may also assume that q is fixed by M and so
m02 = m12 = 0. This implies m22 = 1 and (mij)i,j=0,1 ∈ SL(2,Z).

If c 6= 0, then the result follows by Proposition 3.2.15.
If c = 0, we are in case (2).

3.3 Bounding c1(X)3

Let X be a terminal Q-factorial threefold. By H i(X,Z) we mean the i-th
cohomology singular group of X modulo its torsion subgroup. We denote by
bi(X) = rkH i(X,Z) = dimH i(X,Q) the i-th Betti number of X. Since a
Q-factorial terminal threefold is a rational homology manifold (see [Kol91]),
the singular cohomology coincides with the intersection cohomology and, in
particular Poincaré and Lefschetz dualities hold.

For any Cartier divisor D on X it is well defined its first Chern class
c1(D) ∈ H2(X,Z). Moreover given Cartier divisors D1, D2, D3, their inter-
section number D1 · D2 · D3 ∈ Z corresponds to the cup products of their
first Chern classes.

Let h = (h1, . . . , hn) be a basis of H2(X,Z). The intersection cup prod-
uct induces a symmetric trilinear form

φX : H2(X,Z)⊗H2(X,Z)⊗H2(X,Z)→ Z.

Hence we may define a cubic homogeneous polynomial FX ∈ Z[x1, . . . , xn]
as

FX =
∑

i=(i1,...,in):
i1+...+in=3

(
3
i

)
hixi.

Since X is a rational homology manifold, the proof of Proposition 16 in
[OVdV95] works in our case and hence FX is non-degenerate.

Definition 3.3.1. We call FX the cubic form associated to X. Let

SX := sup{|a| : FX may be written in reduced form with triple (a, b,G)},

where we set SX = 0 if there are no reduced forms for FX . We call SX the
Skansen number of X.

Note that SX is a topological invariants of X since FX is an invariant
modulo the action of GL(n,Z).

First we show that we can control K3
X in the case of divisorial contrac-

tions to points.



82 CHAPTER 3. CHERN NUMBERS OF THREEFOLDS

Proposition 3.3.2. Let X0 be a smooth projective threefold and let

X0 99K X1 99K . . . 99K Xk−1 99K Xk

be a sequence of some steps for a minimal model program of X0. Assume
that f : Xk−1 → Xk is a divisorial contraction to a point. Then

0 < K3
Xk−1 −K

3
Xk
≤ 28b2b2

2 ,

where b2 = b2(X0) is the second Betti number of X0.

Proof. Set X = Xk and Y = Xk−1, so we are considering a divisorial con-
traction to a point f : Y → X.

Let n be the index of KX , that is the smallest positive integer such that
nKX is Cartier. Let a/n be the discrepancy of f , which is defined by the
relation KY = f∗(KX) + (a/n)E and which is positive since X is terminal.

The possible values of (a/n)E3 are listed in Table 1 and 2 of [Kaw05]
and we have

0 < a

n
E3 ≤ 4

and hence a/n ≤ 4/E3. Let R be the least common multiple of the indices
of the fictitious singularities of Y . By [Kaw05, Lemma 2.3] we know that
E3 ≥ 1/R and we conclude that

0 <
(
a

n
E

)3
≤ 64R2.

We now give a very rough explicit bound for R depending on b2 =
b2(X0). Of course R is not greater than the product of all the indices of the
singularities of Y and the number of these singularities is not greater than
Ξ = Ξ(Y ). Hence, by the arithmetic-geometric mean inequality we have

R ≤ ΞΞ.

Applying Proposition 3.1.1 we get(
a

n
E

)3
≤ 28b2b2

2

Since K3
Y −K3

X = (a/n)3E3, we are done.

Recall that f : Y ⊃ E → X ⊃ C is said to be a blow-down to a LCI
curve C, if C is a local complete intersection in the smooth locus of X and
f is the blow-up of the ideal sheaf of C.

We now show how cubic forms of threefolds change under divisorial con-
tractions.
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Lemma 3.3.3. Let f : Y → X be a divisorial contraction to a point or
a blow-down to a LCI curve with exceptional divisor E and let r be the
smallest positive integer for which rE is Cartier. Set e = c1(rE). Then
H2(Y,Z) ∼= Z[e]

⊕
H2(X,Z).

Let x0, . . . , xn be coordinates on H2(Y,Z) respect to a basis e, e1, . . . , en,
where the ei are the pullback of elements hi of a basis on H2(X,Z).

If f contracts E to a point, then

FY (x0, . . . , xn) = ax3
0 + FX(x1, . . . , xn),

where a = e3.
If f is the blow-down to a LCI curve C, then

FY (x0, . . . , xn) = ax3
0 + 3x2

0(
n∑
i=1

bixi) + FX(x1, . . . , xn),

where a = e3 and bi = −hi.C.

Proof. If f : Y → X is a blow-down to a LCI curve C, then C is contained
in the smooth locus of X and E is just the projectivization of the normal
bundle NC/X of C in X: the result is hence standard (see, for instance,
Proposition 14 of [OVdV95]).

Assume now that f : Y → X contracts E to a point p ∈ X.
Let X1 ⊂ X be a Stein and contractible representative of the germ of

p ∈ X. Set X2 = X \ {p} and let X̃1 = f−1(X1) and X̃2 = f−1(X2). The
Mayer-Vietoris sequence reads

→ H1(X̃1 ∩ X̃2)→ H2(Y )→ H2(X̃1)
⊕

H2(X̃2)→ H2(X̃1 ∩ X̃2)→

and

H1(X̃1 ∩ X̃2) = H1(X1 \ {p}) = 0 = H2(X1 \ {p}) = H2(X̃1 ∩ X̃2).

Moreover H2(X̃2) = H2(X). So H2(Y ) = H2(X) ⊕ H2(X̃1). By the
proof of Lemma 4.3 in [Cai05] , H2(X̃1) ∼= PicX̃1. On the other hand, we
have the exact sequence

0→ Z[E]→ ClX̃1 → ClX → 0.

By Q-factoriality we get that PicX̃1 is generated over Z by e. The state-
ment about the cubic form follows immediately by the projection formula.

Proposition 3.3.4. Let f : Y ⊃ E → X ⊇ C be a blow-up of a smooth
curve C contained in the smooth locus of X. Then

|K3
Y −K3

X | ≤ 2SY + 6(b3(Y ) + 1)

where SY is the Skansen number of Y .
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Proof. Since C is a local complete intersection, the exceptional divisor E is
the projectivization of the normal bundle of C; call π : E → C the fibration
morphism and let ξ := c1(OE(1)) be a section. Then we have the following
relations:

NE/Y = E|E = OE(−1) = −ξ, E3 = −deg(NC/X) = KX .C + 2− 2g

K2
Y .E = −KX .C + 2− 2g, K3

Y = K3
X − 2KX .C + 2− 2g.

Moreover, considering the cubic FY associate to Y and applying Lemma
3.3.3, we have that |E3| ≤ SY . Hence

|K3
Y −K3

X | = | − 2(E3 − 2 + 2g) + 2− 2g| = | − 2E3 + 6− 6g|
≤ 2SY + 6(b3(Y ) + 1).

We can finally state the main result of this section.

Theorem 3.3.5. Let X be a projective smooth threefold of non-negative
Kodaira dimension and let FX be its associated cubic. Assume that ∆FX 6= 0
and that there is an MMP for X composed only by divisorial contractions to
points and blow-down to smooth curves in smooth loci.

Then there exists a constant DX depending only on the topology of X
such that

|K3
X | ≤ DX .

Proof. Let
X = X0 → X1 → . . .→ Xk

be an MMP for X such that each fi : Xi → Xi+1 is a divisorial contraction
to a point or to a smooth curve in a smooth locus.

Denote with Fi the cubic form associated to Xi and with Si the Skansen
number of Xi.

By induction on i = 0, . . . , k, by Lemma 3.3.3 and by Theorem 3.2.28 it
is easy to see that, for any i = 0, . . . , k, ∆(Fi) 6= 0, Si < +∞ and that each
Si depends only on F0 (and, as consequence, only on the topology of X).

Set
Dk = 64

(
b1(X) + b3(X) + 2

3b2(X)
)

and for i < k set

Di = Di+1 + max{28b2(X)2b2(X), 2Si + 6(b3(Xi) + 1)}.

We claim that
|K3

Xi | ≤ Di.

for any i = 0, . . . , k.
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The proof is by descending induction on i = k, . . . , 0. If i = k the result
follows by Theorem 3.1.3.

Assume i < k and |K3
Xi+1
| ≤ Di+1. The claim follows now combining

Propositions 3.3.2 and 3.3.4.
To conclude it is enough to observe that b3(Xi) ≤ b3(X) for any i =

1, . . . , k by the following exact sequence (see Proposition 3.2 of [Cai05]):

0→ Hk(Xi+1,Q)→ Hk(Xi,Q)⊕Hk(fi(Ei),Q)→ Hk(Ei,Q)→ 0.
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Chapter 4

Hypersurfaces with assigned
volume

In this chapter we show examples of weighted hypersurfaces of general type
with either many vanishing plurigenera, with many non-birational pluri-
canonical maps or with assigned volume. It collects the results of a joint
paper with E. Ballico and C. Fontanari (see [BPT13]).

Let X be a normal projective variety. A natural object attached to X is
its canonical ring

R(X,KX) =
⊕
m≥0

H0(X,mKX).

If R(X,KX) is finitely generated then we may define the canonical model
of X,

Xcan = ProjR(X,KX),

which is a birational invariant of X.

Definition 4.0.6 (Kodaira dimension). The dimension of Xcan is called
Kodaira dimension of X and indicated by κ(X). If |mKX | is empty for
every m then we set κ(X) = −∞.

Note that if κ(X) = dimX, then X is of general type.
For any m ∈ N consider the rational map φm : X → Zm given by

the m-pluricanonical system |mKX |; it is called the m-pluricanonical map.
Moreover set

Rm = H0(X,mKX) and R(m) =
⊕
j≥0

Rmj .

Since there exists an integer r such that R(r) is generated by Rr, we may
realize Xcan as the image of φr. Hence any pluricanonical maps factors as

φm : X 99K Xcan 99K P(Rm)

87
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and κ(X) is maxm>0{dimφm(X)}.
When κ(X) ≥ 0 we expect the following picture:

X 99K Xmin → Xcan

where the first birational map should come from the minimal model program
and the second morphism is given by a multiple of KX . This second part
is known as abundance conjecture and it is one of the major open questions
in birational geometry:

Conjecture 4.0.7 (Abundance). Let X be a terminal variety such that KX

is nef. Then KX is semi-ample.

Abundance conjecture is known to hold in dimension less or equal to 3.

From now on we assume that X is of general type, that is κ(X) = n or
equivalently vol(X) > 0.

It is natural to ask how "small" can the Hilbert function of R(X) be.
There are many different possible definition of "small"; we are mainly in-
terested in two of them. First, we would like to consider varieties of small
canonical volume. Making the volume small is the same as making small
the asymptotical behaviour of the Hilbert function. Second, we would like
to understand which plurigenera Pm := h0(X,mKX) may be zero.

For curves of general type vol(X) ≥ 2 and KX is effective; for surfaces
vol(X) ≥ 1 and P2 6= 0, while there are surfaces of general type with P1 = 0.
For threefolds the record from both points of view is attained by an example
of Iano-Fletcher (see 15.1 of [IF00]) with volume 1

420 and P1 = P2 = P3 = 0.
See also [CC10b] and [CC10a] for related results in dimension 3.

In higher dimension we are able to prove the following.

Theorem 4.0.8. Let n ≥ 5 be an integer. There exists a smooth variety
of general type X of dimension n such that H0(X,mKX) = 0 for 0 < m <

bn+1
3 c and vol(X) < 3n+1

(n−1)n .

Recently the following result, generalization of a famous theorem of
[Bom73], was proven in [HM06], [Tak06] and [Tsu07].

Theorem. For any positive integer n there exists an integer rn such that if
X is a smooth variety of general type and dimension n, then

φr : X 99K P(H0(X, rKX))

is birational onto its image for all r ≥ rn.
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A consequence of this theorem is that for any smooth variety of general
type X of dimension n we have

vol(KX) ≥ 1
rnn
.

and that the set of the volumes of the manifolds of general type of dimension
n has a minimum vn > 0.

An instant consequence of Theorem 4.0.8 is the following

Corollary 4.0.9. Let vn be the minimal volume of an n-dimensional smooth
variety of general type. Then limn→∞ vn = 0.

A natural problem is to estimate rn. It is well known that r1 = 3 and
r2 = 5. By the mentioned example of Iano-Fletcher we know that r3 ≥ 27
(see 15.1 of [IF00]). Let x′n be the minimal positive integer such that for
every n-dimensional smooth variety X of general type there is an integer
t ≤ x′n such that φt is generically finite; obviously rn ≥ x′n.

The examples of Theorem 4.0.8 provide a lower bound for x′n (and there-
fore for rn) which is quadratic in n. More precisely

Theorem 4.0.10. For any integer n ≥ 7 we have

rn ≥ x′n ≥
n(n− 3)

9 ,

In particular
lim

n→+∞
rn = lim

n→+∞
x′n = +∞

The canonical system of these varieties is not ample. In view of Fujita’s
conjecture, smooth varieties with ample canonical system should not give
anything better than a linear bound. We show

Theorem 4.0.11. For any positive integer n > 0 there is a smooth variety
X of dimension n such that KX is ample and φ|tKX | is not birational for
t < n+ 3 if n is even or t < n+ 2 if n is odd.

The idea of this example is taken from [Kaw00], Example 3.1 (2).
These bounds are optimal up to dimension 3 (for the three dimensional

case see [CCZ07]). Note that the bound for n even is the same predicted by
Fujita’s conjecture for the very ampleness, while for n odd is one less.

Let r′n be the minimal positive integer such that for every n-dimensional
smooth variety X of general type there is an integer r ≤ r′n such that |rKX |
induces a birational map. Let xn be the minimal integer such that for
every n-dimensional smooth variety of general type and every integer t ≥ xn
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the map induced by |tKX | is generically finite. Of course rn ≥ r′n ≥ x′n,
rn ≥ xn ≥ x′n. It is also natural to study the behaviour of these numbers.

Taking X = Y × C with C a smooth curve of genus 2 and Y a smooth
variety of general type we get rn ≥ rn−1 and r′n ≥ r′n−1 for all n ≥ 2.

Question 4.0.12. Is rn+1 > rn for all n? Is r′n+1 > r′n for all n?

All our examples satisfy hi(X,OX) = 0 for all 1 ≤ i ≤ n− 1. Manifolds
X with the property hi(X,OX) = 0 for all 1 ≤ i ≤ n − 1 are very special,
but it may be worthwhile to fix the integer q := h1(X,OX) and study the
integers rn(q), r′n(q), xn(q), x′n(q) (rn(≥ q), r′n(≥ q), xn(≥ q), x′n(≥ q) and
rn(≤ q), r′n(≤ q), xn(≤ q), x′n(≤ q)) obtained taking only manifolds with
irregularity q (resp. ≥ q, resp. ≤ q). Taking X = Y ×D with D a curve of
genus x ≥ 2 we get rn(q) ≥ rn−1(q − x) for all integers n ≥ 2 and q, x such
that 2 ≤ x ≤ q (and similarly for the other integers r′n(q)).

Our last result is that every positive rational number is a canonical
volume:

Theorem 4.0.13. Let q = r/s be a rational number with r, s > 0 and
(r, s) = 1. There are infinite positive integers n such that there is a smooth
variety of dimension n with

vol(X) = r

s
.

4.1 The proofs

We will need the following lemma.

Lemma 4.1.1. Let P = P(a0, . . . , an) be a well-formed weighted projective
space. If the coordinate points are canonical singularities then all the singu-
larities of P are canonical.

Proof. Let P be a singular point of P. Define U := {0, 1, . . . , n} and let
S ⊂ U be the subset of the variables nonzero at P . By hypothesis, if
#S = 1, then P is a canonical singularity. Assume then #S > 1.

We denote by hS the highest common factor of the set {ai|i ∈ S}. Then
hS > 1 and, chosen a k ∈ S, P is a cyclic quotient singularity of type

1
hS

(a0, . . . , âk, . . . , an).

By the Reid’s criterium 1.3.7, P is a canonical singularity if and only if

1
hS

n∑
i=0

jai
S ≥ 1 for all 1 ≤ j ≤ hS − 1
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where aS denotes the smallest (non negative) residue of a mod hS .
We argue by contradiction. Suppose

1
hS

n∑
i=0

jai
S
< 1 for some 1 ≤ j ≤ hS − 1.

Take a k ∈ S. Then ak = mhS for a positive integer m. Note that
mj < ak. Then we have

1
ak

n∑
i=0

mjai
{k} = 1

mhS

n∑
i=0

mjai
{k} = 1

hS

n∑
i=0

jai
S
< 1,

which contradicts the hypothesis.

Proposition 4.1.2. Let k ≥ 2 and l ≥ 0 be integers. Consider the weighted
projective space

P := P(k(k+2), (k + 1)(2k−1), (k(k + 1))(l)).

Then the general hypersurface Xd in P of degree d := (l+ 3)k(k+ 1) has
at worst canonical singularities, KXd ∼ OXd(1), dimXd = 3k + l − 1 and

vol(Xd) = (l + 3)
kk+1+l(k + 1)2k−2+l .

Proof. The weighted projective space P is well-formed since k ≥ 2. We use
Reid’s criterium 1.3.7, to control that the singularities of P are canonical.
By the previous lemma it is enough to look at the coordinates points. They
are of three types.

1. The singularities of type
1
k

(k(k+1), (k + 1)(2k−1), (k(k + 1))(l)).

We have to check that
1
k

(2k − 1)j(k + 1) ≥ 1

for 1 ≤ j ≤ k− 1, where ¯ denotes the smallest (non negative) residue
mod k. This is trivial since j(k + 1) = j ≥ 1 for 1 ≤ j ≤ k − 1.

2. The singularities of type
1

k + 1(k(k+2), (k + 1)(2k−2), (k(k + 1))(l)).

We have to check that
1

k + 1(k + 2)jk ≥ 1

for 1 ≤ j ≤ k, where ¯ denotes the smallest (non negative) residue
mod k + 1. This is trivial since jk ≥ 1 for 1 ≤ j ≤ k.
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3. The singularities of type

1
k(k + 1)(k(k+2), (k + 1)(2k−1), (k(k + 1))(l−1)),

when l ≥ 1. We have to check that

1
k(k + 1)((k + 2)ik + (2k − 1)i(k + 1)) ≥ 1

for 1 ≤ i ≤ k(k + 1) − 1, where ¯ denotes the smallest (non negative)
residue mod k(k + 1). This follows since k 6 |j then j(k + 1) ≥ k + 1
and if (k + 1) 6 |j then jk ≥ k.

Now note that OP(d) is base point free (since d is a multiple of every
weight) and locally free (by Lemma 1.3 of [Mor75]).

Then we can apply a Kollár-Bertini theorem (Proposition 7.7 of [Kol97a],
see also Theorem 1.3 of [Rei80]) to conclude that the general hypersurface
Xd of degree d is canonical (and obviously well-formed and quasi-smooth).

Finally, by adjunction (6.14 of [IF00]), KXd ∼ OX(1) and so

vol(Xd) = (l + 3)k(k + 1)
kk+2(k + 1)2k−1(k(k + 1))l = (l + 3)

kk+1+l(k + 1)2k−2+l .

Proof of theorem 4.0.8. Write n = 3k + l − 1, with integers k ≥ 2 and
0 ≤ l ≤ 2, so k = bn+1

3 c. We can apply the previous proposition to obtain
a canonical variety Xd of dimension n in the projective space

P := P(k(k+2), (k + 1)(2k−1), (k(k + 1))(l)).

By Theorem 3.4.4 (and the proof of the lemma above) in [Dol82] we
deduce that

H0(X,mKXd) = 0

for 0 < m < k.
Moreover

vol(Xd) = (l + 3)
kk+1+l(k + 1)2k−2+l <

(l + 3)
kn+l = l + 3

3kl ·
3
kn
≤ 3n+1

(n− 1)n .

Take as X any desingularization of Xd.

Proof of theorem 4.0.10. Let n = 3k+l−1, with integers k ≥ 2 and 2 ≤ l ≤ 4
so k = bn−1

3 c. We can apply the proposition 4.1.2 to obtain a canonical
variety Xd of dimension n in the projective space

P := P(k(k+2), (k + 1)(2k−1), (k(k + 1))(l)).
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We denote the coordinates of this space zi for 0 ≤ i ≤ n + 1. Recall that
KXd ∼ OXd(1).

Fix t < k(k + 1). Thanks to Proposition 3.3 of [Mor75] we get

|OX(t)| = |OP(t)|,

but the last two variable zn and zn+1 can not appear in an element of |OP(t)|
for degree’s reasons.

Take as X any desingularization of Xd. Then the map induced by |tKX |
is not generically finite. In particular

x′n ≥ k(k + 1) ≥ n(n− 3)
9 .

Proof of theorem 4.0.11. We first consider the case n even. Let d = n+3 and
let P the weighted projective space P(1(n), 2, d). The coherent sheaf OP(2d)
is a line bundle ([Mor75], Lemma 1.5). We call the coordinates of this space
zi for 0 ≤ i ≤ n+ 1. Since d is odd the general weighted hypersurface X of
degree 2d do not meet the singularities of P and it is smooth. Note that its
equation is of the form

z2
n+1 = P (z0, . . . , zn)

where P is a polynomial of weighted degree 2d. Moreover we have KX ∼
OX(1).

If we take a positive integer t < d, then the linear system |tKX | does not
induce a birational map. Indeed by Proposition 3.3 of [Mor75] we have

|OX(t)| = |OP(t)|,

but the variable zn+1 can not appear in an element of |OP(t)| for degree’s
reasons and so the induced map has at least degree 2.

If n = 1 we use a smooth curve of genus 2. If n is odd and n ≥ 3 we
consider a manifold Y of dimension n − 1 such that rn ≥ n + 2 and define
X := Y × C where C is smooth curve of genus 2. Alternatively, for n odd,
take d = n+ 2 and a general hypersurface of degree 2d in P(1(n+1), d).

Proof of theorem 4.0.13. Let b be a positive integer such that

br ≡ 1 mod s,

and write
br − 1 = ts.

Let a be a positive integer such that (a, s) = (a, b) = 1.
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We set

n := rab+ 1− a− s− b, d := n− 1 + a+ s+ b = rab

P = P(1(n−2), a, s, b).

Observe that choosing a and b we can have n arbitrarily large. Hence we
may assume n ≥ 3.

Note that (a, s) = (a, b) = (s, b) = 1, hence the only singularities of P
are P = (0(n−2), 0, 1, 0), Q = (0(n−2), 1, 0, 0) and R = (0(n−2), 0, 0, 1).

Now consider a general weighted hypersurface Xd of degree d in P. The
sheaf OP(1) is locally free and spanned outside P . By Bertini’s theorem
applied to P \ {P} we get that Xd is smooth outside P . Since s 6 |d, a|d and
b|d, so P ∈ Xd while Q,R /∈ Xd. Since n ≥ 3 and Xd has a unique singular
point, it is well-formed.

We will show that for a and b large enough, Xd is a (well-formed) quasi-
smooth variety with at most a terminal singularity in P . Then we would
have finished. Indeed note that by adjunction (6.14 of [IF00]) KX ∼ OX(1)
is ample and therefore

vol(Xd) = Kn
X = OX(1)n = d

asb
= r

s
.

To control the quasi-smoothness we use criterium 8.1 of [IF00].
Let z0, . . . , zn+1 be the coordinates of P. For every I ⊂ {0, . . . , n + 1}

except I = {n} the condition 2.a of 8.1 in [IF00] is satisfied because the only
variable whose degree does not divide d is zn. In the case I = {n} we can
use 2.b since d = tas+ a and we can take the monomial

ztan zn−1.

Since Xd is quasi-smooth its singularities are induced by those of P and
so we have only to control that Xd is terminal in P .

Let f = 0 be an equation of Xd. We can write

f = ztan zn−1 + . . .

We consider the affine piece (zn = 1). The point P ∈ Xd looks like

(f̃ = f(z0, . . . , zn−1, 1, zn+1) = zn−1 + . . . = 0) ⊂ An+1/ε

where ε is a primitive s-th root of unity and acts via

zi 7→ εzi 0 ≤ i ≤ n− 2,

zn−1 7→ εazn−1

and
zn+1 7→ εbzn+1.
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Note that ∂f/∂zn−1 6= 0 in P , hence, by the Inverse Function Theorem,
zi are local coordinates for P in Xd for i 6= n − 1, n. This gives a quotient
singularity of type

1
s

(1(n−2), b).

By Reid’s criterium 1.3.7, if n− 2 ≥ s then P is terminal.
Now you can simply take a desingularization of Xd.
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