
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

BIRD: Engineering an Efficient CNF-XOR SAT
Solver and Its Applications to Approximate Model Counting∗

Mate Soos, Kuldeep S. Meel
School of Computing

National University of Singapore

Abstract

Given a Boolean formula φ, the problem of model counting,
also referred to as #SAT is to compute the number of solutions
of φ. Model counting is a fundamental problem in artifi-
cial intelligence with a wide range of applications including
probabilistic reasoning, decision making under uncertainty,
quantified information flow, and the like. Motivated by the
success of SAT solvers, there has been surge of interest in the
design of hashing-based techniques for approximate model
counting for the past decade. We profiled the state of the art ap-
proximate model counter ApproxMC2 and observed that over
99.99% of time is consumed by the underlying SAT solver,
CryptoMiniSat. This observation motivated us to ask: Can
we design an efficient underlying CNF-XOR SAT solver that
can take advantage of the structure of hashing-based algo-
rithms and would this lead to an efficient approximate model
counter?

The primary contribution of this paper is an affirmative answer
to the above question. We present a novel architecture, called
BIRD, to handle CNF-XOR formulas arising from hashing-
based techniques. The resulting hashing-based approximate
model counter, called ApproxMC3, employs the BIRD frame-
work in its underlying SAT solver, CryptoMiniSat. To the
best of our knowledge, we conducted the most comprehen-
sive study of evaluation performance of counting algorithms
involving 1896 benchmarks with computational effort total-
ing 86400 computational hours. Our experimental evaluation
demonstrates significant runtime performance improvement
for ApproxMC3 over ApproxMC2. In particular, we solve
648 benchmarks more than ApproxMC2, the state of the art
approximate model counter and for all the formulas where
both ApproxMC2 and ApproxMC3 did not timeout and took
more than 1 seconds, the mean speedup is 284.40 – more than
two orders of magnitude.

1 Introduction

Propositional model counting is a fundamental problem in ar-
tificial intelligence with a wide range of applications ranging
from probabilistic reasoning (Roth 1996), network reliabil-
ity (Dueñas-Osorio et al. 2017), decision making under un-
certainty (Gomes, Sabharwal, and Selman 2009), quantified

∗The open-source implementation along with accompanied tech-
nical report is available at https://github.com/meelgroup/approxmc
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

information leakage (Biondi et al. 2018) and the like (Roth
1996; Gomes, Sabharwal, and Selman 2009) Given a Boolean
formula φ, the problem of propositional model counting, also
referred to as #SAT, is to compute the number of solutions
of φ. In his seminal paper, Valiant showed that #SAT is
#P-complete, where #P is the set of counting problems
associated with NP decision problems (Valiant 1979).

Theoretical investigations of #P have led to the discov-
ery of deep connections in complexity theory, and there is
strong evidence for its hardness (Arora and Barak 2009;
Toda 1989). In particular, Toda showed that every problem
in the polynomial hierarchy could be solved by just one call
to a #P oracle; more formally, PH ⊆ P#P (Toda 1989).

Given computational intractability of #SAT, attention has
focused on approximation of #SAT. In a breakthrough, Stock-
meyer provided a hashing-based randomized approximation
scheme for counting that makes polynomially many invo-
cations of NP oracle (Stockmeyer 1983). The procedure,
however, was computationally prohibitive in practice at that
time and no practical tools existed based on Stockmeyer’s pro-
posed algorithmic framework until the early 2000s (Gomes,
Sabharwal, and Selman 2009). Motivated by the success of
SAT solvers, there has been surge of interest in the design of
hashing-based techniques for approximate model counting
for the past decade (Gomes, Sabharwal, and Selman 2006;
Chakraborty, Meel, and Vardi 2013b; Ermon et al. 2013;
Chakraborty, Meel, and Vardi 2016; Meel et al. 2016;
Meel 2017; Achlioptas, Hammoudeh, and Theodoropoulos
2018).

The core idea of hashing-based framework is to em-
ploy 2−universal hash functions to partition the solution
space into roughly equal small cells, wherein a cell is
called small if it has less than or equal to thresh solutions,
such that thresh is a function of ǫ. A SAT solver is em-
ployed to check if a cell is small by enumerating solutions
one-by-one until either there are no more solutions or we
have already enumerated thresh + 1 solutions. Following
the terminology of (Chakraborty, Meel, and Vardi 2013b;
2016), we refer to the above described procedure as BSAT.
To determine the number of cells, the frameworks such as
ApproxMC2 perform a search that requires O(log n) steps
and the estimate is returned as the count of the solutions
in a randomly picked small cell scaled by the total num-
ber of cells. To amplify confidence to the desired levels

1592

of 1 − δ, the hashing-based algorithms invoke the estima-
tion routine O(log 1

δ) times and reports the median of all
such estimates. Hence, the number of BSAT invocations is
O(log n log(1δ)). Over the past decade, the surge of inter-
est in hashing-based techniques has led to several important
significant advances: such as reduction of BSAT calls from
O(n) to O(log n) (Chakraborty, Meel, and Vardi 2016), us-
age of sparser XORs (Zhao et al. 2016; Ivrii et al. 2015;
Achlioptas and Theodoropoulos 2017), projection of count-
ing over a smaller variable set (Aziz et al. 2015; Ivrii et al.
2015) and the like. While the state of art hashing-based
counters such as ApproxMC2 can handle formulas involving
hundreds of thousands of variables, there is still a large gap
between theory and practice.

We profiled the state of the art approximate model counter,
ApproxMC2 and observed that over 99.99% of time is con-
sumed by BSAT. Since BSAT is invoked with a CNF
formula conjuncted with random XOR constraints, prior
work on hashing-based techniques have advocated usage
of CryptoMiniSat, an efficient SAT solver designed to han-
dle CNF-XOR formulas. Inspired by the success of SMT
solvers, Soos et al (Soos, Nohl, and Castelluccia 2009) pro-
posed an elegant architecture for CryptoMiniSat that keeps
CNF and XOR clauses separately. The distributed storage
allows CryptoMiniSat to apply Gauss-Jordan elimination on
XOR clauses.

The distributed storage, however, comes at the cost of dis-
abling execution of inprocessing steps, e.g., bounded variable
elimination (Eén and Biere 2005), on variables that are part
of the XOR clauses. A careful reader might observe that
the usage of distributed storage does not necessarily imply
unsoundness of inprocessing steps but a sound implementa-
tion of inprocessing steps would require extensive study into
effect of every inprocessing step on XOR clauses. Given the
complexity of inprocessing implementations in the current
state of the art SAT solvers, the odds of success of an efficient
implementation following extensive study into the effect of in-
processing steps on XORs are very high. Since ApproxMC2
relies on the usage of random XORs, the disabling of pre- and
inprocessing steps essentially restricts most of the pre- and
inprocessing steps during the execution of BSAT. The lack
of usage of pre- and inprocessing steps significantly hurts
the performance of BSAT since these techniques have been
shown to be crucial to the performance of state of the art SAT
solvers. Furthermore, division of storage of CNF and XOR
clauses induces significant overhead in synchronization of
the state of the solve in CNF and XOR.

The asymmetry in the design and usage of CryptoMiniSat
motivates us to ask: Can we design an efficient approximate
model counter where the underlying SAT solver can take
advantage of the structure of hashing-based algorithms? The
primary contribution of this paper is an affirmative answer to
the above question. We present a novel architecture, called
BIRD, to handle CNF-XOR formulas arising from hashing-
based techniques. The resulting hashing-based approximate
model counter, called ApproxMC3, employs the BIRD frame-
work in its underlying SAT solver, CryptoMiniSat. To the
best of our knowledge, we conducted the most comprehensive
study of evaluation performance of counting algorithms in-

volving 1896 benchmarks with computational effort totaling
86400 computational hours. With a timeout of 5000 seconds,
the state of the art exact model counter, DSharp and the state
of the art approximate model counter, ApproxMC2 were able
to solve only 1001 and 492 benchmarks while ApproxMC3
could solve 1140 benchmarks. Significantly, this marks the
first time that an approximate model counter is able to not
only beat exact counter for challenging problems but also
outperform the exact counter for the entire set of benchmarks.
In particular, ApproxMC3 solves 648 benchmarks more than
ApproxMC2, the state of the art approximate model counter.
Furthermore, for all the formulas where both ApproxMC2
and ApproxMC3 did not timeout and took more than 1 sec-
onds, the mean speedup is 284.40 – more than 2 orders of
magnitude.

The rest of the paper is organized as follows: We discuss
notations and preliminaries in Section 2 and then focus on
core technical features of ApproxMC3 in Section 3. We then
present an extensive experimental evaluation in Section 4 and
finally conclude in Section 5.

2 Notations and Preliminaries

Let F be a Boolean formula in conjunctive normal form
(CNF), and let Vars(F) be the set of variables appearing in
F . The set Vars(F) is also called the support of F . An
assignment σ of truth values to the variables in Vars(F) is
called a satisfying assignment or witness of F if it makes F
evaluate to true. We denote the set of all witnesses of F by
RF . Given a set of variables S ⊆ Vars(F), we use RF↓S to
denote the projection of RF on S.

We write Pr [X : P] to denote the probability of outcome
X when sampling from a probability space P . For brevity,
we omit P when it is clear from the context. The expected
value of X is denoted E [X] and its variance is denoted V [X].

The propositional model counting problem is to compute
|RF↓S | for a given CNF formula F and sampling set S ⊆
Vars(F). A probably approximately correct (or PAC) counter
is a probabilistic algorithm ApproxCount(·, ·, ·, ·) that takes
as inputs a formula F , a sampling set S, a tolerance ε > 0,
and a confidence 1 − δ ∈ (0, 1], and returns a count c such

that Pr
[

|RF↓S |/(1 + ε) ≤ c ≤ (1 + ε)|RF↓S |
]

≥ 1− δ.

For positive integers n and m, a special family of 2-
universal hash functions mapping {0, 1}n to {0, 1}m, called
Hxor(n,m), plays a crucial role in our work. Let y[i] denote
the ith component of a vector y. The family Hxor(n,m)
can then be defined as {h | h(y)[i] = ai,0 ⊕ (

⊕n
k=1 ai,k ·

y[k]), ai,k ∈ {0, 1}, 1 ≤ i ≤ m, 0 ≤ k ≤ n}, where ⊕
denotes “XOR” and · denotes “and”. By choosing values of
ai,k randomly and independently, we can effectively choose
a random hash function from Hxor(n,m).

In (Chakraborty, Meel, and Vardi 2013b; Meel 2014), a
new hashing-based strongly probably approximately correct
counting algorithm, called ApproxMC, was shown to scale to
formulas with thousands of variables, while providing rigor-
ous PAC-style (ε, δ) guarantees. The core idea of ApproxMC
is to use 2-universal hash functions to randomly partition the
solution space of the original formula into “small” enough

cells. Overall, ApproxMC makes a total ofO(n log(1/δ)
ε2) calls

1593

to CryptoMiniSat. Significantly, and unlike the algorithm
in (Goldreich 1999), each call of CryptoMiniSat reasons
about a formula with only n variables.

It is well-known that long XOR-based constraints make
SAT solving significantly harder in practice (Gomes et al.
2007). Researchers have therefore investigated theoretical
and practical aspects of using short XORs (Gomes et al. 2007;
Chakraborty, Meel, and Vardi 2014; Zhao et al. 2016). The
techniques for identifying small independent supports have
been developed (Ivrii et al. 2015), and word-level hash
functions have been used to count in the theory of bit-
vectors (Chakraborty et al. 2016). A common aspect of
all of these approaches was that a linear search was used to
find the right parameters of the hash functions, where each
search step involves multiple SAT solver calls. ApproxMC2
targeted this weak link and shown search for parameters
can be searched in logarithmic time by relying on depen-
dence of hash functions. To the best of our knowledge,
ApproxMC2 is currently the state of the art approximate
model counter. ApproxMC3 builds on top of ApproxMC2 by
modifying the underlying SAT solver used by ApproxMC2.
The underlying SAT solver is invoked through subroutine
BSAT, which is implemented using CryptoMiniSat. For-
mally, BSAT takes as inputs a formula F , a threshold thresh,
and a sampling set S, and returns a subset Y of RF↓S , such
that |Y | = min(thresh, |RF↓S |). Note that every invoca-
tion of BSAT is performed with F conjuncted with set of
XOR constraints. We henceforth denote such formulas as
CNF-XOR formulas. As mentioned earlier, our profiling of
ApproxMC2 revealed that over 99% of the total time is taken
by BSAT calls inside LogSATSearch. In the next section, we
discuss a novel architecture of CryptoMiniSat that allows us
to perform BSAT efficiently.

For lack of space, we refer the reader to (Chakraborty,
Meel, and Vardi 2016) for description of LogSATSearch that
invokes BSAT.

3 BIRD: A New Framework for Handling

CNF-XOR Formulas

In this section, we discuss the primary contribution of this
paper: a novel architecture for BSAT to efficiently handle
CNF-XOR formulas. Before delving into the technical details
of the architecture, we first review the architecture of BSAT
employed in ApproxMC2.

3.1 Architecture of BSAT in ApproxMC2

Given extensive reliance on XORs for partitioning of the solu-
tion space, BSAT requires underlying SAT solver to have na-
tive support for XORs (Chakraborty, Meel, and Vardi 2013a).
Therefore, ApproxMC2 employs CryptoMiniSat with native
support for XORs. Inspired by the success of SMT solvers,
Soos et al (Soos, Nohl, and Castelluccia 2009) proposed
an elegant architecture for CryptoMiniSat that keeps CNF
and XOR clauses separately. The distributed storage allows
CryptoMiniSat to apply Gauss-Jordan elimination on XOR
clauses.

The distributed storage, however, comes at the cost of dis-
abling execution of inprocessing steps, e.g., bounded variable

Algorithm 1 ComputeBloom

1: abst← 0
2: for var in clause do
3: abst← abst | (1 << (var % 32))

4: return abst

elimination (Eén and Biere 2005), on variables that are part
of the XOR clauses. A careful reader might observe that
the usage of distributed storage does not necessarily imply
unsoundness of inprocessing steps but a sound implemen-
tation of inprocessing steps would require extensive study
into effect of every inprocessing step on XOR clauses. Given
the complexity of inprocessing implementations in the cur-
rent state of the art SAT solvers, the odds of success of an
efficient implementation following extensive study into the
effect of inprocessing steps on XORs are very high. Since
ApproxMC2 employs random XORs over the sampling set S
and we are interested in solutions projected over the sampling
set S, the disabling of pre- and inprocessing steps essentially
restricts most of the pre- and inprocessing steps during the ex-
ecution of BSAT. The lack of usage of pre- and inprocessing
steps significantly hurts the performance of BSAT since these
techniques have been shown to be crucial to the performance
of state of the art SAT solvers. Furthermore, division of stor-
age of CNF and XOR clauses induces significant overhead
in synchronization of the state of the solve in CNF and XOR.
We target this weak link in this paper, and drastically improve
the runtime of ApproxMC3 by redesigning the architecture
of BSAT.

3.2 BIRD: Blast, In-processing, Recover, and
Destroy

To allow seamless integration of pre- and inprocessing tech-
niques, it is important that the solver has access to XOR
clauses in CNF form while ensuring native support for XORs
to perform Gauss-Jordan elimination. We achieve this by
our architecture, BIRD: Blast-Recover-Blast, described as
follows:

BIRD: Blast, In-process, Recover, and Destroy

Step 1 Blast XOR clauses into normal CNF clauses

Step 2 Inprocess (and pre-process) over CNF
clauses

Step 3 Recover simplified XOR clauses

Step 4 Perform CDCL on CNF clauses with on-the-
fly Gauss-Jordan Elimination on XOR clauses un-
til inprocessing is scheduled

Step 5 Destroy XOR clauses and goto Step 2

Note that we exit the above loop as soon as find a satis-
fying assignment or prove that the formula is UNSAT. The
BIRD architecture allows all current or future techniques dur-
ing inprocessing. Furthermore, as the benchmarks arising
from circuits typically contain XOR clauses encoded in CNF,
BIRD can efficiently recover such XORs and therefore, allow-

1594

ing the usage of Gauss-Jordan elimination on such recovered
XORs.

In comparison to BSAT in ApproxMC2, the primary chal-
lenge for BIRD is to ensure that Step 1 and Step 3 can be
executed efficiently. Note that LogSATSearch invokes BSAT
over the original formula F conjuncted with XORs until the
number of solutions is less than thresh when the number of
solutions of F is typically of the order of 260. Therefore,
XOR constraints play a significant part in determining the
solution space of the formula that BSAT takes as input. Con-
sequently, we focus on efficient blasting of XORs into CNF
in Step 1 and efficient and full recovery of XORs in Step 3
as described below:

3.3 Blasting of XORs to CNF

We employ the standard technique of blasting XORs into
CNF. Observe that a XOR over k variables can be equiva-
lently represented as CNF over k variables andO(2k) clauses.
Since we deal with long XORs, typically of size |S|/2, we
first cut a long XORs into smaller XORs by introducing aux-
iliary variables. The size of small XORs is known as cutting
number. We experimented with different cutting numbers
and found that cutting number = 4 is optimal for our use
case.

3.4 XOR recovery

We now discuss the most technically challenging task of
our BIRD architecture: recovery of XOR constraints from
CNF clauses (i.e. Step 3). Formally, given a formula F
in CNF, we would like to extract H , which is expressed as
conjunction of XOR constraints such that F → H . To put
our contribution in context, we briefly review the prior work.
Heule proposed the current state of the art algorithm, referred
to as HeuleRecovery for XOR recovery in his PhD thesis,
which is based on the observation that an XOR of size k is
equivalently represented by 2k−1 CNF clauses. For example:

(x1 ∨ x2 ∨ ¬x3)
(x1 ∨ ¬x2 ∨ x3)
(¬x1 ∨ x2 ∨ x3)

(¬x1 ∨ ¬x2 ∨ ¬x3)

⇔ x1 ⊕ x2 ⊕ x3 = 0 (1)

Observe that if we only concentrate on the sign of a variable
and represent a positive variable as 0 and the negative variable
as 1, we see that the above set of clauses over x1, x2, x3 can
be represented by strings {001, 010, 100, 111}, whose deci-
mal representation reads as {1, 3, 5, 7}. Similarly if we had
CNF clauses encoding the XOR constraint, x1⊕x2⊕x3 = 1,
we would have decimal representation of the set of clauses
as {0, 2, 4, 8}. Based on this observation, HeuleRecovery
proceeds by sorting clauses by the sets of variables occurring
in a clause and stores the decimal representation of all the
combinations and accordingly recovers XORs. Executing
HeuleRecovery is efficient in practice; recovery of XOR con-
straints takes only a few seconds for formulas with hundreds
of thousands of clauses.

While HeuleRecovery is efficient in practice, it is not
robust to modification of clauses due to Step 2 and Step
4 of BIRD. Consequently, HeuleRecovery fails to extract

Algorithm 2 Barbet(clauses, M)

1: xorclauses← ∅
2: for base cl ∈ clauses do
3: if base cl.size > M then continue

4: if base cl.used == 1 then continue
5: FIND ONE XOR(base cl)

return xorclauses

Algorithm 3 Find XOR using base clause

1: function FindOneXOR(base cl)
2: quickcheck← array of zeroes
3: found comb← array of zeroes
4: comb← 0
5: base rhs← 1 ⊲ right-hand-side of the XOR
6: for i← 0 . . . base cl size-1 do
7: base rhs← base rhs ⊕ base cl[i].sign
8: comb← comb | (base cl[i].sign << i)
9: quickcheck[base cl[i].var]← 1

10: base abst← CALC ABST(base cl)
11: found comb[comb]← 1
12: for v ∈ Vars(base cl) do
13: for abst, cl ∈ occurrence[v] do
14: if CheckClause(abst, cl, base cl, base abst)

then return

many of the XORs during the search procedure. The pri-
mary drawback of HeuleRecovery is its reliance on pres-
ence of all the equivalent CNF clauses. Let us assume XOR
clause x1 ⊕ x2 ⊕ x3 = 0 was blasted to the four clauses
shown in Eq 1 in Step 1. Now let us assume that dur-
ing Step 2 and Step 4, the SAT solver learns the clause
x1 ∨ x2, which subsumes (i.e., replaces), the first clause
in Eq 1: (x1 ∨ x2 ∨ ¬x3) Furthermore, another frequently
used, self-subsuming resolution, would resolve (x1 ∨ x2)
with (x1 ∨ ¬x2 ∨ x3) to obtain (x1 ∨ x3), which subsumes
(x1 ∨ ¬x2 ∨ x3). Therefore, the four clauses in Eq 1 are
reduced to the following set of clauses, denoted by G. G :=
(x1∨x2)∧ (x1∨x3)∧ (¬x1∨x2∨x3)∧ (¬x1∨¬x2∨¬x3)
Note that G → (x1 ⊕ x2 ⊕ x3 = 0). Therefore, we would
like to recover (x1 ⊕ x2 ⊕ x3 = 0). The above illustrated
sequence of steps happen often and repeatedly during pre-
and inprocessing of CNF formulas. Hence, a XOR recovery
algorithm must be able to find any such mangled XOR from a
reasonably sized CNF with hundreds of thousands of clauses.

Barbet

We now describe our recovery algorithm Barbet presented in
Algorithm 2. Barbet takes in a set of clauses and a parameter
M and returns recovered XOR clauses of size ≤ M . First,
Barbet initializes an empty set xorclauses, to store the recov-
ered XOR clauses. Then it makes a linear pass through all the
clauses. If a clause is of size > M or has already been used
in construction of a XOR, we skip the clause. Otherwise,
we invoke the subroutine FindOneXOR, which searches for
recovery of an XOR clause from the set of clauses containing
base cl clause.

The algorithm FindOneXORis presented in Algorithm 3.

1595

FindOneXORtakes in a clause, base cl, and attempts to re-
cover the XOR defined exactly over the variables in base cl.
Note that there is exactly one XOR defined exactly over vari-
ables in base cl. For example, if base cl is (x1 ∨ x2 ∨ x3),
then the only XOR defined over x1, x2, x3 in which base cl
can participate is x1 ⊕ x2 ⊕ x3 = 1. Observe that we can
compute the rhs of the XOR by computing the parity of the
variables in the XOR. The key idea behind the search for
XORs over variables in base cl, say of size M , to perform
a linear pass (in an efficient manner as detailed below) and
check whether there exists a subset of clauses that would
imply the required 2M−1 combination of CNF clauses over
M variables.

Note that a clause may imply multiple CNF clauses over
M variables. For example, let base cl := (x1∨x2∨x3), then
a clause cl := (x1) would imply 4 clauses over {x1, x2, x3},
i.e. {(x1∨x2∨¬x3), (x1∨x2∨x3), (x1∨¬x2∨x3), (x1∨
¬x2 ∨ ¬x3)}. To this end, we maintain an array of possible
combinations, denoted by foundcomb, of size 2M and update
the entry (indexed by comb, which is binary representation
of the clause for a fixed ordering of variables) corresponding
a clause cl′ to 1 if cl → cl′. Similar to other aspects of
SAT solving, efficient data structures are vital to perform the
above mentioned checks and updates efficiently. We now
discuss few crucial optimizations below in the description of
FindOneXOR:

FindOneXORassumes access to the map data structure,
occurrence, such that for a variable x, occurrence[x] is a
list of all the clauses that contain v. Every entry of the list
consists of pointer to the clause and the bitfield abst, which
is a 32-bit bloom filter of the variables inside the clause. The
algorithm to compute abst is presented in Algorithm 1.

FindOneXORmaintains a map of all the variables in
base cl in the data structure, quickcheck. FindOneXOR pop-
ulates base rhs, comb, quickcheck in lines 6–9. Then we
compute the bloom filter corresponding to base cl in line 10.
Next, we make a linear pass over all the clauses that contain
a variable in base cl and check for each clause cl if cl im-
plies one of the combinations required for XOR correspond-
ing to base cl. The check is performed in the subroutine
CheckClause.

CheckClause first checks if the variables in cl are subset
of the variables in base cl because for cl to imply one of
the combinations required for XOR defined over variables
in base abst, variables in cl should be subset of variables
in base cl. We use a bloom filter to perform this check by
determining whether abst|base abst == base abst holds.
Note that bloom filters may have false positives but not false
negatives. To check for false positive, we iterate through the
clause to see whether every variable in cl is also present in
base cl. Note that performing this check requires dereferenc-
ing the pointer to the clause, therefore the bloom filter check
is crucial. In our experiments the usage of the bloom filter led
to up to 100 fold speedup on large instances for CheckClause
calls. We now perform two more checks to see if cl is useful:
first the rhs for XOR corresponding to cl should match with
base rhs if the sizes of both cl and base cl are same. Finally,
we update foundcomb in the subroutine AddClause. The sub-
routine XORFound checks if all the combinations required

Algorithm 4 Check if clause belongs to an XOR

1: function CheckClause(abst, cl, base cl, base abst)
2: if abst | base abst != base abst then
3: return False ⊲ Bloom filter check fails
4: rhs← 1
5: for lit ∈ cl do
6: if quickcheck[lit.var] == 0 then
7: return False ⊲ Bloom filter false positive

8: rhs← rhs ⊕ lit.sign

9: if cl.used == 1 then
10: return False
11: if cl.size == base cl.size and rhs != base rhs then
12: return False
13: if cl.size == base cl.size then cl.used← 1
14: AddClause(cl)
15: if XORFound(base rhs) then
16: xorclauses.append(base cl)
17: return True
18: return False

Algorithm 5 Add a clause to an XOR

1: procedure AddClause(cl)
2: basei, i, x← 0
3: missing← clear
4: for k = 0; k < cl.size; k++, i++, basei++ do
5: while cl[i].var != base cl[basei].var do
6: missing.append(basei);
7: basei← basei + 1
8: assert i == basei
9: x← x | (cl[k].sign≪ basei)

10: ⊲ Mark every combination for the missing variables
11: for j = 0; j < 1≪(missing.size); j++ do
12: tx← x
13: for i2 = 0; i2 < missing.size; i2++ do
14: if bit set(j, i2) then
15: tx← tx + (1≪missing[i2])

16: found comb[tx]← 1

17: end procedure

for XOR corresponding to base cl have been found and if
true, adds base cl to the list xorclauses. Recall that base cl
uniquely represents the XOR defined over all the variables in
base cl.

The algorithm AddClause first finds all the missing vari-
ables from the clause cl and computes all the combinations
by taking account missing variables and updates the vec-
tor foundcomb. For example, if base cl is (x1 ∨ ¬x2 ∨ x3)
and cl is (x1 ∨ ¬x3), AddClause finds that x2 is missing
and then adds the combinations corresponding to clauses
(x1 ∨ x2 ∨ ¬x3) and (x1 ∨ ¬x2 ∨ ¬x3). For efficiency, we
perform a clever usage of bitfields as illustrated in the Algo-
rithm 5.

The algorithm XORFound, presented in Algorithm 6,
checks if all the possible combinations are present, which
requires us to check if a given combination is required. Given
base rhs, we can check if a combination is required by check-

1596

Algorithm 6 Check if XOR has been built

1: function XORFound(base rhs)
2: for i ∈ 0 . . . found comb.size-1 do
3: ⊲ Only check combinations with the correct

right-hand-side
4: if (hamming weight(i)%2) == base rhs then
5: continue
6: if found comb[i] == 0 then
7: return False ⊲ XOR not complete

8: return True ⊲ Every combination found

ing the hamming weight of the bitfield. If base rhs is 0, then
the hamming weight1 should be 0 otherwise it should be 1.
If any of the required combination is missing, XORFound
returns False, otherwise it returns True.

3.5 XOR Reconstruction

The XOR constraints recovered by Barbet are of length at
most M , which is set to 5 in our experiments. Recall, we
set the cutting number to 4 during blasting of XORs to CNF.
Therefore, Barbet is able to recover the smaller XORs ob-
tained during the blasting phase. Since the original XOR
constraints added by ApproxMC3 are of length |S|/2, we
now discuss the reconstruction of original XOR constraints
so as to optimize the performance of Gauss-Jordan elimina-
tion. Similar to Barbet, we create a mapping from variables
to the list of the XOR clauses that a variable is present. For
each variable x, whose XOR-occurrence list is exactly of
size 2 and where the XORs overlap exactly over this variable,
we XOR together the two XOR clauses corresponding to
the variable x to eliminate x and update the occurrence lists
accordingly. These steps are performed until fixedpoint. We
illustrate the technique with an example:

x1 ⊕ x2 ⊕ x8 = 0
x8 ⊕ x3 ⊕ x4 ⊕ x9 = 0

x9 ⊕ x5 ⊕ x6 = 1
→ x1 ⊕ x2 . . .⊕ x6 = 1

3.6 Correctness

Note that our reconstruction process may not be able to re-
construct all possible XOR operations. This, however, does
not affect soundness and completeness of the SAT solving
as CNF representation of all the constraints is still retained
at CNF level. Therefore, one can view Step 3 and Step 4
of BIRD as best effort processes where we focus on helping
CDCL as best as possible to deal with XOR clauses without
having to be absolutely certain not to loose any informa-
tion. This freedom is a property of the blasting-recovery
method used by the system and greatly contributes to signifi-
cant speedup achieved by our system as outline in the next
section.

3.7 ApproxMC3

We augment ApproxMC2 with BIRD framework and call
the resulting hashing-based counter as ApproxMC3. Given

1Note that hamming weights are extremely fast to compute on
modern CPUs thanks to dedicated assembly instructions

the soundness of BIRD, both ApproxMC2 and ApproxMC3
provide exactly same theoretical guarantees.

Benchmark Vars Clauses ApproxMC2 ApproxMC3

time time

or-50-10-9-UC-30 100 260 1814.78 2.66

blasted squaring28 1060 3839 1845.47 2.48

55.sk 3 46 3128 12145 TO 1.35

s838 7 4 616 1490 TO 3.91

min-3s 431 1373 TO 3.86

blasted case210 872 2937 TO 5.93

blasted squaring16 1627 5835 TO 11.12

or-60-5-2-UC-30 120 315 TO 11.09

s5378a 3 2 3679 8372 TO 68.2

modexp8-4-1 79409 288110 TO 255.05

reverse.sk 11 258 75641 380869 TO 23.4

hash-6 282521 1133816 TO 246.04

modexp8-5-8 101553 402654 TO 1166.54

herman31.pm 20steps 6-

int 1fract stable over 309496 159495 TO 1422.23

ConcreteRoleAffectation-

Service.sk 119 273 395951 1520924 TO 2081.38

hash-11-8 518009 2078959 TO 4908.15

karatsuba.sk 7 41 19594 82417 TO 4865.53

01B-3 23393 103379 TO 4275.08

Table 1: Runtime performance comparison of ApproxMC3
vis-a-vis ApproxMC2. TO indicates timeout after 5000 sec-
onds.

0 200 400 600 800 1000 1200
Instances

0

1000

2000

3000

4000

5000

CP
U
tim

e
(s
)

ApproxMC3
DSharp
ApproxMC2

Figure 1: Cactus plot showing behavior of ApproxMC2,
DSharp, and ApproxMC3

4 Experimental Evaluation
To evaluate the runtime performance and quality of approxi-
mations computed by ApproxMC3, we conducted the most
comprehensive study of performance evaluation of counting
algorithms involving 1896 benchmarks arising from wide
range of application areas including probabilistic reasoning,
plan recognition, DQMR networks, ISCAS89 combinato-
rial circuits, quantified information flow, program synthesis,
functional synthesis, logistics, and the like as have been pre-
viously employed in studies on model counting (Chakraborty,
Meel, and Vardi 2016; Lagniez and Marquis 2017). For the
sake of space, we discuss results for only a subset of these
benchmarks here. The complete set of experimental results
can be found at https://github.com/meelgroup/approxmc.

1597

0 10 20 30 40 50
Benchmarks

102

103

104

105

106

107

108

109

1010

#S
ol

ut
io

ns
ScalMC DSharp*1.8 DSharp/1.8

Figure 2: Plot showing counts obtained by ApproxMC2 vis-
a-vis true counts from DSharp

The objective of our experimental evaluation was to answer
the following questions:

1. How does runtime performance of ApproxMC3 compare
with that of ApproxMC2 and other state of the art counting
techniques?

2. How far are the counts computed by ApproxMC3 from the
exact counts.

The core difference between ApproxMC2 and ApproxMC3
is optimization of BSAT, therefore a fair comparison would
be to compare ApproxMC3 vis-a-vis ApproxMC2. Such
a comparison would provide a clear picture of progress
achieved by ApproxMC3 but would still not provide a thor-
ough analysis of the state of the art hashing-based techniques
in comparison to other techniques. To this end, we also
perform a comparison with the state of the art exact count
technique DSharp which can handle projection over a sam-
pling set. 2

The experiments were conducted on high performance
computer cluster, each node consisting of 2xE5-2690v3
CPUs with 2x12 real cores and 96GB of RAM. For all our
experiments, we used ε = 0.8 and δ = 0.1, unless stated
otherwise. We used timeout of 5000 seconds for each ex-
periment, which consisted of running a tool on particular
benchmark. To further optimize the running time for both
ApproxMC2 and ApproxMC3, we used improved estimates
of the iteration count t following an analysis similar to that
in (Chakraborty, Meel, and Vardi 2016).

4.1 Results

Figure 1 shows the cactus plot for ApproxMC2 and
ApproxMC3. We present the number of benchmarks on

2A curious reader might wonder whether DSharp achieves pro-
jection over sampling set at the cost of runtime performance. Instead,
our analysis show DSharp is able to solve 100 more benchmarks
that sharpSAT, which is unable to perform projection over sampling
set

x−axis and the time taken on y−axis. A point (x, y) im-
plies that x benchmarks took less than or equal to y sec-
onds to solve. With a timeout of 5000 seconds, DSharp and
ApproxMC2 were able to solve only 1001 and 492 bench-
marks while ApproxMC3 could solve 1140 benchmarks. Dur-
ing the recent surge of interest in the development of hashing-
based techniques, the community have consistently observed
that exact counters are able to solve more instances than
hashing-based schemes but the strength of hashing-based
schemes lied in their ability to solve instances that were be-
yond the reach of exact counters. In this context, we believe
ApproxMC3 has achieved an important milestone in being
able to solve more instances than the state of the art exact
counters. Note that ApproxMC3 retains the same theoretical
guarantees of ApproxMC2. In particular, the performance
improvement is solely due to improvement of the underlying
SAT solver.

To present a clear picture of performance gain achieved
by ApproxMC3 over ApproxMC2, we present runtime com-
parison of ApproxMC3 vis-a-vis ApproxMC2 in Table 1 on
a subset of our benchmarks. Column 1 of this tables gives
the benchmark name, while columns 2 and 3 list the num-
ber of variables and clauses, respectively. Columns 4 and 5
list the runtime (in seconds) of ApproxMC3 and ApproxMC2
respectively. Table 1 clearly demonstrates that ApproxMC3
outperforms ApproxMC2 by up to 3 orders of magnitude. We
show that not only ApproxMC3 is able to compute estimates
within few seconds for formulas where ApproxMC2 but
ApproxMC3 is also significantly faster for formulas where
both ApproxMC3 and ApproxMC2 do not timeout. In par-
ticular, for all the formulas where both ApproxMC2 and
ApproxMC3 did not timeout and took more than 1 seconds,
the mean speedup is 284.40 – more than 2 orders of magni-
tude. Recall, ApproxMC3 solved 648 instances more than
ApproxMC2.

Approximation Quality To measure the quality of approx-
imation, we compared the approximate counts returned by
ApproxMC3 with the counts computed by an exact model
counter, viz. DSharp. Figure 2 shows the model counts com-
puted by ApproxMC3, and the bounds obtained by scaling the
exact counts with the tolerance factor (ε = 0.8) for a small
subset of benchmarks. The y-axis represents model counts on
log-scale while the x-axis represents benchmarks ordered in
ascending order of model counts. We observe that for all the
benchmarks, ApproxMC3 computed counts within the toler-
ance. Furthermore, for each instance, the observed tolerance

(εobs) was calculated as max(
|RF↓S |

AprxCount − 1, AprxCount
|RF↓S | − 1),

where AprxCount is the estimate computed by ApproxMC3.
We observe that the arithmetic mean of εobs across all bench-
marks is 0.038 (resp. 0.37 for ApproxMC2) – far better than
the theoretical guarantee of 0.8.

5 Conclusion

Model counting is a fundamental problem in artificial intel-
ligence with a wide range of applications including proba-
bilistic reasoning, quantified information flow, and the like.

1598

Hashing-based techniques have emerged as a promising ap-
proach that seeks to combine theoretical guarantees with scal-
ability. Our profiling of the state of the art approximate model
counter, ApproxMC2, revealed that over 99.99% of time is
consumed by the underlying SAT solver, CryptoMiniSat, a
specialized solver designed to handle CNF-XOR formulas.
In this paper, we designed a new framework to handle the
CNF-XOR formulas arising from hashing-based techniques
and the new tool, called ApproxMC3, is able to achieve two
to three orders of magnitude speedup over the existing state
of the art approximate counters. With a timeout of 5000 sec-
onds, ApproxMC2 could only solve 492 benchmarks while
ApproxMC3 could solve 1140 benchmarks – a difference of
648 benchmarks. Note that ApproxMC3 retains the same
theoretical guarantees of ApproxMC2.

Acknowledgements We are grateful to the anonymous Re-
viewer #3 for the excellent suggestions to rewrite the In-
troduction. We are thankful to the organizers of the 2014
SAT-SMT Summer School, the venue of our first in-person
meeting. This work was supported in part by NUS ODPRT
Grant R-252-000-685-133 and AI Singapore Grant R-252-
000-A16-490. The computational work for this article was
performed on resources of the National Supercomputing Cen-
tre, Singapore https://www.nscc.sg.

References

Achlioptas, D., and Theodoropoulos, P. 2017. Probabilistic
model counting with short xors. In In Proc. of SAT.

Achlioptas, D.; Hammoudeh, Z.; and Theodoropoulos, P.
2018. Fast sampling of perfectly uniform satisfying assign-
ments. In Proc. of SAT.

Arora, S., and Barak, B. 2009. Computational Complexity:
A Modern Approach. Cambridge Univ. Press.

Aziz, R. A.; Chu, G.; Muise, C.; and Stuckey, P. 2015. Sat:
Projected model counting. In Proc. of SAT, 121–137.

Biondi, F.; Enescu, M.; Heuser, A.; Legay, A.; Meel, K. S.;
and Quilbeuf, J. 2018. Scalable approximation of quantitative
information flow in programs. In Proc. of VMCAI.

Chakraborty, S.; Meel, K. S.; Mistry, R.; and Vardi, M. Y.
2016. Approximate probabilistic inference via word-level
counting. In Proc. of AAAI.

Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2013a. A
Scalable and Nearly Uniform Generator of SAT Witnesses.
In Proc. of CAV, 608–623.

Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2013b. A
scalable approximate model counter. In Proc. of CP, 200–
216.

Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2014. Balanc-
ing scalability and uniformity in SAT witness generator. In
Proc. of DAC, 1–6.

Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2016. Algorith-
mic improvements in approximate counting for probabilistic
inference: From linear to logarithmic SAT calls. In Proc. of
IJCAI.

Dueñas-Osorio, L.; Meel, K. S.; Paredes, R.; and Vardi, M. Y.
2017. Sat-based connectivity reliability estimation for power
transmission grids. Technical report, Rice University.

Eén, N., and Biere, A. 2005. Effective preprocessing in sat
through variable and clause elimination. In Bacchus, F., and
Walsh, T., eds., Proc. of SAT, 61–75.

Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B.
2013. Taming the curse of dimensionality: Discrete inte-
gration by hashing and optimization. In Proc. of ICML,
334–342.

Goldreich, O. 1999. The Counting Class #P. Lecture notes of
course on ”Introduction to Complexity Theory”, Weizmann
Institute of Science.

Gomes, C. P.; Hoffmann, J.; Sabharwal, A.; and Selman, B.
2007. Short XORs for Model Counting; From Theory to
Practice. In SAT, 100–106.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Model
counting: A new strategy for obtaining good bounds. In Proc.
of AAAI, volume 21, 54–61.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2009. Model
counting. In Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications. IOS Press. 633–654.

Ivrii, A.; Malik, S.; Meel, K. S.; and Vardi, M. Y. 2015. On
computing minimal independent support and its applications
to sampling and counting. Constraints 1–18.

Lagniez, J.-M., and Marquis, P. 2017. An improved decision-
dnnf compiler. In Proc. of IJCAI, 667–673.

Meel, K. S.; Vardi, M. Y.; Chakraborty, S.; Fremont, D. J.;
Seshia, S. A.; Fried, D.; Ivrii, A.; and Malik, S. 2016. Con-
strained sampling and counting: Universal hashing meets sat
solving. In Proc. of Beyond NP Workshop.

Meel, K. S. 2014. Sampling Techniques for Boolean Satisfia-
bility. Rice University. M.S. Thesis.

Meel, K. S. 2017. Constrained Counting and Sampling:
Bridging the Gap between Theory and Practice. Ph.D. Dis-
sertation, Rice University.

Roth, D. 1996. On the hardness of approximate reasoning.
Artificial Intelligence 82(1):273–302.

Soos, M.; Nohl, K.; and Castelluccia, C. 2009. Extending
SAT solvers to cryptographic problems. In Proc. of SAT,
244–257.

Stockmeyer, L. 1983. The complexity of approximate count-
ing. In Proc. of STOC, 118–126.

Toda, S. 1989. On the computational power of PP and (+)P.
In Proc. of FOCS, 514–519. IEEE.

Valiant, L. G. 1979. The complexity of enumeration and
reliability problems. SIAM Journal on Computing 8(3):410–
421.

Zhao, S.; Chaturapruek, S.; Sabharwal, A.; and Ermon, S.
2016. Closing the gap between short and long xors for model
counting. In Proc. of AAAI.

1599

