BIRD IMPACT FORCES AND PRESSURES ON RIGID AND COMPLIANT TARGETS

UNIVERSITY OF DAYTON
RESH ARCH INSTITUTE
300 COLLEGE PARK AVENUE
DAYTON, OHIO 45469

MAY 1978

TECHNICAL REPORT AFFDL-TR-77-60
Find Report for Period April 1976 - December 1976

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifivations, or other data, is not to be regarded by implication or otherwise ds in any manner licensing ti.e holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related chereto.

This report has been reviewed by the Information Office (IO) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMLANDER

ROBERT E. WITTHKN, Progran Hanager Improved Windshicid Protection ADPO Vehicle Equipment Ulvision Air Forse Flight Dynamics Laboratory

AMBROSE B. NUTT
Director
Vehiclo Equipment Division Air Fonce Flight Dynam!es Labonatory

Coples of this roport should not be returned unless return is required by security cons'darations, contractual obligations, or notice on a specific document.
GTE. IMPACT FORCES AND PRESSURES ON RIGID AND
COMPLIANT TARGETS.

Performing organization name and address
University of Dayton Research Institute
on College Park Avenue
Dayton, Ohio 454.59

READ INSTRUCTIONS BEFORE COMPLETING FORM
11. Controlling office name and address

Air Force Flight Dynamics Lathoratory/FEW Wright-Fatterson Mir Pore Ba: se, 0.1io 45433

- herstronon Mir fore kane, Clio isis
if Monitoring agency name a adoress(il dillerant from Controlling offices

Final Report.

io OISTAIGITION STATEMENT IOI Then Report:

E

 technique. A mondimensionalized doseription of the total fores and its varia-
 measured. The intact event was found to consist of four processes. The first pyrene: is the initial shock phase in which extremely heth gestures arm remeratod. These bename: may be calculated if tho llugonine mentions for the bird material mew known. It has found that slat in with ten percent porosity

20. ABSTRACT (continued)

provided a good material model for the prediction of impact pressures. The second process is the impact shock decay phase. During this phase radial release waves propagate from the edges of the bird towards the center of impact. These radial release waves accelerate the bird material radially and attenuate the shock. The third impact process is a steady flow condition which follows the shock decay. During this phase the bird behaves like a jet flowing steadily onto the target. The final impact process is the termination and this occurs when the end of the bird reaches the target. Each of these processes was examined analytically and experimentally. Birds ranging in size from 60 g to 4 kg were investigated. Impact angles of $90^{\circ}, 45^{\circ}$, and 25° were employed. Impact velocities typical of aircraft/bird encounters (50 to over $300 \mathrm{~m} / \mathrm{s}$) were chosen. Birds were found to behave as a fluid during impact. All the important features of the impact process were successfully analyzed.

The effects of target compliance on bird loading were also investigated. Target compliance was divided into two classes, locally rigid and locally deforming. A computational scheme designed to properly couple the loading to the response for locally rigid targets was devised. An exploratory experimental study of locally deforming targets was undertaken. Some important features of locally deforming response were identified.

The effort reported herein was conducted in the Impact Physics Group under the direction of the Aerospace Mechanics Division of the University of Dayton Research Institute, Dayton, Ohio, under Contract F33615-76-C-3103, for the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. Air Force administrative direction and technical support was provided by Mr. Richard L. Peterson, AFFDL/FEW, the Air Force Project Manager. The experimental portion of the work was conducted at the Impact Mechanics facilities of the Air Force Materials Laboratory, WrightPatterson Air Force Base, Ohio. The large bird testing was performed at Arnold Engineering Development Center, Arnold Air Force Station, Tennessee.

The work described herein was conducted during the period from May 1976 to December 1976. The principal investigator was Dr. John P. Barber, Head, Impact Physics Group of the Applied Physics Division of the University of Dayton Research Institute. Project supervision and technical assistance was provided through the Aerospace Mechanics Division of the University of Dayton Resuarch Institute with Mr. Dale H. Whitford, Supervisor, Mr. George J. Roth, Leader, Structural Analysis Group, Blaine S. West, Project Engineer.

In addition to those listed above, the authors wish to acknowlodge the following persons who made significant contributions to this work, Dr. David L. Quam/UDRI, ir. Louis I. Boehman/UDRI, Mrs. Sue C. Cainor/UDRI.

The active support of the Air Force Matmials Laboratory on this project is gratefully acknowlodged. The complote woperation of Dr. Ted Nicholas, Armb/LLN, and full use of the AFML Impact Mechanics racility were required to successfully complete this profect.

TABLE OF CONTENTS

SECTION PAGE
I INTRODUCTION 1
1.1 Background 1
1.2 The Bird Impact Loading Program 2
II THE TOTAL FORCE IN BIRD IMPACTS 5
2.1 Experimental Techniques 5
2.2 Theoretical Considerations 12
2.3 Experimental Results 15
2.4 Summary 19
III BIRD IMPACT PRESSURES 20
3.1 Experimental Techniques 20
3.2 Theoretical Considerations 23
3.3 Experimental Results 40
3.4 Sumnary 46
IV EFEECTS OF TARGET COMPLIANCE ON BIRD LOADING 49
4.1 Locally Rigid Windshield Response 50
4.2 Locally Deforming Response 56
v CONCLUSIONS AND RECOMMLDOATIONS 70
5.1 Conclusions 70
5.2 Reconmendations 7
APPENDIX A
REFERENCLS

LIST OF ILLUSTRATIONS

FIGURE PAGE

1. The breech end of the compressed air driven launcher. 6
2. Typical sabots for bird launching. 7
3. The sabot stripper assembly. 8
4. An x-radiograph of a bird in flight. 9
5. The Hopkinson bar. 10
6. Oblique Hopkinson bar configurations (a) tilted 11(b) sliced.
7. A typical Hopkinson bar strain record. 12
8. Motion of a bird before and after impact. 13
9. Oblique impact effective bird length. 14
10. Nondimensionalized impulse versus impact velocity 15for birds tested.
11. Normalized impact duration versus impact velocity. 16
12. Peak force versus impact velocity. 17
13. Nondimensional rise time versus impact velocity. 18
14. Generalized bind impact forse-time profile. 19
15. The AFML/UDRI pressure plate. 22
16. The AEDC pressure plate and target area. 22
17. A typical bind impact pressure record. 23
18. The phases of bird impact (a) initial impact 25(b) impact decay (c) steady flow (d) termination.
19. The shock prossure for birds ${ }^{6}$ (gelatin with 2610 percent porosity.)
20. An oblique impact 27
21. The variation of bird impact prossure with impact 27angle. (Gelatin with 10 percent porosity.)
22. Shock and releasa in a bird impact. 28
23. Shock reloase ilme versus impact velocity for Dirds 29 (Gelatin with 10 percent porasity.)
24. Variation of critical length with impact velocity 31For birds (Geiatin with 10 percent porosity.)
25. Steady state velocfty.33

JIST OF ILLUSTRATIONS (cont'd)

FIGURE PAGE
26. Normal impact pressure distribution for birds 33 (Gelatin with 10 percent porosity.)
27. Oblique impact. 34
28. Oblique impact potential flow model. 36
29. Pressure coefficient ($2 \mathrm{P} / \rho \mathrm{v}^{2}$) versus mondimensional 39 radius along the major axis of the impact for oblique impacts.
30. Initial impact (Hugoniot) pressures versus impact 41velocity for normal impact.
31. Initial impact (Hugonict) pressures versus impact 42
velocity for 45° impacts.
32. Steady flow pressures versus impact velocity at 43center of impact for 90° nomal impacts.
33. Steady flow nondimensional pressure distribution 44for nornal impacts.
34. Steady flow nondimensional pressure distribution 45llong the midor axis for oblique impact.
35. Stedy flow nondimensional pressure distribution 45along the minor axis for oblique inpact.
36. Nondimensional duration versus impact valocity for 47 normal impacta.
37. Locally ripid windshield response. 49
38. Locally deforming windshisid mesponst. 50
39. The peomotry of a locally rigid impact. 51
40. Nondimnniional impact area versus nondimensinnal 53consuthed length.
41. A locally deforming target, 57
42. A Hopkinson tube. 58
43. The Hopkinson tube in place. 59
44. Nondimensional impulse transfer versus impact 61velocity for normal impact.
45. Nondimensional impact duration varsus impact 62 volucity for normal impact.
46. Nondimensional peak force versus impact velocity 63 for normal impact.
Prouke PAGE
47. Nondimensional rise time versus impact velocity 64 for normal impact.
48. Rise time divided by the time to peak displacement 64 versus impact velocity for normal impact.
49. limpulse transfer versus impact momentum for 65 45° impacts.
50. Nondimensionalized pulse duration versus impact 66velocity for 45° inpants.
51. Nondimensionalized peak force versus inaract velocity 67 for 45° impacts.
5. Nondimensional rise time versus impact velocity 68for 45° impacts.
53. Hisa time divided by time to peak displacement 68versus velocity for 45° impacta.

SECTION I

INTRODUCTION
1
Birds and aircraft occupy the same air space and collisions between the two are inevitable. As aircraft speeds have increased, the severity and importance of bird/aircraft impact have also increased. As a result, efforts have been made to reduce the probability of collision by controlling the movement of birds and by changing the flight paths of aircraft. These actions can and have reduced the probability of collision but have not eliminated it. Therefore, the Air Force has initiated programs designed to increase birdstrike resistance of aircraft and aircraft components. This report describes a program which was conducted to establish the loads which birds exert on aircraft transparencies in collisions. The loads as derived in this program were to be used as input for the structural analysis computer code of windshield response to bird impact.

1.1 BACKGROUND

Studies of the hazards presented by bird impact on transparencies date back to the early 1940 's. Since that time the potential damage resulting from bird/aircraft collisions has greatly increased. This is principally the result of increased aircraft speeds which results in both increased energy densities and impulsive forces during the impact process. The problem has been further aggravated by the introduction of low altitude, high speed penetration, mission profiles. These flight profiles place the aircraft in areas of high bird density at speeds approaching or exceeding the speed of sound. Birdstrikes under these conditions increase the probability of serious aircraft damage. Such damage may result in an aborted mission or loss of aircraft.

Since 1966 the U.S. Air Force has lost at least twelve aircraft worth over $\$ 76$ million due to bird impacts on transparent enclosures. These losses include a T-37B with one fatality, three T-30s with two fatalities, two F-100s with one fatality, and six F-1lis with two fatalities. In
addition to the $\$ 76$ million loss in airframes, an estimated $\$ 20$ million has been spent in repair costs during the perjod 1966 through 1972. Further, the role of bird impacts in aircraft losses in Southeast Asia is not fully known.

Numerous efforts a?e currently underway to make U.S. Air Force aircraft windshield systems more resistant to birl impacts. In addition, a number of advanced development programs are being conducted to examine existing windshield materials and birdstrike resistance windshield s;stem concepts. It has become apparent from these studies that the technological base developed during the $1940 \mathrm{~s}, 50 \mathrm{~s}$, and early 60 s for birdstrike resistance is not adequate. Current improved designs are principally arrived at with an inefficient and expensive build and test process.

The design of birdstrike resistant transparencies requires a better and more detailed knowledge of the response of windshields and support structures to bird impact. The Air Force has initiated an extensive program which is designed to apply modem structural analysis techniques to wiudshield response. With such tools proven and placed at the designers disposal, the process of ohtaining birlstrike resistant transparency designs should become much more efficient.

One of the most important inputs to a structural analysis code is the looding. The loading is particuiarly important in the analysis of transient perponse such as occurs in bird imact. Ton program deseribed in this report was datilgred to muport the ntructural andysts task by providing experimontally obsalned and quancified ioading input data.

1.9 TMI: BIRD Impact loadimg phogran

The effort to measure and characterize the loads overted by birds during impact was begun in Jinuary 1974. This work was jeintly sponsored by the Air Pome Materials Laboratory and the Air Pome Mlipht bynamics Laboratory. The aarly wort was reported by larber, et ai. [1]. In that phase of the program the basic experimental techniques required to obtain valit bird impact pressure data were developed. Bird launching techniques were established and teated. A technique employing quartz piezoelectric transducers were developed for measuring the \{mpact pressures. These transducers we "e extensively fested and calibrased to assure the validity of the results. A preliminary serias of bind impact tests were run with two bird sizes, 50 and 120 grams, investigated. Impacts at normal incidence
were conducted at velocities ranging from $<50 \mathrm{~m} / \mathrm{s}$ to $\sim 300 \mathrm{~m} / \mathrm{s}$. The basic nonsteady fluid dynamic behavior of birds in impact was identified. The basic characteristics of the pressure records were also identified and preliminary data reduction, analysis, and correlation were conducted.

The proliminary work reported in Reference 1 established the technique for measuring pressures and pointed to the need for direct measurements of the total impact force. Accordingly, the next phase of the program involved implementation of the Hopkinson bar technique to obtain tctal force measurements. In addition, the impact pressure measurements were extended to oblique impacts. Data was obtained at. both 45° and 25° impact obliquity. This work was reported in detail by Peterson and Barber ${ }^{[2]}$. This report describes the successful development of the Hopkinson bar technique for total force measurements and reports the first series of total force results for normal impact. Bird impact pressure data at 45° and 25° was also presented. The reduction and analysis of the pressure data was significantly improved over the first report. The identification of a steady flow regime during the impact significantly improved the interpretation of the results. Spatial distribution of the steady flow pressures was documented.

Peterson and Barber ${ }^{[2]}$ reported the first attempts to quantitatively reduce and analyze the bird pressure data obtained for large birds at Arnold Engineering Development Center (AEDC) ${ }^{[3]}$. This data had many puzzling characteristics which were quite unlike the AFML/UDRI data. Attempts to reduce and compare the AEDC data to the AFML/UDRI data were largely unsuccessful due to the fundamentally different nature of the pressure records. For example, with few exceptions, no steady pressure regime could be identified on the AEDC records. Some apparently valid measurements of total impulse and average pressures were obtained and these were consistent with the AFML/UDRI results and with the emerging physical picture of the impact process.

The current effort was designed to extend the work reported in Reference 2. The Hopkinson bar total force measurements were extended to oblique impacts at 45° and 25°, and to larger birds (600 g). Ine data base for total force measurements now covers a range of parameters as follows: bird masses ranging from 60 g to 600 g ; impact velocities from : i $10 \mathrm{~m} / \mathrm{s}$ to $\sim \approx 50 \mathrm{~m} / \mathrm{s}$; and impact obliquities of $90^{\circ}, 45^{\circ}$, and 25°. A careful analysis
of this body of data was conducted and the results are documented in this report.

In the current effort, measurements of impact pressures were extended to larger birds (600 g) in an effort to establish the size scaling laws of the impact process. In addition, the AEDC pressure data was once again reviewed in an attempt to determine the origin of the apparent descrepancies. The results of this effort are reported in Section III of this report.

All of the testing conducted in this program as described to this point were conducted on rigid targets. However, aircraft windshields are not rigid. The compliance of aircraft transparencies varies from almost rigid to extremely flexible. If this entire range of aircraft transparency compliances must be accommodated by analytic techniques then the effects of target motion on impact loading must be known. Therefore, in the current investigation on a preliminary study of the effects of target compliance on bird loading was undertaken. The results are reported in Section IV.

It was recognized early in the program that bird loading data was not completely satisfactory as input into structural response codes. It is necessary to reduce that data on characterize it in a form which is more readily amenable to code input. In short, an analytic model of the bird impact process is required. Under the current program the task of establishing a reliable and verified analytic bird model was begun. This model. is described in a separate report by Ito, et al. [4].

This report describes the output of the entire bird loading program and contains substantial portions of the work reported in References 1 and 2. The resulta of all phases of the program are integrated to provide a single, coherent report.

The total force which a bird exents at impact is a very important parameter. In many cases, the response of ar impacted structure can be adequately analyzed if the total impact fore and its variation with time are known. In fact, a further simplification is often possible. If the natural period of th imnacted structure is long compared with the duration oi^{i} the impact, the inpast may be consicered to be an impulsive event. The only parameter required to adequately analyze the response is the impulse. Thus, if the variation of the total force with time is known (and the impulse, which is simply the integral of the force with time) a wide range of impact structural response problems may be analyzed. Many aircraft windshield bird collisions fall into this category, Accordingly, an extensive experimental program was undertaken to measure the total force exerted by birds at impact. This program was designed to yield information on the forces that birds exert and the manner in which those forces vary with time during impact. The results wore cast in a form suitable for use with structural analysis programs.

This section contains a description of the experimental techniques used to measure the forces, some theoretical considerations of the forces and impulses delivared by birds at impact, and finally describos the experimental results.

2.1 EXPERIMENTAL TECHNIQUES

In order to 3 tudy the forces exarted by birds at impact, birds must first be launched to valocities of intarest. A suitably instrumented target must then be constructed and measurements of the forces obtained. A compressed air launching technique was developed and a Hopkinson bar was adapted to obtain muasurements of the lmpact force and its variation with time.

2.1.1 The Launcher

For experimental invostigations of bird impact, a launeh techrique is necessaty which: (a) can launch birds of the required mass at the
required velocities; (b) launches the birds with a controlled orientation (preferably with zero pitch and yaw); (c) does not break-up the bird or severely distort it prior to impact. A launch teshnique was developed with which birds of up to 700 g could be launched to velocities up to $300 \mathrm{~m} / \mathrm{s}$.

The launch tube was an 88.9 mm ID, 3.66 m long steel tube. Driving pressure was supplied by compressed air which was stored in a $0.32 \mathrm{~m}^{3}$ steel tank. The maximum driving pressure available was $2.1 \mathrm{MN} / \mathrm{m}^{2}$ (300 psi). The compressed air tank was connected to the breech of the guri with a 10 cm ID flexible hose and quick disconnect coupler. Gas was valved to the launch tube breech through a quick acting butterfly valve. The breech end of the gun, together with the flexible coupler and the gas storage tank, are shown in rigurel.

The birds were placod in a sabot (carrier) for ldunching. The sabot was an 88.9 mm OD balsa wood cylinder. Balsa wood was employed because it is lightweight, strong, and relatively inexpensive. A suitable cavity was mathined in the front: of the sabot to decept the bird which was to be launched. A 38 mm cavity accomnodated birds of about 60 g mass, while the maximum aize bird launchable in this facility (600 g) required a 76 mm diameter eavity. A photograph of typical sabots is shown in Figure 2.

Migure i. The breech end of the compressed air driven launcher.

Figure 2. Typical sabots for bird launching.

These sabots proved completely satisfactory for lanching birds over the range of sizes and velocitins used in this stidy.

As the sabot represents a siguificant fraction $n f$ the launch mass, it must be stripped from the bird before the bird impacts thatarget. Accordingly, a sabot stripper section was attached to the muzzle of the launcher, The gabot strifper tube consit. ied of an 88.9 ID steel tube with a series of longitudinal slits eur in o it. Comprossion rings were placed around the outaide of the tube and ID of the tube was progressively reduced. When the launch package entered the sabot stripper tube, the sabot was progressively decrelerated and finally stopped by the tube tapre. The bird, however, released from the sabot poeken and continurt iree of the sabot to tha turget. Wide slots were cut in the mumie of the launch tube to fachlitate rapid release of the duiving prossura and reduce the forces requised to decelerate and stop the sabot. A photograph of the sabot stripper ascombly is shown in Figure 3. In orter to stop the high velocity layge bird sabots an extension to the stipper tube is required. The tube could be extended from its standard length of 3.05 m to a total length of 4.08 m . The sabot stripper functioned satisfactorily over the entire range of masses and velocities which were used in this program.

Figure 3. The sabot stripper assembly.

The velocity of the bird was measured prior to impact using a simple time-of-flight technique. Between the muazle of the sabot stripper and the target, two helium/neon laser beams were directed across the trajectory. When the bird interrupted the first laser beam, a counter was started. The counter was stopped when the bird interrupted the second laser beam. The distance between the laser beams and the elapsed time were used to calculate the velocity. To increase the accuracy of the velocity measurements and to monitor bird orientation and integrity prior to impact, a flush x-ray systom was set up at bach laser beam station. The resulting radlograph of the bird in flight was used to accurately establish the position of the bied with respect to the laser beam and to monitor the condition and orientation of the bird. A typical x-radiograph of a bird is shown in Figure 4 . Using this technique, velocities could be measured to within une perwent. Bird orientation and integrity were monitored for each shot. Bird disintegration during the frwe flight phase of the bird launch was extmenely rare and was not an experimontal problem. Bims wore launched with an angle of attack (yaw) typically $<5^{\circ}$ to trajectory. The birds were alwaya launched tall first for increased stability.

In addition to the x-radiograph coverage of the bird in flight, high apeed motion picture covorage was also obtained oll selected shots. Cameras with framing rates of up to $20,000 \mathrm{f} / \mathrm{s}$ hare employed fon specific investigations of the behavior of the bird during impact.

Figure 4. An x-radiograph of a bird in flight.

Abstract

2.1.2 The Hopkinson Bar

Hopkinson bars have been used over the last fifty years for measuring force-time histories of impulsive events. The basic concept for which a Hopkinson bar operates is that a force rapidly applied to the end of a homogeneous bar of elastic material will generate a stress wave that propagates along the bar at constant (near sonic) velocity. The stress wave can be detected at any point along the bar by placing a strain gage on the bar surface and monitoring the output. The strain-time history is related to the instantaneous force appliad to the end of the bar through the Young's modulus of the bar material and the cross-sectional area of the, bar. The force is simply equal to the product of the strain, the modulus, and the cross-sectional area.

The Hopkinson bar principle was applied to determine the force-time history of a bird striking a rigid target. Tho birds were launched against tho end of a long aluminum bar on which strain gages were mounted approxi= mately ton diameters from the impact end. The resulting strain pulse in the bar was recorded and related to the force exerted by the impact. The bar must be sufficiently long to ensure that the entire stress pulse from the impact is recorded before a reflected wave from the free end of the bar can propagate back to the strain gage. Two separate bars were used in this investigation. For small birds (60 g) a 7.62 cm diameter, 3.66 m long aluminum bar was employed. Two strain gages were mounted on opposite sides of the bar, 76 cm from the impact end. For medium size birds (600 g) a

12.70 cm diameter bar, 4.83 m long with gages 1.25 m from the impacted end was used. The two gages were connected in opposite sides of a Wheatstone strain gage bridge for two purposes. This technique adds the output of the gages, thus doubling the sensitivity of the system. Any bending of the rod produces compression in one gage and tension in the other. These signals subtract and the bending signal is rejected. The signals were recorded with an oscilloscope.

The bar was located on the range by suspending it from the ceiling. Any perturbations to the strain signals which might be introduced by rigidly mounting the bar on the range ware thus avoided. A photograph of the Hopkinson bar in place is shown in Figure 5.

Neglecting friction, an impacting bird can only exert forces which are normal to the impacted surface. For a normal impact on a Hopkinson bar, the impact force produces a planar strain wave which travels normal to the bar axis. The force as derived from the strain measurements is, therefore, exactly equal to the force exerted on the end of the bar. In oblique impact the situation is somewhat different.

Figure 5. The Hopkinson bar.

A Hopkinson bar may be employed to investigate oblique impacts in one of two different modes. These modes are illustrated in Figure 6. In the tilted configuration the axis of the bar is tilted with respect to the trajectory of the bird. The impact forces are exerted normal to the surface of the end of the bar. As the end of the bar is perpendicular to the axis of the bar, the resulting strain wave propagates up the bar. The force derived from the strain measurements is exactly equal to the force exerted on the end of the bar.

When a sliced Hopkinson bar is employed to investigate oblique impacts, the force exerted by the impact is not directed along the axis of the bar. Only the component of the force which is parallel to the axis of the bar is detected by the strain gages. Both tilted and sliced bars were used in this study. The results from both configurations agree when they are appropriately reduced and analyzed.

Figure 6. Oblique Hopkinson bar configurations (a) tilted (b) sliced.

A typical strain-time record is shown in Figure 7. The initial strain signal and the first two reflected signals are clearly visible. Only the primary strain signal was of interest.

Eigure 7. A typical Hopkinson bar strain record.

2.2 THEORETICAL CONSIDERATIONS

It is informative to consider some simple, theoretical results concerning impulse transfer, impact durations, and average forces in bird impacts. Knowledge of these qualities assists in the reduction and interpretation of experimental data.

2.2.1 Monnentum Transfer

Assuming that a bird is essentially a fluid body, the motion of the bird before and after impact is illustrated in figure 8 . The initial momentum of the bird along trajectory is simply mv, where m is the mass of the bird and v is the initial impact velocity of the bird. The momentum of the bird along trajectory after impact is zero as the bird has only radial veiocity. Therefore, the momentum transferred to the target during the impact is simply equal to mv. This simple picture may be easily extended to oblique impacts by noting that only the component of momentum nomal to the impact surface is transferred to the target during the impact. Therefore, the momentum transfer, or impulse, I, is given by

$$
\begin{equation*}
I=m v \sin \theta_{0} \tag{1}
\end{equation*}
$$

Figure 8. Motion of a bird before and after impact.
where 0 is the angle between trajectory and the surface of the target. Equation (1) is an expression for the momentum transfer or impulse imparted to a target during impact if the bird were a fluid body and the target were completely rigid.

2.2.2 Impact Duration

If the bird is assumed to be a fluid body, the impact begins when the leading edge of the bird first touches the target. The impact continues until the trailing edge reaches the target and thore is no furtrer bird material flowing onto the target. If the bird does not decelerate during impact, then this "squash-up time". T_{s}, is given by

$$
\begin{equation*}
T_{s}=\ell / v_{0} \tag{2}
\end{equation*}
$$

where \& is the length of the bird. In an oblique impact the situation is difforent as illustratod in RIgure 9. The offectiv len, th of the bird is now somewhat longer than the "straight" length of the bird, ℓ. If the bird were a right circular cylinder, as illustrated in Figure 9, the affective length, $l_{\text {off }}$, would be given by

$$
\begin{equation*}
\ell_{\text {off }}=\ell+d \tan \theta \tag{3}
\end{equation*}
$$

Figure 9. Oblique impact effective bird length.
where d is the diameter of the bird. A real bird is more nearly an oblate spheroid, in which case the effective length is less than that given by Equation (3). However, when the straight length is replaced by the effective length in Equation (2), a reasonable estimate of the pulse duration for an oblique impact is obtained.

2.2.3 Average Impact Force

Continuing the consideration of a fluid bird impact, both the momentum transfer and the duration have now been defined. With these two quantities it is posibible to calculate the average impact force. The average force is given by the momontum transfer, Equation (1). divided by the duration
-

$$
\begin{equation*}
F_{a v g}=m v^{2}(\sin 0) R_{o f f} \tag{4}
\end{equation*}
$$

The three quantities derived in this section, impulse, impact duration, and average impact force, are logical parameters with which to coupare measured values and with which moasured values can be nondimonsionalized, or scaled, for presentation.

2.3 EXperimental results

Impact experiments on Hopkinson bars were conducted over wide range of bird impact parameteris. Bird mass was varled from 60 go to 600 g . Impact velocity was varied from $50 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$. Three imact angles were investigated, 90° (normal), 45°, and 25°. Strain-time records wore obtained for each impact. The strain-timo rocords ware convorted to foreo-tim
records and from these records peak force, impact duration, and the rise time (time to reach peak force) were measured. In addition, the records were digitized and numerically integrated to provide data on momentum transfer or impulse. Details of the results are presented in the following sections.

2.3.1 Momentum Transfer

The momentum transfer or impulse which is determined by integrating the force-time records is compared to the momentum transfer as calculated in Section 2.2, Equation (1). The results are displayed in Figure 10. Figure 10 clearly demonstrates that Equation (1) contains all the essential characteristics of the momentum transfer. The equation properly scales for bird size, impact velocity, and impact angle. Birds appear to behave essentially as a fluid body. There is no evidence that bira bounce at any velocity (which would imply an impulse greater than the expected momentum transfer).

Kigure 10. Nondimensionalized impulse versus impact velocity for birus tested.

2.3.2 Impact Duration

Impact durations were measurea for most of the tests made. The impact duration was nondimensionalized to the "squash-up" time as given by Equations (2) and (3), and the results are displayed in Figure 11. From Figure 11 it is apparent that Equations (2) and (3) adequately describe the impact duration over a wide range of impact parameters. These expressions properly account for bird dimensions and impact velocities. The impact duration appears to scale linearly with size. The oblique impact results show a tendency for the measured duration to be less than the predicted "squash-up" time. This is due to the expression used to calculate the effective "squash-up" time, Equation (3), which assumes a right circular cylindrical shape. As birds are oblate spheroids, the effective length and "squash-up" time will be somewhat less than this value.

2.3.3 Peak Impact Porce

The peak force recorded during each impact was evaluated and normalized to the average force as calculated fnom Equation (4). The results am displayed in Figure 12. There is considerable seatter in the

Figure 11. Nomalized impact duration versus impact velocity.

Pigure 12. Poak fonco versus inates malocity.
data and this probably represent meal variation in the forees exerted by birdo at l如act. The variation could be due to bird shape, bird material proparties, and bird oriontation at latact. The data appears to fall from a value of about 2 (e.g., the pata force is twice the average foree) at $100 \mathrm{~m} / \mathrm{s}$ to a value of about 2.6 at $300 \mathrm{~m} / \mathrm{s}$. Thome doas not appear to be any significant differnnce between the 00 p birds and the 600 g binds. The average force, as deternined from Equation (4), appears to be a good nondimencionalizint parameter. A value of 2.0 leads to a simpe "triangular" Forco-time distribution, is consistent within the data scatter, and represents a good "average" vilue.

2.3.4 Impact Rise Time

The imanct rise time was taken to be the time from the begisning of impact until peak force was rearhed. This value mas measured for all impacts
and normalized to the "squash-up" time as derived from Equations (2) and (3). The results are displayed in Figure 13. There is a great deal of scatter in the data. This scatter is once again attributed to real variation in bird impacts. There do not appear to be any significant trends in the data. The oblique impact cases produce slightly lower values of rise time. However, the enormous scatter makes any firm conclusion questionable. The "squash-up" time appears to be a reasonable nondimensionalizing quantity for the rise time. $\dot{\text { ilthough the scatter in the data is great, a reasonable }}$ average value to use if the nondimensional rise time is 0.2 .

2.4 SUMMARY

The experimental results displayed in Section 2.3 clearly show that the nondimensionalizing quantities derived in Section 2.2 are valid quanticies with which to describe the forces generated by birds at impact. A generalized force-time bird impact profile is displayed in Figure 14. This generalized profile is consistent with the data and properly accounts for bird mass, bird size, impact velocity, and impact obliquity.

Figure 13. Nondimensional rise tima vensus impact velocity.

Figure 14. Generalized bird impact force-time profile,

SECTION III

BIKD IMPACT PRESSURES

Abstract

To fully understand and analyze some aspects of windshield response to bird impact it is necessary to have more detailed knowledge of the impact loading process. In particular, the spatial distribution of the impact forces must be known. An experimental program was, therefore, undertaken to measure the spatial and temporal distribution of the pressures exerted on a rigid target during a bird impact. Pressure data was collected for a wide range of impact parameters. Bird masses ranging from 60 g to over 4 kg were employed. Velocities ranging from < 100 to $\sim 300 \mathrm{~m} / \mathrm{s}$ were investigated. Impact obliquities of $90^{\circ}, 45^{\circ}$, and 25° were studies. The data was collected, reduced, and analyzed, and is presented in this section.

\subsection*{3.1 EXPERIMENTAL TECHNIQUES}

Most of the experimental work reported in this section was conducted at the AFML/UDRI facilities at Wright-Patterson Air Force Base. For bird sizes of over 1 kg the testing was conducted at Arnold Engineering Development Center (AEDC) in Tullahoma, Tennessee.

\subsection*{3.1.1 Bird Launching}

The AFML/UDRI bird launching facility, described in Section 2.1, was also employed for the pressure testing. The launch technique, velocity, measura: nt, and bird observation techniques were identical to those used fre: the to*al force measurements.

The sCC facility employs very similar techniques for launching birds. They used a compressed gas launch technique and place the birds in a balsa wood sabot. The sabot is strlpped from the bird in a converging tube stripper. The AEDC facility is an outdoor facility. The most significantly different feature between the AEDC facility and the AFML/UDRI facility is the very long free flight of the bird from the sabot stripper muzzle to the target at AEDC. To prevent the birds fram being unacceptably altored by the high aerodynamic forces during free flight, the birds are placed in light nylon bags. The long free flight of the bixd also

introduces uncontrollable pitch and yaw in bird orientation at the target. The presence of pitch and yaw at impact has proved extremely difficult to account for in data analysis. The effect of bagging the birds is unknown, but is assumed to have negligible effect on impact pressures. The AEDC facility is described in much greater detail in Reference 3.

3.1.2 Pressure Measurement

The measurement of impact pressures presents a number of difficulties. The impact shock pressures can be extremely high (several hundred $\mathbb{M N} / \mathrm{m}^{2}$). The pressure sensing device must be capable of measuring and withstanding these high pressures. The duration of the impact is relatively short (hundredths of μs) and there could be important transient pressure excursions. The pressure sensing and recording system must, therefore, have adequate bandwidth to detect and record important pressure transients.

A commercially available piezoelectric quartz pressure transducer was selected as the basic sensing device. These transducers employ a compact impedance converter physically located in the coaxial line close to the crystal. Since these transducers are not designed for impact testing, considerable experimentation and calibration was necessary to verify their operation. A calibration method for the transducers was developed to verify the applicability of the manufacturer's calibration data to the unidirectional axictl loads anticipated ${ }^{[1]}$. A device was fabricated to enable the unidirectional axial loads similar to bird/plate impact loads to be applied to the transducer. Measurements were taken to determine the response of the traneducers. It was concluded that the transducers provideci rellable, accurate, pressure data over the range of pressures and frequencies expected. The transducers have a specified pressure range of 0 to $700 \mathrm{NN} / \mathrm{m}^{2}$, and a specified bandividth from 0 to 100 kHz . The transducers ware mounted in a heavy steel plate. They were mounted such that the sensing surface of the transducers was flush with the surface of the plase. Alrds were then impacted on the plate in such a manner that the transducers were directly struck by the bird. A photograph of the AFML/ UDRI pressure plate is displayed in Figure 15. Up to eight transducers were mounted in this plate. The pressure signals were recorded on both oscilloscopes and an EM tape recorder.

Figure 15. The AFML/UDRI pressure plate.

A photograph of the AEDC pressure plate and target area is displayed in Figure 16 . This target plate was 76 cm square and 10 cm thick. Up to 29 pressure transducers could be mounted in the plate. The pressure signals were recorded on FM tape recorders.

Eigure 16. The AEDC pressure plato and target area.

The data from both facilities was collected at UDRI where it was reduced and analyzed. A typical pressure trace from the UDRI facility is displayed in Figure 17.

3.2 THEORETICAL CONSIDERATIONS

In order to facilitate reduction and analysis of the large body of data collected, a theoretical description of bird impact was undertaken. This analysis was not intended to provide a rigorous description of bird impact, but rather to provide theoretical guidance to the experiments and data reduction process. A parallel effort discussed in detail by Ito, et $a l{ }^{[4]}$, treats in greater detail the more rigorous problem of analytical modeling.

To develop a theoretical description of the impacts, the physical phenomena which control the process must be identified or postulated. The impact of a bird on a rigid plate was assumed to be a nonsteady fluid dynamic process. The entire impact may then be divided into four phases. The first phase is the initial impact phase in which very high shock pressures are generated between the bird and the target. The release of this shocked material results in a decaying pressure. The pressure docays until the third phase of the impact is reached. During this phase the bird flows

Shot No. 6049; Chicken mass 0.475 kg ; Velocity $253 \mathrm{~m} / \mathrm{s}$; Horizontal scale $200 \mu \mathrm{~s} / \mathrm{cm}$; Upper trace 12.7 mm offcenter with $15.1 \mathrm{MN} / \mathrm{m}^{2} / \mathrm{cm}$ vertical scale; Lower trace on center with $56.1 \mathrm{MN} / \mathrm{m}^{2} / \mathrm{cm}$ vertical scale.

Figure 17. A typical bird impact pressure record.
steadily onto the plate. This part of the process might be regarded as jet flow. The final phase of the impact occurs as the trailing end of the bird approaches the plate and the pressures once again fall to zero. These various phases are illustrated in Figure 18 and are described in some detail in the following paragraphs.
3.2.1 Initial Impact Phase

When a bird impacts a target plate, the particles at the front surface of the projectile (bird) are instantaneously brought to rest relative to the target face and a shock propagates into the bird as shown in Figure 18. As the shock wave propagates into the bird it brings the bird material behind the shock to rest. The pressure in the shock compressed region is initially very high and is uniform across the impact area. The edge of the projectile is a free surface and the material near the edge is subjected to a very high stress gradient. This stress gradient causes the material to accelerate radially outward and a release wave is formed. The arrival of this release wave at the center of the bird marks the end of the initial impact and the beginning of the decay process.
3.2.1.1 Normal Impact

For the normal impact of a cylinder on a rigid plate, the flow across a shock can be considered one-dimensional, adiabatic, and irreversible. The pressure behind the shock may then be derived from the shock relation as ${ }^{[5]}$

$$
\begin{equation*}
P=\rho v_{s} v, \tag{5}
\end{equation*}
$$

where ρ is the density of the bind, v_{s} is the shock velocity, and v is the impact velocity. The shock pressure, therefore, depends not only on the impact velocity, but also on the shock velocity (which is, in general, a function of the impact velocity) and the bird density.

The density of both small birds (60 g) and medium birds (600 g) was measured. The birds were accurately weighed, then immersed in water to detormine the displaced volume. Detergent was added to the water to facilitate total wetcing of the bird and elimination of bubbles trapped in the feathers. The density of the birds (chickens) was found to be 0.95 $\pm 0.02 \mathrm{~g} / \mathrm{cm}^{3}$. There was no significant difference between the density of the 60 g birds and the density of the 600 g birds.

Figure 18. The phases of bird impact (a) Initial impact (b) impact decay (c) steady flow (d) termination.

As the principal constituent of flesh is water, it was assumed that the lower average of birds is due to the presence of porosity. A good material model was found to be gelatin with an initial density of $1.05 \mathrm{~g} / \mathrm{cm}^{3}$ and an air filled porosity of 10 percent (net density of $\left.0.95 \mathrm{~g} / \mathrm{cm}^{3}\right)^{[6]}$. For this material, Wilbeck ${ }^{[6]}$ using mixture theory, calculated the shock velocity and impact (or Hugoniot) pressure as a function of impact velocity. The results, for nomal impact, are shown in Figure 19. The pressures are extremely high ($100-500 \mathrm{MN} / \mathrm{m}^{2}$) over the range of impact velocities of interest.

3.2.1.2 Oblique Impact

For the oblique impact of a projectile on a rigid plate, a coordinate transformation aids in the understanding of the shock process. Figure 20 shows a cylinder with an initial velocity, v, impacting a stationary plate at angle, θ. The component of projectile velocity normal to the plate is $\mathrm{v} \sin \theta$ and the component tangential to the plate is $\mathrm{v} \cos 0$. The initial shock pressure is related only to the component of velocity normal to the surface and is given by a transformed Equation (5) as

$$
\begin{equation*}
P=\rho v_{s}^{*} v(\sin \theta), \tag{6}
\end{equation*}
$$

Figure 19. The shock pressure for birds ${ }^{[6]}$ (gelatin with 10 percent porosity.)

Figure 20. An oblique impact.
where γ_{s}^{*} is the shock velocity corresponding to an impact velocity of $v \sin \theta$. Because the shock velocity is a relatively strong function of the impact (normal) velocity, the shock pressure does not vary exactly as $\sin \theta$. The shock pressures for gelat in with 10 percent porosity at 45° and 25° were determined by Wilbeck ${ }^{[6]}$ and are shown in Figure 21.

3.2.2 Impact Pressure Decay

At initial impact a shock begins to propagate into the projectile and radial release waves propagate in towards the center from the free surface edges of the bird as shown in Figure 18 (b). The problem can no longer be considered to be one-dimensional in nature. For the normal impact of a cylinder, the problem is two-dimensional and axi-symmetric.

Figure 22 shows the release regime for impact of a cylinder with an original length to diameter ratio of 2 . Figure 22 (b) illustrates the projectile fust after impact. The pressure at point B is given by Equation (5). Figure 22 (c) shows when the release waves have converged at point B, the center of impact. The pressure on the target at the center of impact now begins to decay. Figure 22 (d) shows when the release waves have converged at the center of the shock, and a region of fully shocked material no longer exists. The curvature of the shock is due to the release process, which has weakened the shock more at the edges than at the center.

The duration of the full shock pressure, Equation (5), at the center of impact is given by the time that it takes the initial release

Figure 21. The variation of bird impact pressure with impact angle. (Gelatin with 10 percent porosity).

wave to reach the center. The release wave is a fan of weak expansion waves and can be considered isentropic. Thus, the velocity of the initial release wave is equal to the speed of sound in the shocked material, c_{r}. The expression for the time necessary for the release wave to reach the center of impact is

$$
\begin{equation*}
t_{r}=a / c_{r}, \tag{7}
\end{equation*}
$$

where a is the initial radius of the cylinder. Wilbeck ${ }^{[6]}$ has calculated c_{r} for gelatin with 10 percent porosity as a function of the impact velocity. Using these values he calculated the initial release time using Equation (7), Figure 23 shows the relationship between t_{r} and the impact velocity, v, for cylindrical projectiles of vanious radii.

Another important time is the time at which the release wave front converges at the center of the shock wave. Since the wave speed in the fully shocked medium is always greater than the shock speed, the release wave will interact with progressively more of the shock as the impact continues: Figure 22 (d) shows the condition in which the release wave front has just converged on point C, the center of the shock. After this time, the pressure in the region behind the shock will rapidly decay and the

Sheure 23. Shook release time versus impact velocity for birds (gelatin with 10 percent porosity).
shock will be weakened. This time, t_{c}, may be derived from geometric considerations. In order for the release wave starting at point A to intersect the shock at point C, it must travel a radial distance, a, and an axial distance equal to the axial distance traveled by the shock. At the time of intersection, the shock has propagated a distance

$$
x_{s}=\left(v_{s}-v\right) t_{c},
$$

where ($v_{s}-v$) is the velocity of the shock relative to the target. Therefore, the release waves have traveled a distance

$$
x_{r}=\left(x_{s}^{2}+a^{2}\right)^{1 / 2}
$$

The release wave travel time, t_{c}, is given by

$$
t_{c}=x_{r} / c_{r}
$$

By substituting and rearranging we obtain

$$
\begin{equation*}
t_{c}=\sqrt{\left.c_{r}{ }^{2}-\left(\frac{a}{v_{s}}-v\right)^{2}\right\}^{1 / 2}} \tag{8}
\end{equation*}
$$

From Equation (8) an expression can be derived for the critical projectile length, $\& p$, which is the length for which the radial release wave wist just interisect the shock axis, (point C), as the shock reaches the end of the projectile

$$
\begin{equation*}
\ell_{c}=v_{3} t_{c} \tag{9}
\end{equation*}
$$

Vombining Equations (8) and (9) and nondimensionalizing to the bird diametor we obtain

$$
\begin{equation*}
(l / d)_{c}=\frac{v_{s}}{2\left(c_{v}-\left(v_{s}-v\right)^{2}\right)} 1 / 2 \tag{10}
\end{equation*}
$$

For a projectile with an $\ell / d>(\ell / d)_{c}$, the shock will be severely weakened by the release waves prior to reaching the projectile end and the reflection will be greatly reduced or eliminated.

Wilbeck ${ }^{[6]}$ calculated ($\left.\ell / \mathrm{d}\right)_{c}$ for gelatin with 10 percent porosity and Figure 24 shows a plot of the results. For a projectile of sufficient length, steady flow should be set up after several reflections of the radial release waves. A projectile with a length somewhat greater than ℓ_{c} should undergo complete shock decay to steady flow. As birds have an ℓ / d of about 2 to 3 , a steady flow region is expected to exist. A longer steady flow regime is expected at low velocities than at high velocities.

The details of pressure variation with time during the decay process are extremely difficult to predict. In addition to the geometrical complexities, complete shock release material propenties for the bird inust be known. These are not currently available and would probably be difficult to obtain. Finite difference modelling of the process as rurorted by Ito, ot al. ${ }^{[4]}$ is the most promising overall appoach to properly modelling the decay process.

Obliqua impet effect: further complicate the detalls of the release process. However, the decay timos, as salculated for normal impacts, will be nearly the satte.

Pigute 24. Variation of critical longth with imact velocity for birds (Gelatin with 10 percent porosity).

3.2.3 Steady Flow

As the radial pressures decrease during the shock pressure decay, shear stresses develop in the projectile material. If the shear strength of the material is sufficient to withstand these shear stresses, the radial motion of the projectile will be restricted. If, however, the shear stresses in the projectile are greater than the shear strength of the material, the material will "flow". The shear strength of birds is so low that the pressures generated are usually sufficient to cause flow. The bird can be considered to behave as a fluid. After several reflections of the release waves, a condition of steady flow is established and steady pressure and velocily fields are established.

3.2.3.1 Normal Impact

During the relsase phase, the shock ... weakened by the release waves. For a subsonic impact, the shock wave will be ultimately eliminated by the release. In a supersonic impact the shock wave will not disappear. The shock propagation vclocity will decrease until it becomes equal to the impact velocity (a standing shock). Behind this standing shock, the flow will be subsonic and will follow steady flow streamlines. The velocity and pressure fields in the fluid will be quite different for the two cases. The presence of porosity in birds results in a very low sonic velocity ($40 \mathrm{~m} / \mathrm{s}$ for gelatin with 10 percent porosity). Bird impacts are, therafore, most probably supersonic.

Using potential flow theory, Wilbeck ${ }^{[j]}$ calculated the steady flow pressure for a supersonic bird impact at normal indidence. The results are displayed in Figure 25 . He found that the pressure at the center of impact (the stapnation pressure) could be approximately given by the expression

$$
\begin{equation*}
F_{s}=\frac{1}{2} \rho_{0} v^{2} \tag{11}
\end{equation*}
$$

where p_{0} is the density of the materlal with zero porusicy. This implies that the steady flow pressure at the center of impact is almest independent of porosity. The decrease in density due to porosity is apparentily offet by the increase in compressibility.

Wilbeck ${ }^{[6]}$ also calculated the radial distribution of pressure for a normal supersonic impact. The results for gelatin with 10 percent

Figure 25. Steady state velocity.
are shown in Figure 26. The pressure is nondimensionalized by dividing by the steady flow pressure for an incompressible fluid, $\frac{1}{2} \rho v^{2}$, and the radial distance from the center, r, is nondimensionalized by dividing by the radius of the projectile, a.

Figure 26. Nomal impact pressure Alstribution for birds (Gelatin with 10 purcent porosity).

The equation which describes this distribution is

$$
\begin{equation*}
P / P_{s}=\exp \left(-B(r / a)^{2}\right), \tag{12}
\end{equation*}
$$

where P_{s} is the stagnation pressure and $B=2 P_{s} / \rho v^{2}$. From Equation (11) it is apparent that $\beta \sim \rho_{0} / \rho$ where $\rho_{0}=1.05 \mathrm{~g} / \mathrm{cm}^{3}$.
3.2.3.2 Oblique Impact

Figure 27 shows the steady flow of an oblique impact of a cylinder of fluid on a rigid plate. From momentum considerations it can be seen that the majority of fluid will flow "downstream" on the obtuse side of the impact. The stagnation point shifts "upstream" to the acute side of the center of impact. As long as a stagnation point exists, the full stagnation pressure will occur as given by Equation (1l). The maximum pressure generated during steady flow will, therefore, be independent of the angle of impact. However, the distribution of pressure over the surface will be greatly dependent on the impact angle.

Figure 27. Oblique impact.

The distribution of pressure in an oblique cylindrical impact is difficult to analyze as it is a three-dimensional fluid dynamic problem. A number of authors have treated the two-dimensional case of the oblique impact of a sheet ${ }^{[7,8,9]}$. Taylor ${ }^{[10]}$ also did some experimental investigations of flow in an oblique cylindrical jet. However, no satisfactory description of oblique jet pressures was fcund in the literature. Thus, an analytic investigation of oblique jet flow was undertaken as a part of this program.

Three-dimensional potential flow theory was used to develop a model for predicting the pressure distribution produced by the steady flow of a cylindrical jet impacting on a flat plate. It was assumed that the pressure distribution, as calculated for this fluid dynamic problem, would provide a reasonable description of the steady flow portion of a bird impact. Assumptions were made that the flow could be treated as i:xompressible and irrotational. These assumptions are supported by the fact that (1) the steady state pressures measured in the experiments are small in comparison to the pressures required to produce significant density changes in water and, (2) the time over which the steady flow exists is small in comparison to the time required to establish strong vorticity in the flow. It should be noted that the steady flow portion of a bird impact is ideally suited for modelling by potential flow theory because there is no entrainment of surmunding fluid.

The model was based on superposition of two elementary solutions to the Laplace equation

$$
\Delta^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}},
$$

which is the governing equation for steady, incompressible, irrotational flow. The two olenentary solutions used were; (1) the uniform flow of a fluid in a round duct and, (2) the uniform distribution of planar sources over an elliptical area. The coordinate system used to model the flow is shown In Figure 28, Let ($0, n, r$) represent the coordinates of the location of a point source in the $y-z$ plane. The velocity components induced by this source are given by ${ }^{\text {[11] }}$

Elgure 28. Oblique impact potential flow model.

$$
\begin{aligned}
& u=\frac{9}{4 \pi}\left[x^{2}+(y-n)^{2}+(z \cdots \zeta)^{2}\right]^{3 / 2} \\
& v=\frac{9}{4 \pi}\left[x^{2}+(y-n)^{2}+(z-\zeta)^{2}\right]^{3 / 2} \\
& w=\frac{(y-n)}{4 \pi}\left[x^{2}+(y-n)^{2}+(z-\zeta)^{2}\right]^{3 / 2}
\end{aligned}
$$

where q is the strength of the source. The velocity fleld induced by a uniform surface distribution of sources in the $y-z$ plane of strength $q^{\prime \prime}$ per unit area is given by ${ }^{[12]}$

$$
\begin{align*}
& u(x, y, z)=\frac{q^{\prime \prime}}{4 \pi} x \int_{\zeta}^{\zeta} \int_{1}^{\eta} \int_{1}^{\eta} \frac{d \eta d \zeta}{\left[x^{2}+(y-\eta)^{2}+(z-\zeta)^{2}\right]^{3 / 2}}, \\
& v(x, y, z)=\frac{q^{\prime \prime}}{4 \pi} \int_{\zeta}^{\zeta} \int_{1}^{2} \int_{1}^{\eta} 2 \frac{(y-\eta) d \eta d \zeta}{\left[x^{2}+(y-\eta)^{2}+(z-\zeta)^{2}\right]^{3 / 2}}, \tag{17}\\
& w(x, y, z)=\frac{q^{\prime \prime}}{4 \pi} \int_{\zeta}^{\zeta} \int_{1}^{\eta_{1}} \sum_{2}^{\eta} \frac{(z-\zeta) d n d \zeta}{\left[x^{2}+(y-\eta)^{2}+(z-\zeta)^{2}\right]^{3 / 2}} .
\end{align*}
$$

Integration of the above three equations over the elliptical area bounded by

$$
\frac{\zeta^{2}}{a^{2}}+\left(\frac{y \sin \theta}{a}\right)^{2}=1
$$

(the projection of the jet on the plane) cannot be carried out in closed form. They can be integrated over rectangular areas, however. Therefore, the procedure used was to approximate the elliptical source area by square sources and then sum the solutions of all the squares. The velocity field induced by the uniform distribution of sources over a rectangular element whose comers are located at $\left(\eta_{1}, \zeta_{1}\right),\left(\eta_{1}, \xi_{2}\right),\left(\eta_{2}, \xi_{2}\right)$, and $\left(\eta_{2}, \zeta_{1}\right)$ in the $y-z$ plane is given by the following expressions (page 12 of Reference 12);

$$
\begin{gathered}
u(x, y, z)=\frac{q^{\prime \prime}}{4 \pi}\left[\tan ^{-1} \frac{\left(z-\zeta_{2}\right)\left(y-\eta_{2}\right)}{x \eta_{3}}+\tan ^{-1} \frac{\left(z-\zeta_{1}\right)\left(y-\eta_{1}\right)}{x r_{1}}\right. \\
\left.-\tan ^{-1} \frac{\left(z-\zeta_{1}\right)\left(y-\eta_{2}\right)}{x x_{2}}-\tan ^{-1} \frac{\left(z-\zeta_{2}\right)\left(y-\eta_{1}\right)}{x x_{4}}\right],
\end{gathered}
$$

$$
\begin{gathered}
\because(x, y, z)=\frac{q^{\prime \prime}}{4 \pi} \ln \left\{\frac{\left[r_{3}+\left(\zeta_{2}-z\right)\right]\left[r_{1}+\left(\zeta_{1}-z\right)\right]}{\left[r_{4}+\left(\zeta_{2}-z\right)\right]\left[r_{2}+\left(\zeta_{1}-z\right)\right]},\right. \\
w(x, y, z)=\frac{q^{\prime \prime}}{4 \pi} \ln \left\{\frac{\left[r_{3}+\left(n_{2}-y\right)\right]\left[r_{1}+\left(n_{1}-y\right)\right]}{\left[r_{2}+\left(n_{2}-y\right)\right]\left[r_{4}+\left(n_{1}-y\right)\right]}\right\}, \\
\text { where } r_{1}=\sqrt{x^{2}+\left(y-\eta_{1}\right)^{2}+\left(z-\zeta_{1}\right)^{2}}, r_{2}=\sqrt{x^{2}+\left(y-\eta_{2}\right)^{2}+\left(z-\zeta_{1}\right)^{2}} \\
r_{3}=\sqrt{x^{2}+\left(y-n_{2}\right)^{2}+\left(z-\zeta_{2}\right)^{2}} \text { and } r_{4}=\sqrt{x^{2}+\left(y-\eta_{1}\right)^{2}+\left(z-\zeta_{2}\right)^{2}} .
\end{gathered}
$$

These equations exhibit a characteristic which permits a relatively simple approach to the solution as follows;
$u(0, y, z)=\frac{q^{\prime \prime}}{2}$ for any point on the rectangular surface area and
$u(0, y, z)=0$ for any point not on the rectangular surface area.
In order that the $y-z$ plane represent a surface across which no mass flows, that is, a flat plate, the round jet flow and the flow due to the sources on all the square elements (whose sur. approximates the elliptical area) must be superimposed such that 1 : is zerc or $y-z$ plane. This condition is satisfied by setting the strengih of the surface distribution, q ", over each square element equal to

$$
q^{\prime \prime}=2 U_{\infty} \sin \theta
$$

With the surface :ource strength per unit area so chosen, the U-component of velocity is identically zero over the entire $y-z$ plane at $x=0$. The V-component of velocity of the superimposed flow in the $y-z$ plane at $x=0$ over the elliptical area is given by

$$
V(0, y, z)=U_{\infty} \cos \theta+\frac{V_{\infty} \sin \theta}{2 \pi} \sum_{k} v_{k}(0, y, z)
$$

where the summation is taken over each of the square areas comprising the elliptical area. The W-component of velocity of the superimposed flow in the $y-z$ plane at $x=0$ is given by

$$
W(0, y, z)=\frac{U_{\infty} \sin \theta}{2 \pi} \sum_{k} w_{k}(0, y, z)
$$

The pressure on the plate over the elliptical area is then given by Bernoulli's equation,

$$
p(0, y, z)=p+\frac{1}{2} \zeta_{\infty}\left\{[V(0, y, z)]^{2}+[w(0, y, z)]^{2}\right\}
$$

Since p_{∞} is atmospheric pressure, Bernoulli's equation can be written in terms of a pressure coefficient (equivalent to the nondimensionalized pressure) c_{p}, as

$$
\begin{equation*}
c_{p}=\frac{p-p_{\infty}}{\frac{1}{2} \mathrm{U}_{\infty}{ }^{2}}=\frac{1}{U_{\infty}^{2}}\left\{\mathrm{~V}^{2}+\mathrm{w}^{2}\right\} \tag{17}
\end{equation*}
$$

A computer program was written to calculate the pressure coefficient. A listing is contained in Appendix A. Figure 29 shows the variation of the pressure coefficient calculated along the major axis of the elliptical impact area and plotted as a function of r, the projection of y in the $y-z$ plane at $x=0$ onto a plane perpendicular to the axis of the jet, (i.e. $r=y \sin 0$). The pressure coefficient at any \quad : int on the surface can be readily calculated. Since the model does not contain the vorticity which undoubtedly occurs, it does not reliably predict coefficients near the boundary of the jet $(y=a / s i n 0)$. However, over the central portion of the jet the predictions should be reasonably accurate.

3.2.4 Flow Termination

During impact, bird material is "turned" near the target surface. As the fluid nears the target surface the velocity decreases and the local pressure increases. During steady flow a pressure field is set up in the

Figure 29. Pressure coefficient ($2 \mathrm{P} / \rho \mathrm{v}^{2}$) versus nondimensional radius along the major axis of the impact for oblique impacts.
fluid. As the end of the projectile enters this pressure field, the field is disrupted due to the intrusion of a free surface (the end of the bird). Steady flow no longer exists and the pressures at the impact surface decrease. The pressure decrease continues until the end of the projectile reaches the surface of the plate. At this time the impact event is ended. The total duration of the impact is given by the expression $\tau=h / v_{0}$ as was found in Section II for impact forces.

3.3 EXPERIMENTAL RESULTS

Over sixty bird impact pressure data shots with 60 g birds and over fifty shots with 600 g birds were obtained at the AFML/UDRI facility. Normal (90°), 45°, and 25° impacts were obtained. Over seventy impacts were made with birds on the pressure plate at the AEDC facility. These birds ranged in mass from approximately 1 kg to approximately 4 kg . of these latter shots, approximately ten provided useful quantitative
information. A lack of control over bird orientation at impact precluded meaningful interpretation of the remaining data shots.

All the data was collected together at the AFML/UDRI facility where it was reduced and analyzed. Measurements of peak pressure, steady flow pressure, and pulse duration were obtained from the records. The results of these measurements, together with comparisons to the theoretical results derived in Section 3.2, are presented in the following sections.

3.3.1 Initial Impact Pressures

In Section 3.2.1 it was pointed out that the highest pressures generated during the impact should occur during the initial stages of the impact. The pressure should rise to the impact, or Hugoniot, pressure. This pressure was calculated by Wilbeck ${ }^{[6]}$ using a bird model consisting of gelatin with 10 percent porosity and is shown in Figure 30. The initial impact pressures agree very well with the calculated pressure for large birds (i.e., 4 kg). However, the results for small birds show significant departures from prediction. The discrepancy appears to increase with decreasing bird size.

Figure 30. Initial impact (Hugoniot) pressures versus impact velocity for normal impact.

As pointed out in Section 3.2.1, the duration of the shock pressure is directly proportional to the bird diameter or radius. Therefore, larger birds produce high pressures for longer duration than do small birds. The limited bandwidth of the transducers (100 kHz) results in a significant attenuation of the measured signal. for the short pulse durations which might be expected for small birds. It is, therefore, not entirely surprising that the full shock pressure is not detected in small biri impacts. However, the full shock pressure almcst certainly occurs, aithough the duration is extremely short.

For oblique impacts, the shock pressure expected is that which corresponds to the normal component of impact velocicy. The experimentally measured results and theoretical predictions are shown in Figure 31. Again, the results for large birds show good agreement with the prediction. The duration of the impact pressure was so short for small birds that reliable measurements of peak pressure could not be made. It is notable that at very low angles the impact pressure approaches the steady flow pressure and no impact spike would be expected. For 25° impacts, the impact pressure spike was much less pronounced than for 90° impacts. No reliable measurements of impact pressure were obtained at 25°.

Figure 31. Initial impact (Hugoniot) pressures versus impact velocity for 45° impacts.

3.3.2 Impact Pressure Decay

As was pointed out in Section 3.2.2, it is not possible to caiculate the details of the decay process unless the shock release properties of the bird material are known. As those properties are not known, the decay process cannot bf calculated. However, the time taken for the release waves to completely overtake the shock front can be calculated. From these considerations, a critical length was found. For birds shoreer than this critical length the shock pressure decay process never reaches steady flow vaiue. For birds longer than this critical length steady flow must be established. Therefore, the critical length provides at least a first order approximation of the time at which the decaying shock pressures should reach the steady flow values. As several reflections of the release wave are probably required to establish steady flow, a precise value for this time cannot be determined, For birds striking end-on (that is the axis of the bind is parallel to trajectory) the length to diameter ratio varies from approximately two to approvimatuly three. The results of Section 3.2.2 indicate that this should permit establishment of the steady flow process. Ohservation of a large number of bird impact pressure records indicate that for normal impact steady flow is generally established within half the impact duration.

For sidemon impacts, the effective length to diameter ratio of a bird is about 0.3 to 0.4 . This is less than the critical bird length derived in Section 3.2 .2 , and steady flow would not be expected to ownr. A number of impacts at the AEDC facility were determined to have siruct side-on. For these cases no steady pressure rigion was observed in titut pressume records.

3.3.3 Steady Flor Pressures

For virtually all the impacts conducted on the pressure plate at the AFML/UDRI facility, a steady pressure region In the pressure recond could ba identified. In only three normal impact shots at AEDC was the orientation of the bird sufficiently axial that steady state pressures were established during impact. The center of impact data for normal impacts was collected and eompared to the stagnation pressurns as caloulated in Section 3.2.3. The results are shown in Flgure 32. The conter of Impact pressures are extremely close to the predicted atagnation prossure. Thute does not appear to be any significant difference between the small

Tigure 32. Steady flow pressurea versus impact volocity at center of impact for normal (90°) impacts.
bird (60 g) and medium size (620 g) birds. The limited large bird data also shows good agreement.

The off-axis steady pressure data was normalized to the theoretical stagnation pressure. The results are averaged and are displayed in Figure 33. The large error bars on the mean vasues of pressure are indicative of the semter in the data. This seatten is most probably due to lack of cylindrical symmetry in real birds and to real variacions in bird propertios from bird to bird. Tha mean values agree reasonably well with the steady fioz predicilons from Section 3.2.3.

There appears to te an experimentally significant diference in presaure distribution between medium size birds (600 g) and the small birds $(60 \mathrm{~g})$. There was insufficient large bird data (1 kg and above) to establish maningful average values for the pressure distribution.

The results for oblique impact were treated in the same manner as the normal impact case. The moasured pressures were normalized to the full stagnation pressures (the pressure coefficient). Pressures were measured along the major axis or the impact and along the minor axis (as shown in Figure 27). The cesults for the mafor axis are shown in Figure 34 and for

Figure 33. Steady flow nondimensional pressure distribution for theyal itmacts.

Higure 34. Steady flow nondimensional prossure diatr ibution along the major axis for oblique impact.
the minor axis in Figure 35. Also shown on the figures are the theoretically predicted distribution (pressure coefricients) as described in Section 3.2.3.2. The agreement between the predictions and the measured values is very good over the central portions of the flow. Near the edges (nondimensional radius of one) the agreement is not so good. The potential flow solution does not adequately model the vorticity effects at the edges. However, the leading edge effects are probably of secondary importance in structural modelling and the potential flow model described in Section 3.2.3.2 should provide an extremely good prediction of the steady flow regime of bird impect. Further work on the theoretical model should be conducted to incorporate vorticity and compressibility effects.

There are very significant differences in the pressure distribution for the two angles. At 45° the full stagnation pressure is reached, while at 25° the maximum pressure for both cases occurs very close to the edge of the bird (nondimensional radius of one). The theoretical results (Figure 26) show that very little obliquity (75°) moves the stagnation point almost out to the edge. The pressure falls almost linearly from the stagnation point down to zero on the obtuse (or downstream) side of the impact. The scatter in the data is large, but there appear to be no significant neasured diffferences between 60 g and 600 g bird distributions. The scattar is probably due to the affects of lack of cylindrical symmetry in the impact, small variations in bird orientation, and variations in bird properties.

3.3.4 Flow Termination

The impact pressure should return to zaro when the end of the bird reaches tine plate. The duration of the pressure record should thus be given by the "squash-up" time, ℓ / v. This is only true at tho center of impact for nomal impacts. The duration off-centen and for oblique impacte can differ from the "squa :i-up" tima depending on the axact geometry of the bird and the location of the transducer. The durations of impact pressure records were read for a number of normal impacts and the results are displayed in Figure 36. The impact duration is very close to the "squash-up" time and in agreement with the resuits found from Hopkinson bar tosting as reported in Section II.

Figure 35. Steady flow nondimensional pressure distribution along the minor axis for oblique impact.

Figure 36. Nondimensional duration versus impact velocity for normal impacts.

3.4 SUMMARY

In summary, the pressure measurements indicate that birds act as a fluid during impact. The pressure records consist of an initial high pressure associated with the one-dimensional impact shock stress in the bird. This pressure decays by radial release of the high shock pressures. A steady flow regime is established providing the bird length to diameter ratio exceeds a value of approximately one. The steady pressures finally decay to zero when the end of the bird reaches the plate.

The important features of bird impact pressures can be modeled, assuming the bird has material properties described by gelatin with approximately 10 percent porosity. The impact pressures can be calculated using the Hugoniot relation ($P=\rho v_{s} y$) for a mixture, together with the shock properties of gelatin. In oblique impact only the normal component of impact velocity contributes to the shock pressure. Calculations of the shock release process indlcate that steady flow will be established if the length to diameter ratio of the bird (in the direction of impact) exceeds approximately one. Steady flow pressures and pressure distributions can be calculated using potential flow modelling. A detalled compressible model for normal impact was dovaloped by wilbeck ${ }^{[6]}$. The more difficult oblique impact case was successfully analyzed using an incompressible model.

Many of the physicai features of bird impact reported here were incorporated in the numerical model of Ito, et al. [4] . However, Ito, at al., use watar properties for the bird model. The pesudt is that shock pressures are ton high and the decay process probably differs from roai birda (which appear to have significant porosity). The stoady flow regime is relatively insensitive to porosity and Ito's model should provide good results. The model maported by Ito, et al., shouid bo expanded to inelude the obilque impset case as described in this report,

EFFECTS OF TARGET COMPLIANCE ON BIRD LOADING

The experimental and analytical investigations reported in the previous sections of this report were concerned with bird impact onto rigid targets. The targets were not significantly moved or deformed during the impacts. This greatly facilitated the measurement and analysis of bird impact loads and such tests provided valuable insight into the bird loading process. However, aircraft transparencies are not rigid strustures under bird loading. The transparency can move and deform significantly during a bird impact. It is, therefore, necessary to consider the effect that windshield response, or compliance, has on the impact loading process.

An aircraft transparency may, in general, respond to impact in two distinctly different modes which are termed locally rigid and locally deforming. In the locally rigid case the windshield does not significantly deform in the local area of impact. The process is illustrated in Figure 37. However, the windshield does translate and rotate during impact (i.e., the relative impact velocity and impact angle change during the impact process). This can result in significant changes in the impulae imparted to the windshield, the duration of the forces, the magnitude and direction of the force, and magnitude of the prossures exorted on the windshield.

Figure 37. Locally rigid windshield response.

In the locally deforming case, the local region of impact undergoes significant deformation including local changes in angle and shape. This case is illustrated in Figure 38. The windshield forms a "pocket" around the bird. This "pocketing" behavion results in greatly increased local loading and local defomation. The phenomena displays unstable behavior; the impact force produces local deformation and the local deformation results in higher impact forces. In addition, this "pocketing" results in greatly increased momentum transfer to the windshield. This increased nomentum transfer poses a threat to the structural integrity of the windshield.

The remainder of this section treats in some detail the effects of both locally rigid and locally deforming windshield response.

4.1 LOCALLY RIGID WINDSHIELD RESPONSE

Ir a locally rigid impact the impact velocity, impact angle, and location of impact may all change during the impact. The geometry of a locally rigid impact is defined in Figure 39. The bird is assumed to be a liquid and the center of mass is not deflected from trajectory during the impact. At some time after impact, the target surface has attained a velocity, v_{p}, and has displaced a distance, x, normal to the original target surface. The center of impact has displaced a distance, y, in the phane of the undeformed surface. The surface has rotated from its initial angle, θ_{1}, to a new angle, 0 . The effects of these changes on various loading parameters will not be investigated.

Mgure 30. Locally daforming windshiold reaponse.

Figure 39. The geometry of a locally rigid impact.

4.1.1 The Impulse

The impulse imparted to a rigid target during impact is given by Equation (1):

$$
I=m v \sin 0 .
$$

The impulse transferred to a locally rigid targot can be readily doduced from Equation (1) by noting that the impulse ls simply equal to the normal component of incoming momentum. In addition, it should be noted, that the impulse transfer depends only on the rolative velocity between the bird and the target. Therefore, Equation (1) may be rewritten for a locally rigid targot as follows:

$$
\begin{equation*}
I=m\left(v \sin 0-v_{p}\right) \tag{13}
\end{equation*}
$$

where v_{p} is the plate velocity, on target velocity, nomal to its surface. As both v_{p} and 0 may vary during the impact. Equation (13) is only inerementally tiue. To evaluate the impulse in a particular situation, Equation (13) must be expressed in alfforentlal form and integrated over the duration of the lmpact. The impulse cannot be specified "a priorl" in a locally rigid impact.

4.1.2 The Impact Duration

In Section II it was shown that a bird behaves essentially as a fluid body during impact. The impact duration is thus given by the "squash-up" time, i.e., the time it takes for the bird to travel its own length. The duration may be thought of as the time it takes the bird to be "consumed" by the target. In a locally rigid impact, the length of bird, s, which is consumed in time, t, is given by the integral equation

$$
\begin{equation*}
s=\int_{0}^{t}\left(v-v_{p} / \sin \theta\right) d t \tag{14}
\end{equation*}
$$

Equation (14) is most easily understood by noting that $v-v_{p} / \sin \theta$ is simply the relative velocity between the bird and the target along the trajectory. For locally rigid impacts the concept of nondimensional time as developed in Section II must be modified. From Equation (14) it is apparent that the "squash-up" time is simply the time at which the length of bird consumed is equal to the total length of bird available. This quantity cannot be specified prion to the impact. A more significant measure of the progress of a locally rigid impact is the nondimensional length, s / ℓ, which is given by

$$
\begin{equation*}
s / \ell=v t / \ell-\int_{0}^{t}\left(v_{p} / \ell \sin 0\right) d t \tag{15}
\end{equation*}
$$

When the plate velocity, v_{p}, is 0 , this expression reduces to the nondimensional time as described in Section II. In a locally rigid impact, Equation (15) indisates the fraction of the bird that has been consumed at time, t, during the impact.

4.1.3 The Impact Force

With some modification, the rigid plate total force results from Section II may be applied to the locally rigid case. If the impact of the bird is considered to be a steady fluid flow process, then the instantaneous force exerted during the impact may be writton as

$$
\begin{equation*}
r=\rho A v^{2} \sin 0 \tag{16}
\end{equation*}
$$

where A is the cross-sectional area of the bird at any time during the impact. This assumption neglects the non-steady features of the impact, but can be adapted to include them empirically. Equatica (16) applies to the rigid target impact case and may be related to the average force of Equation (4) in Section II by noting that $\rho A=m / \ell_{\text {eff. }}$. Using this approach, the variation of force with time during the impact may be regarded as the variation of the cross-sectional area of the bird, A, with time during the impact. The generalized bird impact force-time profile shown in Figure 14 may then be considered as the generalized nondimensional impact area variation with time during the impact. In a previous section it was noted that the nondimensional time is better represented as a nondimensional length in locally rigid impacts. Therefore, Figure 14 can be applied to the locally rigid impact case by recasting it as shown in Figure 40 . It should be noted that Figure 40 is not intended to imply that the real variation of bird impact area with consumed length is given by this figure, but rather that the loading process can be empirically described in this manner. The nonsteady effects of impact, as well as the variations of area, are treated simply as variations of area.

Equation (16) applies to a rigid target and must be modified to properly account for locally rigid target effects. Equation (16) simply equates the force to the momentum flux incident on the target surface. The momentum flux incident on a locally rigid target surface may be derived by considering Figure 39. The relative velocity of impact normal to the target

Figure 40. Nondimensional impact area versus nondimensional consumed length.
surface is $(v \sin \theta)-v_{p}$. Therefore, the momentum flux at the surface is given by $\left[(v \sin \theta)-v_{p}\right]^{2}$. This momentum flux acts on an area which is the area of the bird projected on the target surface, or, $A / \sin \theta$. Therefore, the momentum transfer rate, or instantaneous force, exerted on the target is given by

$$
\begin{equation*}
F=A\left[(v \sin \theta)-v_{p}\right]^{2} / \sin \theta \tag{17}
\end{equation*}
$$

This equation describes the force exerted on a locally rigid target during the impact. The area of the bird, A, is considered to be a function of the nondimensional consumed length as shown in Figure 40. During a calculation, the nondimensional consumed length must be continually evaluated using Equation (15). The nondimensional area (and, therefore, the actual area, A,) may then be derived using Figure 40. The area is then substituted into Equation (17) to provide the remaining unknown necessary to calculate the impact force.

The direction at which the force is applied changes continuously during the impact. However, it is always normal to the target surface and this may be readily determined during the calculation.

The location of the application of the force also changes during the impact and this can be a significant effect. As shown in Figure 39, when the target surface deflects a distance, x, the point of impact translates a distance, y. If the rotation of the target can be neglected, then:

$$
y=x \cot 0
$$

If the targot also motates and 0 changes, then the position of impact must be computed by projecting the trajectory onto the surface of the target. In general, the position of impact will be a complicated function of displacement, x, and angle, 0 .

4.1.4 Impact Prossure

Impact pressures are modified by locally rigid target response in a manner quite similar to that of impact forces. The magnitude, direction, distribution, and location of the impact pressures are all modified by the dispiacement and rotation of the target surface. Each phase of the impact process, as described in Section III, is modified by the response of the targot.
4.1.4.1 Shock Pressures

The initial shock pressure generated by the bird at impact is related to the shock properties of the bird and the target. The results reported in Section III were all conducted on steel targets. The impedence of steel is much much higher than that of birds. Therefore, the shock pressures reported were insensitive to the exact properties of the target. For typical windshield materials, the shock properties of the windshield can have a significant effect on the peak pressures exerted. A simple correction may be made as follows ${ }^{[13]}$:

$$
\begin{equation*}
P_{h}=\frac{\rho v_{s} v}{1+\left(\rho v_{s} / t v_{s_{t}}\right)} \tag{19}
\end{equation*}
$$

where v_{s} is the shock velocity in the bird, ρ and c are the density and sound speed in the bird and ρ_{t} and v_{s} are the density and shock speed in the target. The pressure, P_{h} is the Augoniot impact pressure which occurs early in the impact. As can be seen from Equation (19), as the shock impedance (ρv_{s}) of the target approaches that of the bird, the peak pressure approaches one-half the pressure produced by impact on a rigid target. For example, for velocities studied the shook pressure of a bird on polycarbonate is approximately 0.6 to 0.7 of the rigid target impact value. Equation (19) may be applied to oblique impacts by substituting the initial normal component of velocity, $v \sin \theta$, for the velocity, v, and by using a shock velocity corresponding to the normal component of velocity. The target will undergo negligible gross motion during this initial stage of impact so that no further correction to peak pressure is required.

4.1.4.2 The Decay Process

The decay of the peak shock preseures during the impact will be accelerated in a locally rigid impact case. The motion of the target will provide additional rolease to the high pressure material. The details of the decay process cannot be specified independently of target motion. Realistic modeling of this process would have to be done using a finite difference formulation of the problem as outiined by Ito, et al ${ }^{[4]}$.

4.1.4.3 The Steady Flow Regime

In the steady flow regitwe of the impact, the pressures are a function of the impact velocity and the impact angle. The formulation
outlined in Section III can be applied to the locally rigid target case by simply substituting the relative velocity, $v-v_{p} / \sin \theta$, for the impact velocity, v. The distribution of pressure at any time during the impact must be calculated using the impact angle at that time. The duration of the impact must be scaled as described in Section 4.1.3, using the nondimensional consumed length rather than the nondimensional impact time.
4.1.4.4 The Termination

The pressure terminates when the nondimensional consumed length reaches one. This follows directly from the rigid impact case outlined in Section III and corresponds to the time at which the end of the bird reaches the target.
4.1.4.5 Direction and Location of Impact Pressures

The impact pressures are always applied normal to the target surface. As the target rotates during an impact, the direction of application of the pressures also changes. The location of the center of impact changes as described in Section 4.1.3 for the impact force. During computation provision must be made for the impact pressures to be relocated and redirected during the calculation.

4.1.5 Summary

For a locally rigid impact the rigid target loading models, as described in Section II and III, must be modified to account for the variation of the relative velocity, and location of the impact during the loading process. Providing the target remains rigid in the area of impact, a.ll the important effects of target motion can be modelled as described in the praceding section.

4. 2 LOCALLY DEFORMING RESPONSE

The case in which the target undergoes substantial local deformation during impact is considerably more difficult to analyze than the locally rigid case. Some features of the locally deforming case are lllustrated in Figure 41. In contrast to the locally rigid case, there is gross local deformation in the region of impact. The impact angle and relative impact velocity is a strong function of position within the impact area. The flow of the bird on the target is a strong function of the exact defomation of the target. Because of this very close coupling between the loading and the response, it is probably not possible to specify the loading and

Figure 41. A locally deforming target.
calculate the response. The two processes (i.e., loading and response) are so mutually dependent that they must both be treated simultaneously in a realistic way. Such an analysis is beyond the scope of this program. However, an exploratory study of the effects of local deformation was undertaken and the results are described in this section.

4.2.1 Local Deformation Effects

The presence of local deformation during an impact would be expected to have an effect on momentum transfer, force, duration, and the rise time of the force. Local defomation would also affect pressures. However, pressures would be extremely difficult to calculate and even more difficult to measure. Attention was, therefore, restricted to impuise, force durations and rise times.

Local deformation, such as that depicted in Figure 41, results in bird material being thrown out of the impact area at higher angle then would occur had the target remained locally rigid. Therefore, the impulse transforred to the targot will be greater than that which would be transferred to a locally nigid target. In addition, the direction of application of the total force is now more difficult to detemine. However. it is unlikely to be normal to the original undeformed target surface. As the pocketing phenomena becomes more pronounced the momentum transfor direction will approach the original bird trajectory.

As the angle through which the biri is deflected by the local deformation increases, the forces exerted during impact might also be expected to increase. The force is a function of the average angle through which the bird is turned. As this angle increases during the impact, peak force might be expected to occur later in the impact on deformable targets than on rigid targets. Therefore, the rise time should increase. The target effectively displaces during the impact and the duration of the loading should also increase.

In summary, when compared with the rigid target loading, local deformation should increase impact forces, increase impulse transfer, increase duration, and delay the rise to peak force. To investigate some of these effects, an experimental program was undertaken.

4.2.2 Experimental Techniques

The experimental investigation of locally deforming target phenomenon is very difficult. The large elastic and plastic deformations associated with target response preclude the use of conventional instrumentation techniques such as strain gaging and pressure twansducer measurements. Measurements of deformation and displacement which can be made are of limited use in investigating the loading effects of interest In this study. It was, therefore, decided to investigate the use of a Hopkimson bar eschnique to obtain locally deforming target loading information. The technique employed is illustreted in Figure 4*. The principle of operation is identical to that dese ibed in seation 2.1. However, rathar than using a bar to senee the impact force, a tube is employed. A flexible target is mounted on the tube as shown in Pigure 42. The targot plate is Impactiss centrally and permitted to deform during the lmpint. The loads transenitced via tho plate to the end of the tube are transmited down the tube as a strain pulse. The strain is monitored with strain gages and pacorded on an oscilloscope. Usine the known cross-3actlunal ake of the tube and the modntus of the tube material, the atrain-time yooordss an be
 impulse, peak fotce, dunation, and rise fow wer obsirivi A photcgraph of the tuba installed on the range is atonen in esgure

Figure 42. A Hopkinson tube.

Figure 43. The Hopkinson tube in place.

The tube employed had a 15.24 cm OD and a 22.7 wall thichoess. It was made of aluminum and was 4.87 m long. Strain gages were piaced at locations 76 cm and 152 cm from the impacted end. One end was cut off perpendicular to the tube axis and ussa for normal impacts, the other end wis cut at 45° to the tube axis and was employad for oblique impacts.

Figure 44. Nondimensional impulse transfer versus impact velocity for normal impact.

The 6.35 mm thick disk results display quite surprising behavion. The deformation of these thin disks was much greater than that for the thicker disks and the impulse augmentation might have been expected to be significantly greater than that recorded for the higher velocity tests. At high volocities the measurod impulse transforved appoarod to be exactly equal to the incomirg nomentum. The large deformation and pocketing of the plate "caught" the bird and provented any radial flow, oven at the highest veloaities. The bird was recovered from these tests intact. An impact on a rigid plate at the same velouity would have complately disintegrated the bird.

For nomal impact on a flexible plate, such as polycanionate, the impact phenomena appeared to be extremely velocity sensitive. At low velocity where doformation is negligible the plate behaves essentially as a rigid plate and the nondimensional impulse transfer is approximately one. As the velocity increses, plate deformation becomes limportant, bind material is thrown back along trajectory and the impuise transfer is augwanted. As velocity is increased further and pocketing becomes more ronounced, the bird is "caught" and impulse transfer once again returns
to simply the impact momentum. If impact velocities were increased, perforation would occur and momentum transfer would drop.

The nondimensionalized duration for both 6.35 mm thick and 12.70 mm thick plates is displayed in Figure 45. There appears to be no significant difference between the thin and thick plates. At low velocity the nondimensional pulse duration is very close to one, the value for a rigid plate. However, as velocity increases, the pulse duration increases to a value of over two. The deformation of the plate has lengthened the time of application of the force by a factor of over two.

The peak force was measured and nondimensionalized as described in Section II. The results are displayed in Figure 46. At low velocities the nondimensionalized peak force is approximately 2.5 for both the thin and thick plates. This value is slightly higher than the rigid plate results recorded in Section II. However, the rigid plate results also displayed a trend to higher values at low velocities. At high velocities rigid plate results indicated a nondimensional peak force of approximately 2.0. The flexible plate results displayed in Figure 46 show a marked drop in the nondimensionalized peak force at high velocities. The thin plate values dropped to approximately 0.9 at $250 \mathrm{~m} / \mathrm{s}$ while the thick plate results dropped to approximately 1.4 at $250 \mathrm{~m} / \mathrm{s}$. These values are significantly below those for rigid plates.

The rise time of the peak force was also measured and nondimensionalleed as deseribed in Section II and the results are displayed in rigure 47. At low velocities the rise time is close to that reported for rigid plates (i.e., wo.2). As the velocity is increased an abrupt increase in the rise time occurs at $2250 \mathrm{~m} / \mathrm{s}$ for thin plates and at $2275 \mathrm{~m} / \mathrm{s}$ for the thick plates. Values of the nondimensionalized rise time at high velocities exceed one. The deformation of the target disk, therefore, dolays the generation of the peak force and lowers its magnitude.

As the displacement was obviousiy affecting the generation of the peak force, a comparison of the rise time of the force to the time to peak displacement was made. The results are shown in Figure 40. The thin plate results whow that at the higher velocities the riso time begins to increase. Proamatalv at surficiently high velocities peak force will occur at maximum displacament and the rise time will be equal to the time to peak displacement. The thicker plate results do not display this trend even at the highest velocities tested. This is consistent with the lower deflectlons obtained with the thick plates.

Figure 45. Nondimensional impact duration versus impact velocity for normal impact.

Figure 46. Nondimansional peak force versus impact velocity for normal impact.

Figure 47. Nondimensional rise time versus impact velocity for nonnal impact.

Pigure 48. Rise time divided by the time to poak displacement versus impact velocity for normal impact.

4.2.3.2 Oblique Impact Results

Nine oblique impacts were conducted against the 6.35 mm thick polycarbonate disks using a sliced Hopkinson tube. The strain-time records were converted to force-time records and integrated to provide the impulse transfer. The results are shown in Figure 49. There is considerable scatter in the data which is most probably due to high order strain propagation modes excited in the tube by the highly oblique impact. However, the trends are quite clear and somewhat surprising. For high impact velocities the impulse transfer appears to be equal to the entire impact momentum of the projectile. This is a factor of two higher than what would be expected for a rigid target impact at 45°. At lower velocities there does appear to be a trend towards the rigid plate results as might be expected.

Figure 49. Impulse transfer versus impact momentum for 45° impacts.

Two mechanisms could be responsible for this remarkable impulse augmentation. The first mechanism might be that which was observed for the normal impacts, i.e., deep pocketing of the target which results in "catching" of the bird. A second mechanism could arise from deformation of the target. This would result in bird material flowing off the target surface perpendicular to the original trajectory.

Measurements of pulse duration were made and nondimensionalized as described in Section II. The results are displayed in Figure 50. As might be expected, at low velocities the nondimensionalized pulse duration is very close to the rigid plate value of one. However, at high velocities the nondimensionalized pulse duration increases to a value of over two at $275 \mathrm{~m} / \mathrm{s}$. The oblique impact records are very similar to that displayed for normal impacts and shows that target deformation significantly lengthens the duration of the impact.

Measurements of peak force were obtained and normalized as described in Section II. The results are displayed in Figure 51. Again, at low velocities the nondimensionalized peak force is very close to the rigid plate value of two. As the velocity increases the nondimensionalized peak force drops to a value of about 0.9 at $275 \mathrm{~m} / \mathrm{s}$. The oblique impact results are very similar to the normal impact results and illustrate that the target deformation reduces peak force exerted on the target.

The rise time of the peak force was measured and nondimensionalized as described in Section II, The results are plotted in Figure 52. Pigure 52 shows that even at low velocities, the nondimonsionalized riso time is well above that for rigid plates (0.6 as compared to 0,2). As the impact velority is increased the nondimensionalized rise time is not so abrupt as was observed for the normal impacts. However, it reaches values which are quite similar (1.2 at $275 \mathrm{~m} / \mathrm{s}$).

The displacement of the target disk was measured and the rise time of the peak force compared to the time required to reach maximum displacement. The results ave displayed in rigure 53. The oblique impact results in figure 53 show a much stronger correlation than the nomal impact results did. Even at low velocities the rise time appears to be identical to the time to peak displacement. This implies that the deformation of the target is the controlling factor in the generation of the peak force.

Figure 50. Nondimensionalized pulse duration versus impact velocity for 450 impacts.

Mgure 51. Mondimensionalized peak force versus impact veloolty for 45° impacts.

Figure 52. Nondimensional rise time versus impact velocity for 45° impacts.

Figure 53. Rise time divided by rime to peak displacement versus fmpact velocity for 45° impacts.

4.2.4 Summary

This series of exploratory experiments on locally deforming targets has demonstrated a number of very important features of this impact situation. Impulse transfer can be very significantly increased by local deformation of the target. This is especially true in oblique impacts where local deformation can result in the transfer of the entire impact momentum. The duration of the application of the impact force is significantly increased by local target deformation. Local target deformation produces a marked decine in the nondimensionalized peak force and a significant increase in the rise time. The impact forces are, therefore, spread out in time and reduced in magnitude by local target deformation.

SECTION V
 CONCLUSIONS AND RECOMMENDATIONS

From the extensive study of bird loading discussed in this report, a number of conclusions regarding bird loading and a series of recommendations for further work have been identified.

5.1 CONCLUSIONS

From the experimental and analytical investigations conducted in this program a number of conclusions may be stated.

1. Birds behave as a fluid during impact. This is fundamentally the most significant conclusion of the investigation. The identification of the basic fluid dynamic character of the bird impact process provides great insight into the loading phenomena.
2. There are four distinct regimes of fluid flow duning a bird impact. The first phase is the initial impact in which very high shock or hugoniot pressures are generated. The second phase involves the decay of these very high shock pressures down to stady fluid dynamic flow pressures. The third phase is the phase in which tha bird material flows steadily onto the target and equivalunt jet flow is ostablished. The fourth and last phate involves termination of the impact process and cho return of the impact forcas and pressures to 20 Fr .
3. The total foree exerted by a bind at impet may be rhmaeterized In teruts of the nomal component of imbact mamentum, the duration of the inpuct, and the average forces exarted during the impact. Theae quantities may be used to nondimensionalize the lafortant total force parameters of jeak forse. duration, and rise time. The nonditwatomalizations derived in this study successfuldy seale the imact forces and account for bind size. itmact velocity, and itapact angle.
4. The fluid behavior of a bird during imact can be explained in terpes of a rouphly right circular cylindricai body composed of gelatin with a ton pencent air powosity. This material model and geomstry successfully predicts impact pressures, characteristic impact pressure decay times, sithady flow pressures, and pressure durations.
5. Bird orientation at impact can have important effects on the loading. Angle of attack (projectile yaw) effectively lowers the length-to-diameter ratio of the bird and can affect the impact pressure decay process and the steady flow regime.
6. Target compliance has very significant and important effects on impact loads. A computational scheme to account for locally rigid target effects has been derived. Exploratory experiments on locally deforming targets have demonstrated that local deformation has very important effects on impact momentum transfer, impact loads, and impact durations.

5.2 RECOMMENDATIONS

From this work a number of recommendations for future work have been identified.

1. Large bird (1 kg and above) impact data is extremely limited. As the current standard Air Force qualification bird size is 2.8 kg for windshields, the data base should be extended to include larger bird sizes. Although bird scaling laws were identified and investigated in the current study, extension of the data base to 4 kg biyds would greatly increase confidence in these scaling laws.
2. The inadvertent introduction of angle of attack into the AEDC pressure data has identified orientation as a possibly very important Impact parameter. Angle of attack can increase peak and average forces by a factor of at least two while reducing durations by about the same factor. Whereas axial lmacts almost always produce a regime of steady flow, side-on impacts rarely produce steady flow. The effects of orientation at impact should be more carefully and systematically investigated. An attempt should be made to determine under what conditions axial inpacts are the most severe and under which conditions slde-on impacts are the most severe. If side-on impacts are the most severe, under any impact conditions of Interest to eransparency design, then lmpact loads in the side-on orientation should be investigated and characterized in a similar manner to that reported here for axial impacts.
3. The development of a standard Air Force substitute bird for use in development and possibly qualification testing should be pursued. The current investigation has shown wide variation in every parameter of impact loading that was measured for real birds. These variations are undoubtedly due to real variations in bird material properties, bird structure, and bird geometry. These variations are beyond the control of the experimenter or test engineer. The demonstrated variations can be very large and represent an unacceptable and uncontrollable test variation. In contrast to real birds, the substitute bird materials that were briefly examined in this program displayed highly repeatable loading. This repeatability offers very significant advantages in the development and qualification of transparencies. Furcher work is required to more carefully investigate and document the properties of candidate substitute bird materials such as gelatin with ten percent air porosity. The effeets of substitute bird geonetry also require investigation,
4. A careful substituta validation progran should be undurtaken. Heasurements of inpact loats provide detalled knowledge of the impact process and accurate quantitative guidarea in the fosmulation of a suitable substitute bird material and geometry, However, a careful program of substitute bird validation would be reçubecite eneare penemal accoptance
 comparisen, tests beqwom man birds and subntituto birds should ba con-
 bo quantifind and comparod, such a comparison would be gstential to ensure genenal accofitance of antatiato bird.
5. The axploristory work tandertaken lis this Invotigation on compliant targets should be extended. The formulation of the offocts of localiy rigid samgets on lmpat loading shoul: be imslemented and syatomatically investigated. Tio sehatwe thould be modeled analytically and employed to predict the lipact responer of a simple structure representative of a transparency. The mensitlvity of the megponse of the structure to the details af the lading procest should be investigated. In addition, the predictions of the analysis should be compred to experimentally deriven valuns. If diserefencies occur, the source of those diserepancies should be identified. If the source is the loading model, the loading model should be appropriataly modified to eliminate the discrepancy.
6. The locally deforming target investigation should be greatly extended. A detailed analysis of the Hopkinson tube specimen should be undertaken. This analysis should be used to investigate in greater detail the behavior of the target during impact. The range of phenomena whi h occur during local deformation should be investigated more extensively. The process of "pocketing" and the impact conditions over which it occurs should be investigated and carefully documented. The very difficult task of characterizing the local deformation and "pocketing" phenomena should be begin. The task of characterization must be complemented by an effort to reduce the characterization to useable design data and methods.
7. The theoretical analysis of oblique impact pressure distribution should be extended to include vorticity and compressibility.

APPENDIX A
LISTING OE OBLIQUE JET ELOW PRESSURE DISTRIBUTION PROGRAM

```
        2 REM BJEHMAV 2/80/77 BIRD IMPACT PROELEM
        A REM STEADY FLOW OF A ROUVD JET IMPACTING ON AN
        6 REM OBLIQUE PLATE.
        B HEAD P,N
        10 Plep
        12 PRINT "NO. OF SOURCES="IP
        14 PRINT "NO. OF SOURCES ON Z=O ARE"IS
        18 DIM X(70),Y(70),Z(70)
        80 DIM R(70),S(70),H(70)
        22 J1=1
        23 J3=1
        24 FOR I=1 TO P1
        86 READ Y(1),Z(1),H(J)
        88 S(I)=Y(1)
        30 NEXT I
        32 PRINT "ANGLE OF PLATE (DEG)=";
        34 INPUT Al
        36 Al=A1/57.2958
        4 2 ~ T 1 = ~ T A N ( A I ) ~
        70 SleSIV(Al)
        72 U6=-SI
        75 V6=COS(A1)
        82 PRINT "X-DISTANCE IS";
        8 3 \text { INPUT XI}
    8 4 ~ J 2 = 1 ~
    8 5 \text { PRIVT}
    90 PRINT "I","X","Y","YSIN(A)","Z"
    95 PRINT "U","U","W","Q","CP"
    100 FOR Inl TO PI
    105 S(I)=Y(I)/SI
    11O NEXT I
    185 S5*S1/(2.*3.14159)
    130 FOR I=1 TO N
    135 1F JP>+2 TKEN 150
    140 Yl=S(1)
    145 21=0.
    150 U1=0.
    155 VI=0.
    160 W1=0.
    165 FOR Jml TO Pl
    166 H4=H(J)/2.
    167 H3=H4/S!
    170 B1.5S(J)-H3
    175 BE=S(J)+H3
    180 Cl=2(J)-H4
    185 CPu#(J)+H4
    190 DI=XI**2+(Y1-B1)**2*(21-C1)**&
    195 DI=SQR(DI)
    800 D2*x\**2+(Y1-B2)**2+(Z1-C1)**2
    8O5 DRWSOR(D2)
    810 D3=X1**R+(Y1-82)**2+(Z1-C8)**2
    215 D3mSQR(D3)
    220 D4*X1**2+(Y)-#1)**8+(Z)-C8)**&
    225 DAmSQR(DA)
    830 IF XI=0. THEN }86
    235 U2-ATV((Z1-C8)*(Y1-B2)/(X1*D3))
    240 U3"-ATN((Z)-C1)*(Y1-B2)/(XI*DE))
    245 U4=-ATV((Z1-C2)*(Y1-E1)/(X1*D4))
    &50 U5=ATN((Z1-C1)*(YI-B1)/(XI*D1))
    855 UL=U1+S5*iU2+U3+U4+U5)
    260 IF ABS(Z(J)%=O, THEN 335
*
```

```
    265 D5**1**2+(Y1-B1)**2+(Z1+C1)**2
    270 D5*SQR(D5)
    275 D6*X1**2+(Y1-B2)**2+121+C1)**2
    280 D6*SQRI D6)
    285 D7=X1**2+(Y1-B2)**2+(Z1+C2)**&
    290 D7=SQR(D7)
    295 D8=X\**2+(Y1-B1)**2+(Z1+C2)**2
    300 D8=SOR(D8)
    305 IF X1m0. THEN 335
    310 U2=ATN((Z1+C2)*(Y1-B2)/(X1*D7))
    315 U3:-ATN({Z1+C1)*(Y1-B2)/(X1*D6))
    320 U4=-ATN((Z1+C2)*\Y!-Bl)/(X1*D8))
    325 U5=AT.V(Z1+C1)*(Y1-B1)/(X1*D5))
    330 U1=U1-S5*(UZ+U3+U4+U5)
    335 V2=D3+(C2-Z1)
    3AO V3=D4+(C2-Z1)
    345 v4*D1 + (Cl-21)
    350 V5=D2+(C1-Z1)
    355 V1=V1+S5*LOG((V2*VA)/(V3*V5))
    360 1F ABS(Z(J))=0. THEN 390
    365 VR=D7+(-C2-Z1)
    370 V3=D8+(-C8-21)
    375 V4=D5+(-C1-Z1)
    380 V5=D6+(-C1-Z1)
    385 V1=V1-S5*LOG((V2*V4)/(V3*V5))
    390 VR=Dl+(BI-YI)
    395 W3=D3+(B8-Y1)
    400 W4=D4+(BI -YI)
    405 W5=D2+(BZ-Y1)
    410W1=W1+S5*LOG((W2*W3)/(W4*W5))
    415 IF ABS(Z(J))=0. THEN 445
    480 W2=D5+(Bl-Y\ )
    485 W3=D7+(B2-Y1)
    430 W4=D8+\B1-Y1 j
    435 W5=D6+\82-Y1,
    440 WI=WI-S5*LOGC(|2*W3)/(W4*W5),
    445 NEXT J
    450 Y&=Y\*SI
    455 R2#Z1**2+\(Y) +XI/TI)*S\J**2
    460 IF R8*1. THEN 480
    465 IF XI=0. THEN 475
    47C 11m Ml+U6
    475 VI=V1+V6
    480 QI= U1 + + 2 +VI** 2+WI ##&
    4B5 O=SOR\O1.
    490 IF RZ> 1. THEN 505
    495 P5=1.-Q1
    500 60TO 510
    505 P5=1.-01
    $10 PRINT I.KI,Y1.YR.Z1
    515 PRINT Ul,VI,WI.O.P5
    580 PRINT
    585 NRXT I
    530 PRINT "COORDINATES AT UHICH FLOW IS NELDED="%
    535 INPUT X1.Y1.Z1
    540 J&=J&r!
    545 N=1
    550 6070 130
*
```

700	data	50,11
702	data .	.8.0... 2
704	DATA	-6,0.,.2
706	data	-4,0... 2
708	data	-2,0.0. 2
710	data	0..0... 2
712	UATA	-. $2,0 ., .2$
714	data	-. 4,0.,. 2
716	dATA	-.t,0.,.2
718	data	-.8,0...2
720	dATA	.95,0...1
782	data	-95,0...
784	data	-8,.2.. 2
726	data	-6, $2 \cdot .2$
128	DATA	-4,.2.. 2
730	DATA	-2,.2,-8
732	data	-0,.2,. 8
734	DATA	-.2,.2.,2
736	data	- 40.2
738.	data	-.6.02..8
740	data	-.8,.2..2
742	DATA	.8,.4..2
744	DATA	- $6, .40 .8$
714	DATA	-4,.40.8
748	dATA	-2,.4.. 2
750	data	0.1.4..2
758	DATA	-. $2, .40 .8$
754	DATA	--4,44.02
756	data	$\cdots 6,44.12$
758	dATA	-.8.040.2
760	data	-6,.60.8
762	DATA	- $4, .60 \cdot 8$
764	data	-2,06,.2
766	data	0...6,.8
768	data	-. $2, .6, .8$
710	data	- 4, 6\%, 2
778	jata	-. $6, .60 .8$
774	data	-4,.8.02
776	data	-2, 8, -2
778	UATA	0.0.8.-8
780	DATA	--2,.8,.8
788	DATA	-.4, 8, 8 . 2
784	data	.95,.1..1
786	DATA	-95..1..1
788	DATA	-75, $55 . .1$
790	data	--750.55, -1
798	DATA	-55,.75,.1
794	DATA	--55,-75.. 1
196	data	0.0.95,.1
798	DATA	. $1 \cdot .95 \cdot .1$
800	data	-1.0.95,.1

REFERENCES

l. Barber, John P., Taylor, H. R., and Wilbeck, James S., "Characterization of Bird Impacts on a Rigid Plate: Part I", AFFDL-TR-75-5, January 1975.
2. Peterson, R. L., and Barber, John P., "Bird Impact Forces in Aircraft Windshield Design", AFFDL-TR-75-150, March 1976.
3. Sanders, E. J., The AEDC Bird Impact Test Facility, Air Force Materials Laboratory Report No. AFML-TR-73-126, pp 493-514, June 1973.
4. Ito, M. Y., Carpenter, G.E., and Perry, F.W., "Bird Impact Loading Model for Aircraft Windshield Design", CRT-3090-1, California Research and Technology, Incorporated, December 1976.
5. Kinslow, R., "High Velocity Impact Phenomena", Academic Press, New York 1970.
6. Wilbeck, J. S., "Soft Body Impact", Ph.D. Dissertation, Texas A\&M University, May 1977, (to be published as AFML-TR-77-134).
7. Taylor, G. I., "Oblique Impact of a Jet on a Plane Surface", Proceedings of the Royal Society, Vol. 260-A, pp 96-100, 1966.
8. Milne and Thompson, Theoretical Hydrodynamics, Fourth Edition, Chapter 11, pp 283-310, Macmillan 1960.
9. Schlicting, Boundary Layer Theory, Sixth Edition, Chapter 5, pp 76-104, McGraw-Hill 1968.
10. Taylor, G. I., "Formation of Thin Flat Sheets of Water", Proceedings of the Royal Society, Vol. 259-A, pp 1-17, 1960.
11. Karamcheti, K., "Principles of IJeal-Fluid Aerodynamics", John Wiley \& Sons, New York 1966.
12. Kellogg, O. D., "Foundations of Potential Theory", Dover, Incorporated, New York 1953.

