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Abstract

Subordinate-level categorization typically rests on es-
tablishing salient distinctions between part-level character-
istics of objects, in contrast to basic-level categorization,
where the presence or absence of parts is determinative.
We develop an approach for subordinate categorization in
vision, focusing on an avian domain due to the fine-grained
structure of the category taxonomy for this domain. We ex-
plore a pose-normalized appearance model based on a vol-
umetric poselet scheme. The variation in shape and ap-
pearance properties of these parts across a taxonomy pro-
vides the cues needed for subordinate categorization. Train-
ing pose detectors requires a relatively large amount of
training data per category when done from scratch; using
a subordinate-level approach, we exploit a pose classifier
trained at the basic-level, and extract part appearance and
shape information to build subordinate-level models. Our
model associates the underlying image pattern parameters
used for detection with corresponding volumetric part lo-
cation, scale and orientation parameters. These parame-
ters implicitly define a mapping from the image pixels into
a pose-normalized appearance space, removing view and
pose dependencies, facilitating fine-grained categorization
from relatively few training examples.

1. Introduction

In recent years, the computer vision community has de-

voted extensive efforts toward the development of compu-

tational techniques for object recognition. These efforts,

however, have focused almost exclusively on the recogni-

tion of basic-level categories; relatively few have addressed

the broad continuum of fine-grained or subordinate cate-

gories which lies between the two extremes of individu-

als (e.g. face recognition, biometrics) and basic-level cat-

egories (e.g. Caltech-256 etc.).

In cognitive psychology, Rosch et al. [43] proposed that,

whereas basic-level categories are principally defined by
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Figure 1. Overview of the Proposed Approach. Basic-level cat-

egories are modeled by a configuration of volumetric primitives

or parts. Detection recovers these parts and enables application

of a pose-normalized appearance model for classification within a

taxonomy of subordinate categories.

their parts, subordinate level categories are distinguished

by the differing properties of these parts. This theory

suggests that the capacity to differentiate subordinate cat-

egories hinges not only on the successful recognition of

individual parts but, perhaps more particularly upon un-

derstanding how these part “properties” vary across sub-

ordinate categories. While recent advances on part-based

and attribute-based recognition are promising, general and

view-independent identification of part-specific attributes in

novel images remains somewhat elusive.

We tackle the problem of subordinate categorization,

proposing a solution that simultaneously addresses the chal-

lenges of localizing and describing the class-defining parts.

Our approach (see Figure 1) builds upon the Poselet detec-

tion framework recently proposed by Bourdev et al. [7, 8].

The strength that we see in this framework is that, in theory,



the model allows for specific types of training annotations to

be recovered from detections in test images. Our approach

is also motivated by Biederman’s theory of non-accidental

arrangements of geometric primitives [5, 6]. We use a sim-

ple configuration of volumetric primitives to represent the

basic-level class. Then, following Rosch et al., variations in

the shape, configuration and appearance of these volumetric

parts provide the basis for subordinate discrimination.

Our proposed approach contributes three main innova-

tions:

(i) a framework, based on Poselets, for detecting volumet-

ric part models, used both to find the basic-level object

and to convey information about part shape and con-

figuration;

(ii) a pose-normalized appearance model (similar to repre-

sentations such as Active Appearance Models [13] and

Morphable Models [33] used in the domain of faces)

which is used to effectively compare part appearances

in a test image to those of subordinate category train-

ing examples; and

(iii) a classification model, based on Stacked Evidence

Trees [39], which aggregates information about part

properties (shape, configuration and appearance) and

leverages the underlying taxonomy.

We demonstrate experimentally that the proposed approach

enhances the performance for view-independent recogni-

tion of subordinate categories.

2. Related Work
The problem of subordinate categorization has been

previously examined. Hillel et al. [2] performed experi-

ments on two subclasses for each of six basic categories

(e.g. Grand vs. Upright Pianos). Nilsback and Zisserman

[41, 42] considered subordinate categories of flowers (intro-

ducing the 17- and 102-category Oxford Flowers datasets),

whereas Martı́nez-Muñoz et al. [39] considered subordinate

categorization of stonefly larvae, a domain which exhibits

tremendous visual similarity. These approaches focused

primarily on discriminative learning of image features, an

approach that does not generalize for view-independent cat-

egorization of part-based objects that exhibit significant

pose variation.

There are various methods that have been proposed for

learning part-based object representations. Constellation

models [11, 48] and their computationally attractive vari-

ants [14, 27] are composed of a set of local part detectors

together with one or more probability density functions de-

scribing the parts’ relative locations. Felzenszwalb and Hut-

tenlocher [24] proposed an efficient framework implement-

ing Fischler and Elschlager’s Pictorial Structure model [29],

which represents an object by a collection of parts, intercon-

nected as if by elastic springs. This Deformable Part Model

has culminated in Felzenszwalb et al.’s recent work using

Latent SVMs [23] to discriminatively train class-specific

object detectors. Ferrari among others have explored the

use of contours in object representation [28]. While these

models perform well for objects that exhibit minimal artic-

ulation or pose variation, they are unsatisfactory for objects

with high intra-class variability or significant articulation.

There is also a growing body of work that seeks to lever-

age similarities between categories to improve recognition

performance. We consider two principal areas of interest:

first, class taxonomies or hierarchies and, second, attribute-

based models. Unsupervised hierarchical approaches range

from constructing latent topic hierarchies [3] to sharing

classifiers [1] or visual parts [45] to constructing efficient

classification trees [31, 38]. Each such approach provides

insights or advances toward efficiently solving basic-level

classification. These unsupervised approaches, however,

cannot be readily applied to the problem of distinguishing

closely-related subordinate categories which, by definition,

share a common set of parts and yet can have both subtle

and drastic appearance variation.

Techniques that leverage the semantic class hierarchy

should possess an inherent advantage over those that do not.

Supervised methods that utilize such information (as con-

tained in WordNet for example) include the sharing of train-

ing examples across semantically similar categories [26]

and combining information from different levels of the se-

mantic hierarchy [50]. Deng et al. [16] consider exploiting

the semantic hierarchy in the context of more than 10,000

categories (using the ImageNet [17] dataset).

A growing interesting in attribute-based recognition has

produced some notable advances. Representative work in

this area includes Farhadi et al. [19, 20], Kumar et al. [34]

Lampert et al. [35] and Wang and Forsyth [47]. These

techniques often learn discriminative models from attribute-

labeled training data and subsequently apply the learnt mod-

els to estimate the appropriate visual attributes present in a

test image. Attribute-based models are particularly well-

suited for addressing the one-shot learning problem (previ-

ously considered in [21, 22, 25, 40] among others). Note

that while these approaches are effective for the recovery

of object level attributes such as brown, furry, spotted and

even four-legged, they are generally insufficient to model

subtle differences between parts necessary for subordinate

categorization.

An interesting exception is the innovative work of Bran-

son et al. [9] which proposes improving recognition ac-

curacy by interleaving computation with attribute queries

made to a human subject. This method performs effective,

though not automatic, recognition in a large, 200-category

bird dataset [49]1. Additionally, in the context of subordi-

1Additional details on the CUB-200 dataset can be found in Section 6

which describes our experiments.



nate categorization, the attribute-based work of Berg et al.
[4] is also of interest as it attempts to discover (and localize)

visual attributes which can be used to differentiate classes

within a basic-level category (e.g. stiletto, running shoe,

sandal, etc.). This approach is somewhat limited, however,

in that its training data is segmented from any background

and also must be in a similar pose/orientation.

Before proceeding to describe our approach, we first visit

the theory initially put forth by Marr and Nishihara [37]

and later extended with Biederman’s geons [5] which sug-

gests that object perception is largely governed by recogni-

tion of three-dimensional parts in particular configurations.

While subsequent research has questioned certain aspects

such as view invariance [44], this theory of perception as

the search for arrangements of non-accidental structures has

survived. Biederman et al. revisited it in the specific context

of subordinate-level classification [6]. This theory provides

support for the proposed approach which models a basic-

level category with geometric primitives, and then couples

the statistical variation of the parts’ shape and arrangement

with their appearance to represent subordinate classes.

3. Subordinate Categorization in
an Avian Domain

We begin by considering more closely the problem of

subordinate categorization, highlighting some of the ways

it differs from basic-level categorization. The seminal work

of Rosch et al. [43] provided experimental evidence in sup-

port of a distinction between levels of abstraction within

a taxonomy: superordinate, basic, and subordinate (in de-

creasing order of inclusivity). Rosch et al. contend that

basic-level categories generally possess the highest cue va-

lidity P (category|cue), as superordinate-level categories,

being more inclusive, have fewer attributes in common and

subordinate-level categories share most of their attributes

with contrasting subordinate categories.

3.1. Basic- and Subordinate-Level Categorization

Objects within a superordinate category tend to share

common material and/or functional properties (sensory-

motor “affordances” to use Gibson’s terminology [30]). In

contrast, a (and perhaps the) key characteristic of categories

at the basic-level is shape. Rosch et al. include in their def-

inition of shape “the structural relationship of the parts of

an object to each other - for example, the visual representa-

tion of the legs, seat, and back of a chair and of the way in

which those parts of the chair are placed in relation to one

another.”

This notion of basic-level shape as a fixed set of parts in

an expected arrangement agrees strongly with Biederman’s

theory of Recognition-by-Components [5] which suggests

that a category may be represented by volumetric compo-

nents or primitives called “geons” (blocks, cylinders, cones,

etc.) in a particular configuration. While Biederman’s the-

ory presents a broad perspective on the human recognition

process (edge extraction and parsing, identification of com-

ponents, matching to known configurations, object identifi-

cation), we focus on this underlying representation of basic-

level categories: a configuration of volumetric parts.

This basic-level representation is intuitive for many nat-

ural categories. Objects within a category (dogs or trees, for

example) share a common set of parts in a more-or-less pro-

totypical configuration ({head, body, legs, tail} and {trunk,

branches, leaf canopy} respectively). Within each such cat-

egory, the configuration and “connectivity” of these parts is

generally highly-constrained.

Differentiation amongst subordinate categories (e.g. be-

tween sports cars and sedans or even between different

brands/models), however, must rely on more than simply

the presence and/or configuration of these parts. We thus

consider properties of these parts, both quantitative proper-

ties such as shape variation (aspect, relative size) or struc-

tural relationships (relative position/angle) and qualitative

appearance properties such as color, material and texture.

We have selected birds as the domain for our experi-

mental evaluation for a variety of reasons. There are sev-

eral basic-level categories for which vision datasets include

many subordinate classes. To our knowledge, none is larger

than the recently introduced Caltech/UCSD Birds dataset

(CUB-200) [49] which includes 200 distinct avian species.

While some categories are readily identified by their unique

shape, pose, or appearance, the distinctions between other

categories are very subtle. Due to highly variable appear-

ances and articulation, birds are also extremely challenging

to even detect, consistently the most difficult across the 20

categories on the Pascal VOC challenge [18]. Ultimately,

however, our decision to use birds as a domain in which

to explore subordinate visual categorization is principally

motivated by their suitability for our pose-normalized rep-

resentation.

3.2. Pose-Normalized Appearance Representation

Following Rosch’s prototype theory, we distinguish sub-

ordinate categories based on the geometric shape and pho-

tometric appearance properties of their basic-level parts. In

describing our appearance representation, we begin with a

basic-level object, represented as a constellation of volu-

metric parts. The detection process provides estimates for

each part’s respective parameters: location, scale and orien-

tation. The geometric shape and arrangement properties can

be used to influence categorization. Within the domain of

birds, taxonomic guidance by shape is intuitive; individuals

with minimal expertise in recognizing birds can correctly

assign a silhouette to its respective family (e.g. duck, heron,

hawk, owl, songbird, etc.).

As far as the volumetric part appearance properties, the



primary difficulty is pose variation relative to the camera, an

issue that complicates the comparison of part appearances

observed from different angles. To overcome this challenge,

we propose a pose-normalization approach leveraging the

detected volumetric parts. Fundamental to our approach,

this technique imposes a surface parameterization on the

volumetric part, the parameterization serving as a basis for

a non-parametric appearance representation. Comparisons

between images are made not in image space, but on a dis-

tribution of patch descriptors in the parameterized space of

estimated surface normals.

In our part model, we have two ellipsoids, one for the

head and one for the body. For a given ellipsoid, we use

the pose parameters: ellipsoid center (x,y), scale (cross-

section and axial aspect ratio) and orientation (represented

as a quaternion), to determine the transformation that maps

points on a unit sphere onto the ellipsoid’s surface. The in-

verse of this transformation allows us to map image points

(those within the ellipsoid’s silhouette) back onto the unit

sphere. Instead of parameterizing in the sphere’s space, we

randomly sample points on the sphere, transform them onto

the ellipse’s surface and compute their normals (using the

inverse transform), ensuring that they are visible (facing the

camera). As depicted in Figure 2, for each such point on the

ellipsoid’s surface, we find the tangent patch, a small square

patch on the tangent plane centered at the point. The corners

of the tangent patch are projected back into the image form-

ing a parallelogram. The parallelogram’s pixel contents are

warped onto the square fronto-parallel tangent patch (purple

in Figure 2) from which local appearance features are de-

rived (we use a color-SIFT descriptor aligned with the dom-

inant gradient orientation). We couple each patch’s location

and appearance by concatenating the normal vector (blue in

Figure 2) onto the extracted appearance descriptor (red in

Figure 2), yielding a pose-normalized appearance descrip-

tor, or PNAD. After sampling several such points/patches,

we accumulate a non-parametric representation for the vis-

ible portion of the ellipsoidal part.

4. Volumetric Object Localization

As suggested in the introduction, the primary require-

ment for successful differentiation of subordinate categories

is an ability to find parts and understand how these parts

vary (or alternatively, how the “properties” of these parts

vary) across different subordinate categories. To address

the problems of localizing and describing the class-defining

parts simultaneously, we adopt the Poselet framework re-

cently proposed by Bourdev et al. [7, 8], using an object

model comprised of volumetric primitives instead of 2D or

3D keypoints. We provide a brief description of the ap-

proach while highlighting changes needed for our volumet-

ric implementation.

Pose-normalized Appearance
Descriptor (PNAD)

Extracted Tangent Patch

Volumetric Ellipsoid

Figure 2. Pose-normalized Appearance Descriptor (PNAD). For

each ellipsoidal part, tangent patches (purple) with corresponding

appearance descriptors (red) are extracted at sampled points (blue

normal vector) and a Pose-normalized Appearance Descriptor, or

PNAD, is formed by concatenating the location and appearance

information.

4.1. Birdlets: Volumetric Primitive Templates

While the Poselet framework represents a basic-level

category as a constellation of 2D keypoints, our approach

creates “Birdlets”, templates based instead on solid volu-

metric primitives, consistent with Biederman’s notion of

basic-level categories as arrangements of 3D geometric

primitives. Where the former technique estimates the im-

age location of each keypoint, the utility of using volumet-

ric parts lies in its potential to estimate various geometric

quantities for each of the volumetric elements that collec-

tively comprise the basic-level category model. Examples

of such geometric attributes (or “properties”) include part

location, size/aspect, and orientation, and can encode in-

trinsic category characteristics such as the cross-section or

aspect of a bird’s body relative to the size of its head.

This volumetric model is particularly well suited for

birds, as the avian counterparts for interior mammalian

joints (e.g. shoulders, elbows, hips, knees) are often ob-

scured by a bird’s plumage and are thus very difficult to

specify in a typical image. Moreover, the surface or skele-

tal keypoints used in the original Poselet models capture

part proportions (e.g. cross-section, aspect) poorly. The

proposed model, therefore, includes visible point features

(beaktip, eyes, wingtips, feet, and tail) only to assist in con-

figuration alignment; the model remains focused, however,

on its two volumetric components. The bird’s head and

body are each represented by prolate ellipsoids (a sphere

stretched along one axis)with 7 parameters: image location

(x, y), 3D-orientation (a 3-DOF quaternion), and scale (cir-

cular cross-section and axial length). Where one could try

to model a bird with additional primitives, this simplified

version (or “partial version” as Biederman calls it [5, p.

131]) captures the essence of shape and enables the pose-

normalized appearance representation.



4.2. Training and Detection

The Poselet framework requires images annotated with

configuration landmarks (the 2D or 3D keypoint locations

in Bourdev et al.; the location, orientation and scale of vol-

umetric primitives in our case). These annotations serve to

help find training examples that share similar local pose or

configuration (the entire pose need not be similar, just the

part(s) or keypoints in question). In this manner, images

depicting similar poses relative to the camera are grouped

together.

Birdlet training takes a certain base training image and

determines a selection window overlapping some subset of

the volumetric parts (in our case, this could be the head,

the body or both). Next, the pose distance to each of the

other training images is computed, based on the similarity

in parameters for this subset of parts (i.e. can the two im-

ages be registered to one another such that the parts align

well). Specifically, this distance is computed using terms

for rotation (geodesic distance on 4D surface of quaternion

rotations), scale (computed on cross-section and aspect after

scaling to equal volume) and translation (generally ignored

as single ellipsoids can be brought into precise alignment as

can the dipoles formed by ellipsoid centers)

The n−1 closest training images are selected (we nomi-

nally use n = 50) and the similarity transform to align each

to the base image is determined. With this transform, the

parts now line up (as best as can be done with the 2D simi-

larity transformation) and the corresponding image features

should now be well aligned also. Now, for each of n training

images (the base and the n− 1 closest in terms of pose dis-

tance) which have been brought into alignment, the pixels

in the selected window are mapped into a canonical rectan-

gular patch (96× 64 in our case) and a HOG vector [15] is

extracted (the concatenation of HOG features across 8 × 8
blocks). These n HOG vectors are used as positive exam-

ples, together with a much larger set of negative HOG vec-

tors (extracted from other random windows in the training

data), are used to train an SVM classifier to discriminate this

birdlet from background patterns. Like Bourdev et al., we

use a retraining stage, collecting false positives predicted by

the initial classifier and feeding these as additional negative

examples in order to train the final classifier for this birdlet.

For detection, our birdlet classifier will evaluate patches

in a test image using a sliding window (scanning over lo-

cations and scales), responding with a probability of how

similar each scanned patch appears to the positive examples

that the classifier was trained with. Windows with high re-

sponse probabilities are labeled as activations for the given

birdlet.

The great benefit that we saw in the framework of Bour-

dev et al. is that the birdlets we train facilitate detection,

but moreover provide information about the pose or part-

configuration. A birdlet activation provides an estimate or

vote toward the parameters of those volumetric parts that

overlapped the birdlet’s selection window. Hence, whereas

other techniques typically learn a model on latent parts, the

birdlet model maps the image patterns within the selection

window to the semantically meaningful volumetric primi-

tives, inherently providing a level of visual correspondence

across instances (and views).

Many such birdlet templates are trained, binding images

cues from the training set with their counterpart volumetric

part annotations. The collection of birdlets is then applied to

a test image producing a set of birdlet activations. Each acti-

vation has an associated probability (derived from the corre-

sponding classifier’s response) as well as the distribution on

part parameters it acquired during training (this distribution

is a simple tabulation on the parameters of the overlapping

parts once aligned). The birdlet normalizes the distribution

relative to the height of the patch, such that for a given ac-

tivation window, the normalized location and relative size

information can be scaled up the activation window, thus

converting it to a prediction in the test image. Our imple-

mentation uses a non-parametric (kernel density estimate)

density to represent each ellipsoids 7-D parameter space.

The final step is to cluster the set of activations into one

or more final detections with the corresponding volumetric

part estimates. The approach that we have taken for this

clustering is to compute the pairwise consistency of activa-

tion, determined by symmetric K-L divergence between the

parameter distributions of the corresponding parts shared by

the activations’ respective birdlets. We take the pair of ac-

tivations with the highest consistency (and activation prob-

ability or response) and draw the volumetric parts’ parame-

ters from their distributions. In theory we can sample from

the combined distribution, however, in practice, we found

it effective to predict the parameters of each birdlet’s base

training image (for some birdlets, there are small clusters

of examples with similar pose, and thus only a few training

examples that share similar parameters).

5. Integrated Classification
Our approach uses an integrated classification tech-

nique based on Stacked Evidence Trees model proposed by

Martinez-Muñoz et al. [39]. The authors describe this ap-

proach as an alternative to dictionary learning, being instead

a way of “discriminatively structuring the evidence in the

training set”. This model relies on a Random Forest [10]

constructed such that all leaf nodes of the constituent ran-

dom trees are required to have a specified minimum number

(e.g. 20) of training samples. In this manner, when a query

sample is passed through a random tree and reaches a partic-

ular leaf node, the tree returns the distribution across class

labels corresponding to training examples that reached that

node. For a given image, features are extracted densely.

As these features are dropped through the trained random
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Figure 3. Partial Taxonomy for CUB-200. Two family subset (vireos and woodpeckers) from the CUB-200 Dataset.

forest, the class label distribution vectors are collected and

aggregated into an “evidence” vector, each feature effec-

tively voting for the category of the image. A second-stage

(“stacked”) multiclass adaboost classifier is then applied to

the class distribution evidence vector, producing the final

category prediction.

The Stacked Evidence Trees model was selected princi-

pally for the way that it complements the Pose-Normalized

Appearance model, providing an attractive solution to the

problem of varying surface visibility. In general, a volumet-

ric primitive has only half of its surface facing the camera,

the remaining half is not visible. As the visible/occluded

portions are different for each image (e.g. a bird facing

the camera vs. facing left vs. facing right), it is desirable

not only to map the visible portions into a common (pose-

normalized) space, but moreover, to effectively mask which

part(s) of this common space should be used for classifying

each given image.

As described earlier, the Pose-Normalized Appearance

space allows us to compare corresponding parts. Specifi-

cally, a PNAD (Pose-Normalized Appearance Descriptor)

feature couples local appearance information with param-

eterized surface location. However, due to the issue of

feature visibility, one cannot simply quantize this joint ap-

pearance/surface location space and use a bag-of-words ap-

proach for classification. The Stacked Evidence Tree on the

other hand becomes a highly-efficient retrieval tool, taking

a test feature and finding a set of training features (namely

those in the corresponding leaf nodes) that are similar both

in appearance and surface location, and ultimately returning

the class label distribution across this similar set.

An appealing characteristic of the Stacked classifier is

the ability to combine multiple feature types by merely con-

catenating various evidence. In our case, we view this as

the means to combine part appearance (PNADs) together

with other potential sources of discriminative information.

We consider combining shape and arrangement parameters

(e.g. part cross-section/aspect, relative sizes/orientations be-

tween parts, etc.) as well as taxonomic training data.

One additional potential source of information which we

are not currently using is the birdlet activations that con-

tributed to the detection. When a given birdlet is trained, the

other examples selected as positive patches (based on sim-

ilar configuration) may collectively convey information at

test time about the category of detections involving a high-

probability activation of the birdlet in question.

6. Experimental Results
Now that we have described detection of volumetric

primitives, pose-normalized appearance representation, and

integrated classification, we present some experiments in

support of this framework.

6.1. Dataset, Implementation Details, etc.

First utilized by Branson et al. [9], the Caltech-UCSD

Birds 200 dataset [49] currently offers the largest num-

ber of subordinate categories for a single basic-level cate-

gory. We organized the entire dataset into its proper taxo-

nomic hierarchy (order, family, genus, species) and then se-

lected two families to fully annotate with both 2D keypoints

and 3D volumetric primitives (ellipsoids), the vireo and

woodpecker families These annotations, together with near-

duplicate groupings (so that near-duplicates do not straddle

test-training splits), will be made publicly available to other

researchers. While many annotation tasks are well-suited to

crowdsourcing, we felt that proper annotation of the ellip-

soids was non-trivial and accordingly have a smaller dataset

than would be desirable.

As the authors of [8, 7] have only released their code for

detection with a pre-trained human detection model, we had

to reimplement the extensive Poselet framework in its en-

tirety. In our birdlet implementation, we utilized LIBSVM

[12] together in conjunction with Platt’s algorithm [36] for

converting SVM scores to probabilities. The random for-

est used for integrated classification was adapted from the

Weka [32] machine learning package.

6.2. Volumetric Part Localization

Before we can consider our primary objective of subor-

dinate categorization, we evaluate the detection of our vol-



Figure 5. Example Volumetric Primitive Detections. Here are

four representative detections. In the top two images, the bird is

detected and localized with reasonable accuracy. The images in

the lower row depict false positive detections, however. In the

first image, a finger is incorrectly interpreted as the bird’s body;

the second is typical of false detections at the incorrect scale and

location.
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Figure 6. Classification of Volumetric Detections. For the k top-

ranked detections, this plots the corresponding PNAD-RF classifi-

cation performance (using mean-average precision).

umetric part model. To train the birdlet model, we used a

training split that included 15 images of each category (to-

gether with their mirrored annotations) for a total of 420

training images/annotations. The resulting birdlets (we train

a set of 100 birdlets) are applied toward detection on the re-

maining 492 test images.

Some examples detection results are illustrated in Figure

5. The two shown on the left are accurate detections rela-

tive to the ground truth, those on right are mistakes. Com-

paring the detected parts to the test images’ ground-truth

annotations, we find that while many of the detections have

significant errors (e.g. those in Figure 5), many detections

are reasonably accurate. As it is pointless to try to classify

these false detections, we run the classification on the more

accurate detections as described below.

6.3. Subordinate Categorization

We now describe our subordinate categorization results.

We establish a baseline using a pyramidal histogram of

color-SIFT words approach (using the VLFeat toolbox [46]

implementation), providing it the ground-truth bounding

box to assist in localizing the bird. The performance

across test-training splits is 37.12% mean-average preci-

sion. Anecdotally, this approach is comparable to the

multiple-kernel learning approach used by Branson et al.
[9] (37.02% on this same subset of categories). Figure 4(a)

shows a confusion matrix for the Baseline PHOW/SVM

classifier. Next we turn to Figure 4(c), which illustrates the

potential performance of the PNAD-RF (Pose-Normalized

Appearance Descriptor coupled with the Random Forest

classifier) technique. This approach achieves a mean-

average precision across the categories of 66.58% by com-

puting the PNAD features on the ground truth ellipsoids.

Our objective then is to evaluate the same PNAD-RF

method on the estimated ellipsoids from our real detections.

Figure 6 shows the mean classification accuracy for sets of

increasing size. The plot shows that, for the most accurate

20% of the detections, the subordinate classification accu-

racy was above the baseline performance. For the top 10%

of detections, accuracy was as much as 10% higher than

that of the baseline. In Figure 4(b), the confusion matrix

for the most accurate 20% of the detections is shown, a

mean-average precision of 40.25%. We believe that the per-

formance coule be even higher if the birdlet training had a

larger pool of training examples to draw upon.

7. Conclusion
We have presented an approach for subordinate catego-

rization using a pose-normalized appearance representation

founded upon a volumetric part model. We model a basic-

level category by its constituent parts (a set of volumetric

primitives), then leverage the variation in part shape and

appearance properties across a taxonomy to provide the ad-

ditional cues needed for subordinate-level discrimination.

Our model learns to associate raw image patterns (used

in detection) with corresponding volumetric part parame-

ters such as location, scale and orientation. These volumet-

ric parameters implicitly define a mapping from the image

pixels into a pose-normalized appearance space, removing

view and pose dependencies, thus facilitating effective sub-

ordinate categorization.
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