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Abstract. An axion cloud surrounding a supermassive black hole can be naturally produced
through the superradiance process. Its existence can be examined by the axion induced
birefringence effect. It predicts an oscillation of the electric vector position angle of linearly
polarized radiations. Stringent constraints of the existence of the axion in a particular mass
window has been obtained based on the recent Event Horizon Telescope measurement on
M87?. The future Very-Long-Baseline Interferometry (VLBI) observations will be able to
measure the vicinity of many supermassive black holes, thus it opens the possibility to search
for the existence of axions in a wide mass regime. In this paper, we study how different black
hole properties and accretion flows influence the signatures of the axion induced birefringence.
We include the impacts of black hole inclination angles, spins, magnetic fields, plasma velocity
distributions, the thickness of the accretion flows. We pay special attention to characterize
the washout effects induced by the finite thickness of the accretion flows and the lensed
photons. Based on this study, we give prospects on how to optimize the axion search using
future VLBI observations, such as the next-generation Event Horizon Telescope, to further
increase the sensitivity.
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1 Introduction

Taking advantage of the Very Long Baseline Interferometer (VLBI) technology, the Event
Horizon Telescope (EHT) opens a new era of probing the physics under extreme conditions
near the horizon of a supermassive black hole (SMBH) [1–4]. This allows us to test general
relativity in the strong gravity region around the black hole and study the accretion flow
around it. Beyond constructing the intensity image of the accretion flow of the SMBH M87?,
the EHT recently performed a polarimetric measurement on the radiation from its vicinity,
with a high spatial resolution. From the astrophysical point of view, it helps us to understand
the magnetic structure of the accretion flow [5, 6].

Besides the applications to study astrophysics, such horizon-scale measurements also
provide us opportunities to test particle physics, especially ultralight bosons. With a proper
mass, ultralight bosonic particles can be spontaneously accumulated around a Kerr black hole
through the superradiance mechanism [7–15]. Among various choices of ultralight bosons
beyond the standard model, the most promising candidate is the QCD axion or axion-like
particles [16–19]. They generically appear in theories with extra dimensions [20], and they can
be good cold dark matter candidates [21–23]. In [24], using the axion induced birefringence
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effects [25, 26] is proposed to search for the existence of the axion cloud around a SMBH. If
it exists, the coherently oscillating axion field will lead to a periodic variation to the electric
vector position angles (EVPAs) of linearly polarized radiations from the accretion flow. Based
on this theoretical proposal, the signatures of the axion cloud are further investigated using
the recent EHT polarimetric measurement on M87? [27] and stringent constraints on the
axion parameter space are achieved.

The future VLBI observations, such as the next-generation EHT (ngEHT) [28, 29]
and space VLBI [30], with more observed frequencies and potentially longer baseline in the
space, can further increase the spatial resolution and perform detailed measurements on the
horizons of a large number of SMBHs [31]. Since the axion cloud can only be produced
when the axion Compton wavelength is comparable to the black hole size, by observing black
holes with various masses, the future VLBI experiments open the opportunities to study the
existence of axion in a large mass regime.

Given the potential information of a large landscape of SMBHs with various properties,
such as spins, inclination angles, types of accretion flows etc, it is necessary to construct the
foundation of the axion search at future VLBIs. In this paper, we perform a comprehensive
study on the polarimetric signals caused by the axion induced birefringence, with various
properties of SMBHs.

The layout of the paper is as follows. In Sec. 2, we review the production of the axion
cloud around a Kerr black hole through the superradiance mechanism. In Sec. 3, we review
the axion-induced birefringence in a curved space-time. We show how to embed the axion-
photon coupling into the polarized radiative transfer equations. In Sec. 4, we focus on the
thin accretion disk model. With different choices on the inclination angle and the spin of the
black hole, we show how ray tracing influences the birefringence signals from the axion cloud.
We further define a new observable, the Fourier decomposition of the differential EVPA along
the azimuthal direction, that can be generally applied to nearly face-on black holes, such as
M87?. In Sec. 5, we consider more realistic accretion disk models, characterized by Radiative
Inefficient Accretion Flows (RIAFs). Particularly, we study two washout effects in our signal,
the sum of the linear polarization along line of sight through the accretion flow, and the
incoherent sum from the lensed photons. Finally we present the prospects for the future
axion search in Sec. 6.

Throughout this study, we work in units where G = ~ = c = 1, and adopt the metric
convention (−,+,+,+).

2 Axion Cloud from Black Hole Superradiance

According to the superradiance mechanism, a rapidly spinning black hole can generate an
exponentially growing axion cloud, when the axion’s reduced Compton wavelength is com-
parable to the gravitational radius of a Kerr black hole [7–14], for a review see [15].

The reduced Compton wavelength is related to the axion mass as λc ≡ 1/µ, and the
gravitational radius is determined by the black hole mass as rg ≡ M . Specifically, ignoring
the axion self-interaction, the Klein–Gordon equation of axion field in a curved spacetime
takes the form

(∇µ∇µ − µ2)a = 0. (2.1)

In the following discussion, we take the covariant derivative ∇µ in terms of the Kerr metric
of rotating black holes, with the mass M and the angular momentum J in Boyer-Lindquist

– 2 –



(BL) coordinates xµ = [t, r, θ, φ]. Under the Kerr background, the variables in the solution
of Eq. (2.1) are separable [32, 33], and we take the ansatz as

a(t, r) = e−iωt+imφRnlm(r)Slm(θ), (2.2)

where Rnlm(r) is the radial function, Slm(θ) is the spheroidal harmonics which simplifies to
the spherical harmonics Ylm in the non-rotating limit of the black hole or non-relativistic limit
of the axion cloud. In addition, ωnlm is the eigen-frequency of the corresponding eigenstate,
and the number n, l and m satisfy n ≥ l + 1, l ≥ 0 and l ≥ |m|. One further imposes the
ingoing bound condition at the Kerr black hole’s outer horizon, and the wavefunction goes
to zero at infinity. This makes the eigen-frequencies ω generally take a complex form

ωnlm = ωrnlm + iωinlm. (2.3)

We first consider small values of α satisfying α � 0.1. In this limit, the real part ωrnlm and
the imaginary part ωinlm can be written as [12, 34]

ωrnlm = µ

(
1− α2

2n2 +O(α4)
)
, (2.4)

ωinlm ∝ α4l+5 (mΩH − ωrnlm) (1 +O(α)) . (2.5)

The dependence on the number l and m is included in the higher order terms of α whose
expressions can be found in [35]. Here ΩH ≡ aJ/(2r+), with the radius of the outer horizon
as r+ ≡M +M

√
1− a2

J and the dimensionless spin as aJ ≡ J/M2. When the superradiance
condition is met,

ΩH >
ωrnlm
m

, (2.6)

ωinlm becomes positive. This leads to an exponential growth with the timescale as τSR =
1/ωinlm.

The radial profile of the axion cloud peaks at

rmax,n ≈
( n2

2α2

)
rg . (2.7)

This relation gives a simple scaling relation between the peak radius rmax and the gravita-
tional fine-structure constant α.

As for larger values of α, one can perform the numerical calculation to obtain the solution
of the axion field. According to the numerical study in [14], the state with n = 2, l = 1,m = 1
has the highest superradiant rate. This is the lowest energy state among the ones which
satisfy the superradiance condition. The axion wavefunction of such a state peaks at the
equatorial plane (θ = 90◦) of the black hole. In Fig. 1, the radial function of this state, i.e.,
R211(r), is displayed for aJ = 0.99. We emphasize that the axion cloud, with the Compton
wavelength satisfying α = 0.4, peaks close to r ≈ 5 rg [24]. This is in a good agreement
with the result presented in Eq. (2.7), as in the limit of α � 0.1. For a bigger value of the
angular momentum number l, rmax becomes larger, and the axion cloud takes a much longer
time to build up according to Eq. (2.5). Thus in this study we only focus on the state with
l = m = 1.
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Figure 1: Axion radial profile R211(r) with aJ = 0.99 by using the method of [14]. Left: Profile with respect
to distance r for fixed α = 0.25, 0.4. Right: Profile with respect to gravitational fine-structure constant α for
fixed r = 5, 10, 15, 20 rg.

Ignoring the α’s higher order terms in Eq. (2.6), for a fixed azimuthal mode m and black
hole spin aJ , the superradiance condition imposes an upper limit on α

α .
aJ m

2
(
1 +

√
1− a2

J

) . (2.8)

Choosing m = 1, α can be at most 0.5 for an extreme Kerr black hole and 0.25 for aJ = 0.8.
Once the superradiance condition is satisfied, the axion cloud profile is only slightly influenced
by the value of aJ [36]. In this study, we focus on the axion mass region satisfying α > 0.1
so that the superradiant timescale is much shorter than the age of the universe, i.e., within
the range of 109 years [14]. The black hole spin can be as low as aJ = 0.5 in order to satisfy
the superradiance condition for α = 0.1. As shown in Eq. (2.8), the specific range of α which
satisfies the superradiance condition is sensitive to the black hole spin aJ . Though the spin
of M87? is still uncertain [5], Refs. [37, 38] claim M87? to be a nearly extreme Kerr black
hole. In this study, we take the black hole spin aJ to be 0.99 and 0.8 as two benchmarks,
since these might be good representatives of the M87? spin.

Finally, one may question whether the axion cloud produced by the superradiance pro-
cess is stable. For specific astrophysical systems, the stability of the axion cloud is discussed
in [39], where several potential perturbations which may destroy the axion cloud are dis-
cussed. Particularly, the presence of accreting matter and the tidal force from a companion
star turn out to be negligible. For the parameter region we are interested in, the metric is
always dominated by the SMBH. One may be concerned about the possibility of a merger
with another SMBH in the past. However, we mainly focus on the axion mass which triggers
a relatively short timescale for the superradiance. Even such a drastic merger happened once,
the axion cloud should generically have enough time to build up again after the merger. Thus
we neglect this possibility in our study. At last, the superradiance can be terminated by the
axion self-interaction. Indeed, with the growth of the axion cloud, the axion field value in
certain region of the cloud gets close to its decay constant fa. The axion self interaction,
described by V (a) = µ2f2

a (1− cos[a/fa]), leads to a correction to the potential energy. Due
to the nontrivial self-interaction, the axion cloud can enter a violent bosenova or a saturating
phase [40–44]. Interestingly, both the numerical simulation [40–42] and the analytic estima-
tion [43] indicate that the maximum of the field value amax remains close to fa in either case,
as long as the nonlinear regime is ever reached.

– 4 –



3 Axion Induced Birefringence and Radiative Transfer

In this section, we first review the birefringence effects induced by the axion-photon coupling,
based on the geometric optics approximation. The axion field background leads to modified
Maxwell equations with different dispersion relations for the left and right circular polarized
photons, which consequently causes a variation in electric vector position angles (EVPAs) of
linearly polarized photons. Without medium effects, this birefringence effect is achromatic
and topological since the shift of the EVPAs only depends on axion field values at emission
and observation points [25, 26, 45–51]. This property also holds in curved space-time [52].

Further we need to properly characterize the axion induced effects when photons prop-
agate in the medium. We show that they can be properly taken into account by a simple
modification of the Faraday rotation terms in the covariant radiative transfer equations. Such
additional terms are proportional to the gradient of axion field along the geodesics, which
can be easily included into a numerical radiative transfer code like IPOLE [53, 54].

3.1 Axion-Photon Coupling and Birefringence
We start with the photon propagation in a curved space-time with the axion background
field, without including medium effects. In this case, the Lagrangian can be written as

L =− 1
4FµνF

µν − 1
2gaγγaFµνF̃

µν + 1
2∇

µa∇µa− V (a). (3.1)

Here gaγγ is the axion-photon coupling constant (not to be confused with the spacetime
metric tensor), F̃µν = εµναβFαβ/2 is the dual tensor of the electromagnetic field strength
tensor, and V (a) is the axion potential. In the Lorenz gauge ∇µAµ = 0, the equation of
motion for the electromagnetic field is

∇µ∇µAν −RνµAµ = −gaγγ(∇µa)F̃µν . (3.2)

With a good accuracy, we follow [52] and apply the geometric optics approximation, which
is valid for photons with frequency much larger than the variation scale of the background
metric and the axion field. This allows us to take the ansatz

Aµ(x) = Āµ(x) exp
(
i

ε
S(x)

)
, (3.3)

with the four dimensional wave-vector kµ identified as

kµ ≡
1
ε
∂µS(x). (3.4)

We take ε as a small number characterizing the geometric optics approximation. Our follow-
ing calculations will be based on the perturbation on ε. By substituting Eq. (3.3) into the
Eq. (3.2), we find that the leading order term, i.e., O(1/ε2), gives

kµkµ = 0. (3.5)

We require this condition to hold along the path of photons. It indicates that the derivative
of kµkµ with respect to the affine parameter equals to zero. This gives kµ∇µkα = 0, which
means that photons follow null geodesics. The next order, i.e., O(1/ε), expansion in Eq. (3.2)
gives

kµ∇µĀν + 1
2Ā

ν∇µkµ + gaγγε
µνρσĀσkρ∇µa = 0. (3.6)
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The Lorenz gauge ∇µAµ = 0 under the geometrical optics approximation becomes Āµkµ = 0.
To further simplify the calculation, we introduce the normalised space-like polarization

vector ξµ, and the vector potential can be written as Āµ = Āξµ. The polarization vector
satisfies ξµξ∗µ = 1 and ξµk

µ = 0. In this case, Eq. (3.6) can be decomposed into equations of
motion for the amplitude Ā and the polarization vector ξµ [52] respectively,

kµ∇µĀ+ 1
2Ā∇µk

µ = 0, (3.7)

kµ∇µξσ + gaγγε
µνρσkµξν∇ρa = 0. (3.8)

The equation of motion for Ā, i.e., Eq. (3.7), does not contain the axion field. This means that
the axion field does not affect the observed intensity of the light. The first term in Eq. (3.8)
describes the parallel transport of the polarization vector ξµ. The second term contains the
axion effect, which is the birefringent effect that we are focused on.

In order to see the evolution of the polarization direction, one needs to project Eq. (3.8)
to the reference frame of an observer. Such a reference frame can be properly characterized
by an orthonormal basis of vectors eµ(a). These base vectors satisfy eµ(a)eµ(b) = η(a)(b), where
a or b = 0, 1, 2, 3. Particularly, eµ(0) is the time-like 4-velocity of the observer, which will be
specified later, and eµ(3) ≡ (kµ−ωeµ(0))/ω is a space-like vector with ω ≡ −kµeµ(0). Furthermore,
eµ(1) and eµ(2) are space-like vectors which span the transverse plane orthogonal to both eµ(0) and
eµ(3). The residual gauge freedom allows us to set ξµe(0)

µ = ξµe
(3)
µ = 0 and thus |ξ(1)|2+|ξ(2)|2 =

1. By parallel transporting the basis eµ(a) with the condition kµ∇µeν(a) = 0, we project Eq. (3.8)
into the vector fields eµ(a) and obtain

∂sξ
(j) + gaγγ∂saε

(0)(i)(3)(j)ξ(i) = 0. (3.9)

Here s is the affine parameter of the photon trajectory, and i or j takes a value of 1 or
2. Writing the polarization vectors in the basis of circular polarization, we have ξL,R ≡
ξ(1) ± iξ(2). The Eq. (3.9) can be easily solved as

ξL,R(xµo ) = exp (±i∆χ) ξL,R(xµe ), (3.10)

where ∆χ ≡ gaγγ [a(xµo )− a(xµe )]. It only depends on the difference of the axion field values
at the emission and the observation points, i.e., xµe and xµo , respectively [24–26, 45–52]. The
linear polarization is a superposition of left and right circular polarization, thus ∆χ represents
the shift of EVPA for the linear polarization. Interestingly, the ordinary birefringence, i.e., the
Faraday rotation in the plasma with a magnetic field, has a nontrivial frequency dependence.
On the other hand, the axion-induced birefringence is achromatic, as long as the geometric
optics approximation is valid.

3.2 Radiative Transfer

The photon propagation nearby a SMBH is properly described by the covariant radiative
transfer equations where both the plasma and the curved space-time are taken into account.
In this subsection, we follow the formalism developed in [55] and demonstrate how to include
the axion effects. Comparing with the photon propagation equation without the medium,
i.e., Eq. (3.6), the plasma effect leads to additional terms and the corresponding equation can
written as

2ikµ∇µĀν + iĀν∇µkµ + 2igaγγ(∇µa)εµναβkαĀβ = Πν
µĀ

µ + jν . (3.11)
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Here the first term on the right hand side is the induced current from plasma, with Πσ
µ

being the linear response tensor. Further jν is the external current describing the plasma
emission. To describe the propagation of the incoherent superposition of a large number of
electromagnetic waves, one introduces macroscopic polarization tensor Nµν [55]

Nµν ≡
〈
ĀµĀ∗ν

〉
, (3.12)

where 〈· · · 〉 denotes ensemble average. Using Eq. (3.12), one can rewrite Eq. (3.11) into a
compact form

kµ∇µNαβ = Jαβ + H̃αβκλNκλ. (3.13)

Here H̃αβκλ is defined as

H̃αβκλ ≡ −i
(
gβλΠ̃ακ − gακΠ̃∗βλ

)
, (3.14)

and the modified response tensor Π̃νµ is

Π̃νµ ≡ Πνµ − 2igaγγ (∂λa) ελνρµkρ. (3.15)

The emissivity tensor Jαβ is related to the external current as

Jαβ = −i
(
〈jαĀβ∗〉 − 〈jβ∗Āα〉

)
. (3.16)

In addition to the axion-photon coupling , H̃αβκλ in Eq. (3.13) contains various plasma effects,
whose coefficients can be calculated conveniently if one chooses a comoving Cartesian frame
with respect to the plasma. In such a frame, eµ(0) points along the plasma 4-velocity, and we
further choose the other three base vectors as the same way described in Sec. 3.1. We now
project Eq. (3.13) using these base vectors, after applying the parallel transport condition
kα∇αeν(a) = 0, we obtain

dN (a)(b)

ds
= J (a)(b) + H̃(a)(b)(c)(d)N(c)(d), (3.17)

with

H̃(a)(b)(c)(d) = H(a)(b)(c)(d) − gaγγk(f)∇(e)a
[
η(b)(d)ε(e)(a)(f)(c) + η(a)(c)ε(e)(b)(f)(d)

]
. (3.18)

Here H̃(a)(b)(c)(d) contains the ordinary plasma effect, i.e., H(a)(b)(c)(d), and the axion contri-
bution. In this local tangent space, the total intensity and the polarization intensities can be
parameterized by 4 Stokes parameters as

IS ≡ mS
(a)(b)N

(a)(b), (3.19)

where IS ≡ (I,Q, U, V ) are locally Lorentz invariant Stokes parameters. They contain the
total intensity I, the linear polarization intensities at two different directions, Q and U , and
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circular polarization intensity V , respectively. The projection matrix mS
(a)(b) is defined as

mI ≡


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , mQ ≡


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 ,

mU ≡


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , mV ≡


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 . (3.20)

Similarly, the four Stokes emissivities jS ≡ (jI , jQ, jU , jV ) are obtained through

jS ≡ mS
(a)(b)J

(a)(b). (3.21)

Contracting H̃(a)(b)(c)(d) with the projection matrices, we define

MST ≡ −1
2m

S∗
(a)(b)H̃

(a)(b)(c)(d)mT
(c)(d). (3.22)

Splitting the contributions from the plasma effects and the axion-photon coupling, Eq. (3.22)
can be decomposed as

MST = MST
plasma +MST

axion, (3.23)

where the first term is exactly the Muller Matrix in the ordinary radiative transfer equations,

MST
plasma ≡


αI αQ αU αV
αQ αI ρV −ρU
αU −ρV αI ρQ
αV ρU −ρQ αI

 . (3.24)

Here αI , αQ, αU , αV are the absorption coefficients, while ρV , ρU , ρQ are the Faraday
rotation and conversion coefficients. For example, in IPOLE [53, 54], the Stokes U is taken to
align with the magnetic field so that jU = αU = ρU = 0.

Further, the axion contribution is simply characterized as

MST
axion =


0 0 0 0
0 0 −2gaγγ dads 0
0 2gaγγ dads 0 0
0 0 0 0

 . (3.25)

Therefore the modified radiative transfer equation in a local tangent space can be written as

d

ds


I
Q
U
V

 =


jI
jQ
jU
jV

−

αI αQ αU αV
αQ αI ρ′V ρU
αU −ρ′V αI ρQ
αV −ρU −ρQ αI



I
Q
U
V

 , (3.26)

with
ρ′V = ρV − 2gaγγ

da

ds
. (3.27)
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The axion contributions are simply included by a change in the ordinary Faraday rotation
coefficient. It is clear from Eq. (3.26) that ρ′V plays the role of changing the EVPA, defined
as

χ ≡ 1
2 arg(Q+ iU). (3.28)

In the absence of the emissivities and the plasma effects, Eq. (3.26) leads to consistent results
as in Eq. (3.10).

4 Birefringence from Axion Cloud – Thin Disk and Ray Tracing

The following sections study the birefringent signals induced from the superradiant axion
cloud accumulated around the SMBH, with various astrophysical conditions. We only con-
sider the cases in which the radiations are emitted from the accretion flow, rather than the
jet. We first consider the geometrically thin and optically thick disk. Then we will further
discuss the RIAF models, whose geometric thickness is an input parameter. Both cases are
expected to be explored at horizon scale by the future VLBI observations [28–30].

For the thin disk, after photons are emitted, they propagate in the vacuum without the
plasma. Consequently, the EVPA shift of the linear polarized photon can be simply described
by Eq. (3.10). For the frequency regime that we consider here, a geometrically thin disk is
opticially thick, thus the contribution from lensed photons can be safely ignored. For each
point on the sky plane, we can trace back along the line of sight, and the emission only comes
from the point of its first intersection with the disk. Neglecting the axion field value near
the Earth, the EVPA shift ∆χ in Eq. (3.10) becomes

∆χ(t, ρ, ϕ) = −b c R211(rE) cos [ωtE −mφE ]
2πR211(rmax) . (4.1)

The ratio R211(rE)/R211(rmax) is shown in Fig. 1. The peak value of the axion cloud is
parametrized by

b ≡ amax
fa

, (4.2)

which can be O(1) [40–43] as mentioned above. fa is required to be below 1016 GeV so that
the extraction of black bole rotation energy is negligible, thus complementary to black hole
spin measurements [39, 56–61] and direct shadow observations [62–66].

One also defines the fundamental constant

c ≡ 2πgaγγfa, (4.3)

that translates the axion-photon coupling gaγγ to a dimensionless quantity in the unit of
the decay constant fa. Here c is the fundamental constant that we aim to constrain in
our study [24, 27]. In Eq. (4.1), there are two sets of coordinates on the two sides of the
equation. First, (t, ρ, ϕ) are the time of observation and the polar coordinates on the sky
plane. Further, (tE , rE , φE) label the emission time and the polar coordinates of the black
hole equatorial plane. These two sets of coordinates are related to each other by ray tracing,
following photons’ geodesics. Both the inclination angle, i, of the Kerr black hole with respect
to the sky plane and the magnitude of the black hole spin, aJ , have impacts.
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The EVPA measurements performed by the EHT are presented as a function of the
azimuthal angle on the skype plane [5, 6]. Without loss of the generality, we use the following
ansatz to parametrize the EVPA variations

∆χ(t, ϕ, ρ) = A(ϕ, ρ) cos [ωt± ϕ+ δ(ϕ, ρ)]. (4.4)

Here A and δ characterize the amplitude and the relative phase of the EVPA oscillation
respectively. The ±ϕ term in the bracket comes from the angular dependence of the axion
cloud since |m| = 1. The sign is for two possibilities of the black hole spin orientation, either
opposite to us ( i > 90◦ ) or towards us ( i < 90◦ ) respectively. In the following analysis,
we normalize the amplitude A in terms of the maximum value of the axion field

gaγγamax ≡
b c

2π , (4.5)

according to Eq. (4.1).
We note that Eq. (4.4) has not taken into account of the intrinsic variations of the

accretion flows. To reduce the nontrivial uncertainties from the time-dependent astrophysical
background, we introduced differential EVPAs in the time domain [27]. In this case, we
extract the axion signal by comparing the EVPA observations at two different times ti and
tj

∆χ(ti, ϕ, ρ)−∆χ(tj , ϕ, ρ) = 2 sin [ωtint/2]A(ϕ, ρ) sin [ω(ti + tj)/2± ϕ+ δ(ϕ, ρ)], (4.6)

where the interval time between two sequential observations is tint ≡ tj − ti. As far as tint is
shorter than the timescale of the accretion flow dynamics, the astrophysical uncertainties can
be suppressed. On the other hand, one pays the price for the suppression factor 2 sin [ωtint/2]
if the axion oscillation period is much longer than tint. More details about the optimized
analysis method will be given in the later discussion.

4.1 Ray Tracing from Novikov Thorne Thin Disk

In this subsection, we start from the thin disk model to study the properties of the axion-
induced birefringence signals, with different choices on the inclination angle i and the black
hole spin aJ . Shakura and Sunyaev first developed this kind of model in [67], and later
it was generalized to a fully general relativistic version by Novikov and Thorne [68] (NT
model). The NT model is an axisymmetric and stationary solution, with an optically thick
and geometrically thin disk on the equatorial plane. All photons we receive come directly
from it without the contribution of lensed photons, and one can safely neglect the thickness
of the accretion disk. The fluid in the disk has a nearly Keplerian orbit. The polarization
of the radiation in this model is calculated from the electron scatterings in a semi-infinite
atmosphere [69]. The spectrum of the thin disk is approximately thermal. The geometrically
thin disk model can be applicable for some classes of active galactic nuclei (AGN) with mass
accretion rate being nearly Eddington mass accretion rate such as quasars, which future
VLBI observations have the potential to measure.

We substitute the axion cloud induced birefringence contribution, i.e., given in Eq.
(3.27), into the radiative transfer code IPOLE [53, 54] and we specify the NT model as the
emission source around the SMBH. The birefringence signals, with various choices of the
inclination angle i and the black spin aJ , are shown in Fig. 2.

– 10 –



-0.6
-0.4
-0.2

0
0.2
0.4
0.6

(
)/(

2
)

0 /2 3/2 2
0.0

0.2

0.4

0.6

0.8

1.0

(
)/g

a
a m

ax

NT, = 0

aJ = 0.8 , = 5 rg

aJ = 0.99 , = 5 rg

aJ = 0.8 , = 7 rg

aJ = 0.99 , = 7 rg

aJ = 0.8 , = 10 rg

aJ = 0.99 , = 10 rg

-0.6
-0.4
-0.2

0
0.2
0.4
0.6

(
)/(

2
)

0 /2 3/2 2
0.0

0.2

0.4

0.6

0.8

1.0

(
)/g

a
a m

ax

NT, = 30

aJ = 0.8 , = 5 rg

aJ = 0.99 , = 5 rg

aJ = 0.8 , = 7 rg

aJ = 0.99 , = 7 rg

aJ = 0.8 , = 10 rg

aJ = 0.99 , = 10 rg

-0.6
-0.4
-0.2

0
0.2
0.4
0.6

(
)/(

2
)

0 /2 3/2 2
0.0

0.2

0.4

0.6

0.8

1.0

(
)/g

a
a m

ax

NT, = 60

aJ = 0.8 , = 5 rg

aJ = 0.99 , = 5 rg

aJ = 0.8 , = 7 rg

aJ = 0.99 , = 7 rg

aJ = 0.8 , = 10 rg

aJ = 0.99 , = 10 rg

Figure 2: Left: We take the NT model and show a few benchmark results from the IPOLE simulation
[53, 54], with various choices of the inclination angle. We take α = 0.25, gaγγamax = 1 rad and aj = 0.99. The
black hole spin points along the −x direction on the sky plane. The white quivers represent the astrophysical
linear polarized radiations without the axion effect. From red to purple, the rainbow color is used to show
the time variations of the EVPA in the presence of the axion cloud. Right: We show the relative phase, δ/2π,
and the amplitude, A/gaγγamax, as a function of the azimuthal angle ϕ. We take ρ = 5 rg, 7 rg and 10 rg
as benchmarks. The results for aJ = 0.8 are also shown for comparison. The deviations from the results of
aJ = 0.99 are due to the difference in photons’ geodesics. We note that ϕ = 0 corresponds to +x direction on
the left panel.
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Figure 2: (Cont.)

On the left panel, each plot contains an intensity map. On top of it, the quivers with
different colors provide the information about the linear polarization. The length of each
quiver is proportional to the intensity of the linear polarization IL =

√
Q2 + U2, and the

direction represents the EVPA. The white quiver lines show the EVPA without the axion.
One oscillation period of the axion cloud is equally divided into eight segments, and the color
of each quiver, from red to purple in the rainbow order, represents the time evolution. As
expected, the birefringence signals from the axion cloud behave as a propagating wave along
the azimuthal angle ϕ of the sky plane. On the right panel, we use the ansatz in Eq. (4.4) to
fit the relative phase δ and the amplitude A of the EVPA oscillation along the ϕ direction.
We choose the radial coordinate as ρ = 5 rg, 7 rg and 10 rg respectively, for black hole spin
aJ = 0.99 and 0.8. The axion mass is taken to satisfy α = 0.25.

4.1.1 Relative Phase of Azimuthal EVPA Oscillation
The relative phase δ(ϕ, ρ) can be precisely obtained by reading out the numerical results from
IPOLE. However, in the almost face-on scenarios, i.e., i ' 0◦ or 180◦, this may be calculated
analytically with a good approximation. In Fig. 3, we show the trajectories of photons from
the emission point A on the accretion disk. We assume this point is relatively far from
the black hole horizon, so that the frame dragging effects are not important. Under these
assumptions, the relative phase δ(ϕ, ρ) can be written as

δ(ϕ, ρ) ≈ α tan i cosϕ ρ/rg. (4.7)

This relation can be understood as the time delay of the equatorial plane emission, induced
by the inclination angle i [27]. More explicitly, the time delay caused by the travel distance
for the light from point A can be approximated as A′C ′ [70].

On the other hand, the edge-on scenario with i = 90◦ is subtle. The observer is located
on the equatorial plane. Such a plane is singular in the NT model due to the assumption of the
infinitely thin disk. Consequently, the emission from the edge of the accretion disk, which
propagates on the equatorial plane, is not included artificially. When the frame dragging
effects are negligible, there is no ϕ-dependence in the phase component of Eq. (4.4) due to
the rotation symmetry on the sky plane. This is consistent with the δ(ϕ) result shown in last
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Figure 3: This figure shows the geometrical projection of a reference circle, at a fixed radius ρ on the sky
plane, onto the equatorial plane of the accretion disk marked in blue. The photons emitted at the point A
on the equatorial plane reach the point C on the sky plane, with the polar angle ϕ. On the equatorial plane
under the black hole coordinate, the point A is labeled as (rE , φ). The direction of OS is chosen to be along
the projection of the black hole spin on the sky plane, and i is the inclination angle of the black hole.

pair of Fig. 2, where the ϕ dependence in δ(ϕ) approximately cancels the ϕ term in cosine
function in Eq. (4.4).

4.1.2 Amplitude of Azimuthal EVPA Oscillation
We next turn to the amplitude A of the EVPA oscillation. This quantity is determined by the
axion field value at the emission point, shown in Fig. 1. Under the thin disk approximation,
we simply need a map from the sky plane coordinate (ρ, ϕ) to the equatorial plane coordinate
(rE , φE).

For the face-on case with i = 0◦ or 180◦, the amplitude A only depends on the ρ− rE
mapping. This is consistent with the results shown in the first row of Fig. 2. Particularly,
the amplitude at a fixed radius has no ϕ dependence. For general cases, such as i = 30◦
and 60◦, the rotation symmetry on the sky plane is broken. However the curve of A(ϕ) still
preserves an approximate reflection symmetry with respect to ϕ = π. Such a feature can be
understood using ray tracing that connects the equatorial plane and the sky plane through
geodesics. The small violation of the reflection symmetry is caused by the frame dragging
under the Kerr metric.

We calculate the photon geodesics according to the formalism developed in [71, 72].
This constructs a map between the sky plane coordinate (ρ, ϕ) and the equatorial plane
coordinate (rE , φE). The results are shown in Fig. 4 for black holes with a spin of aJ = 0.99
and 0.8.
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Figure 4: We study the mapping between the sky plane coordinate (ρ, ϕ) to the polar coordinate on the
equatorial plane. For fixed values of ρ, we show rE as a function of ϕ. The solid line and the dashed line
represent the results with aJ = 0.99 and aJ = 0.8 respectively.

We show rE as a function of ϕ at ρ = 5 rg and 10 rg respectively, with different choices of
the inclination angle i = 30◦ and 60◦. Given the properties of the axion radial wave functions
presented in Fig. 1, such a coordinate mapping explains the feature in Fig. 2 nicely. More
explicitly, with i = 60◦ and ρ = 10 rg, the curve of A(ϕ) contains a double peak feature.
This is caused by the geometric projection from a circle on the sky plane to an ellipse on the
equatorial. As ρ becomes smaller, the gravitational bending of a photon trajectory plays a
more critical role. In this case, the mapping between two sets of coordinates becomes more
subtle, and the approximation of the reflection symmetry with respect to ϕ = π becomes
worse.

Particularly, for a given ρ, the photon emitted at the point A with the sky plane angle
ϕ in Fig. 3 experiences more gravitational bending than the photon from the opposite point
with ϕ− π. Consequently, although both the photons from these two points reach the circle
with the same ρ on the sky plane, the point A is more close to the black hole horizon. For the
benchmark we consider here, this translates to a smaller value of the axion field, according
to the radial wave function shown in Fig. 1. The explains the difference of A(ϕ) at ϕ = 0◦
and 180◦. Again, we emphasize that a slight asymmetry with respect to ϕ = π is caused by
the black hole spin.

On the right panel of Fig. 2, we show the results for both aJ = 0.99 and aJ = 0.8. Since
the difference between the axion cloud wave functions for these two spin choices is negligible,
the main difference of the birefringence signals comes from how spin modifies the geodesics.
As shown on the right panel, the larger value of aJ tends to decrease the signal amplitude
A(ϕ). This effect is more pronounced for smaller radius ρ and for ϕ close to π, which is
caused by the fact that photons reaching these regions are emitted at places closer to the
black hole, where the black hole spin will have a stronger effect on geodesics.

Now let us consider the edge-on scenario where i = 90◦. In the limit of no black hole
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spin, A(ϕ) should be a constant, due to the rotation symmetry on the sky plane. The
extra features, as shown in the right panel of the last pair in Fig. 2, are induced by the frame
dragging. Such features become weaker when the black hole has a smaller spin or the distance
to the black hole is larger.

4.2 Global Feature: Angular Modes of the Azimuthal EVPA

Without loss of generality, we focus on the cases with the inclination angle i < 90◦, and the
axion cloud occupies the m = 1 quantum state. In this case, the ansatz of the EVPA shift
in Eq. (4.4) becomes

∆χ(t, ϕ, ρ) = A(ϕ, ρ)
2

(
eiωte−iϕ+iδ(ϕ,ρ) + e−iωteiϕ−iδ(ϕ,ρ)

)
. (4.8)

The features in the EVPA variation can be nicely captured by performing a Fourier
transformation on Eq. (4.8). To demonstrate that, we consider two scenarios. In the first
scenario, we assume the observations are long enough to cover the whole period of the axion
oscillation. In this case, the time dependence in Eq. (4.8) can be properly extracted and we
only need to focus on the angular dependence when we perform the Fourier transform. Let
us define ∆χ+

n as

∆χ+
n = 1

4π

∫ 2π

0
A(ϕ, ρ) e−iϕ+iδ(ϕ,ρ) einϕ dϕ. (4.9)

In Fig. 5, we show the results of |∆χ+
n | for n = 1, 2, 3 as a function of the inclination angle i

in solid lines.
For the face-on case, with a negligible relative phase δ(ϕ, ρ), only the mode with n = 1

is non-zero, as expected. When the inclination angle gradually increases, as shown Eq. (4.7),
we have δ(ϕ, ρ) ∝ sin i cosϕ for small i. This leads to mixtures among various Fourier modes.
Approximately, one can take Eq. (4.7) into Eq. (4.9) and ignore the ϕ dependence in A(ϕ).
This leads to

|∆χ+
n (ρ)| ' 1

2 A(0, ρ) Jn−1 (α sin i ρ/rg) , (4.10)

where Jn(x) is the first type Bessel function. Eq. (4.10) gives the dashed lines in Fig. 5,
which agree well with the numerical results for nearly face-on cases, e.g., with i < 30◦. We
note that, for larger inclination angles i > 30◦, the mixtures among various angular modes
become complicated and higher modes are also important. Consequently, the Fourier analysis
suggested in Eq. (4.9) becomes less convenient to characterize the axion induced signal. One
may simply perform a direct comparison between the ansatz in Eq. (4.4) with the data. We
also highlight that, for the edge-on case with i ' 90◦, the Fourier mode with n = 0 is
dominant, as consistent with the results shown in Fig. 2.

5 Birefringence from Axion Cloud – RIAF and Washout

In contrast to the geometrically thin and optically thick disk, such as the one discussed in
the previous section, the emission of a RIAF has a larger spatial distribution along the line
of sight. Also significant contributions may come from lensed photons that can propagate
around the black holes for several times before reaching us [73–76], thanks to the optically
thin disk. These lensed photons enhance the radiation intensity around ρ ' 5 rg on the sky
plane, forming the observed photon ring feature. Meanwhile, these photons contribute less
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Figure 5: The magnitude of the Fourier coefficients defined in Eq. (4.9) are shown as blue, orange and
green lines for n = 1, 2 and 3 respectively. As a benchmark, we take ρ = 7 rg on the sky plane. The black
hole spin is set as aJ = 0.99, and axion mass is chosen as α = 0.25. The dashed lines show the results from
the analytical approximation, derived in Eq. (4.10).

than 10% to the total intensity [75]. The RIAF is usually a good description for a low-
luminosity active galactic nuclei (LLAGN), such as Sgr A? and M87? [77, 78]. As we will see,
the birefringence signals can be influenced by both the geometric thickness of the accretion
flow and the lensed photons.

Besides the axion-photon interaction, the polarization state of the photon is signifi-
cantly influenced by the medium, such as by the Faraday conversion and rotation. Thus one
should use the differential radiative transfer Eq. (3.26) to properly describe the axion induced
birefringence.

In this section, we study in detail how the amplitude of the axion-induced EVPA oscil-
lation can be influenced in various RIAFs. When the accretion flow is optically thin, photons
that reach the Earth at the same time are emitted at different spatial points on the accre-
tion flow and they experience different propagation time. Consequently, if there is an axion
cloud, the axion oscillation causes different contributions to the EVPA variation. Adding
these contributions together generically leads to a suppression factor to the amplitude of the
EVPA oscillation in Eq. (4.4). One should expect a significant washout effect when a decent
portion of photons are emitted from a large spatial region along the line of sight, especially
when the size of such a region is comparable to the Compton wavelength of the axion, 2πλc.
This indicates that such a washout effect becomes less important for lighter axion, due to a
longer Compton wavelength.

In the following, we discuss two simple cases where one can study the washout effects
quantitatively. One is a constant emission from a continuous and finite length. This mim-
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Figure 6: Here we show the schematic diagram to demonstrate how the emissions are distributed along
the line of sight. The green dashed lines are the geodesics along the line of sight. The yellow segments
represent the contributions from the thickness of the accretion disk, and the blue ones lead to the lensed
photon contribution.

ics the photon emission from the finite thickness of the accretion flow. The other is the
emission from two largely separate points. This is a good representation to describe the
contribution from lensed photons. The washout effects in various accretion flows should be
approximately described by a mixture of these two extreme scenarios. For illustration, we
provide a schematic diagram in Fig. 6 to demonstrate the two possible origins of the washout
effects.

5.1 Washout From Finite Radiation Length
For simplicity, we focus on the simple radiative transfer equation with only linearly polarized
emissions and axion-induced birefringent terms

d
(
Q+ i U

)
ds

= jQ + i jU − i2gaγγ
da

ds

(
Q+ i U

)
. (5.1)

Here we neglect other contributions from the plasma in the radiative transfer equations since
they are not relevant for the washout effects we consider here. The solution to Eq. (5.1) is

Q(sf ) + i U(sf ) =
∫ sf

si

e
i2gaγγ

(
a(sf )−a(s)

)(
jQ(s) + i jU (s)

)
ds, (5.2)

where si and sf are used to label the initial and final points along the line of sight respectively.
We consider a simplified case in which the linearly polarized emissions, jQ/jU , are constant
in a finite length, sr, along the line of sight. Without loss of generality, we take jU to be 0
and the linearly polarized emissions in this case can be written as

jconst
Q (s) = j0

Q Θ
(
|s| − sr

2

)
, (5.3)
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where Θ is the heaviside function and s = 0 corresponds to the middle of the emission
segment. The axion field is taken to be a coherently oscillating background whose amplitude
a0 stays constant in the same region of emission but approaches to zero at the observer’s
location. In this case, the washout effect on the amplitude A of Eq. (4.4) can be solved
explicitly. We show the result in Fig. 7, as a function of the radiation length sr, normalized
to the axion Compton wavelength 2πλc. As expected, the amplitude approaches to 0 when
sr becomes comparable with λc.
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Figure 7: To demonstrate the washout effect from a finite radiation length, here we show the axion induced
EVPA oscillation amplitude, i.e., A, as a function of sr. For simplicity, we assume jQ and jU are constant
long the finite line of sight. The radiation length is normalized by the axion Compton wavelength 2πλc.

In the analytic RIAF model [79], there is a dimensionless parameter H ≡ h/R, defined
as the ratio between the height h and the horizontal scale R of the accretion flow. This
parameter is used to characterize the geometric thickness of the accretion flow. The linearly
polarized radiation is proportional to the electron number density, which is exponentially
suppressed respect to the distance from the equatorial plane. For a nearly face-on disk,
neglecting the background metric when the emissions are far away from the horizon, the
emission length in Eq. (5.3) can be approximated as

sr ' ρH. (5.4)

It is reasonable to expect that the washout effect induced by the finite radiation length is
not important if the thickness of the accretion flow satisfies

ρH � 2πλc. (5.5)

For example, if we take α ≡ rg/λc = 0.4 and ρ ' 5 rg, this condition leads H � 3, which
applies to most kinds of accretion flows. For smaller α, the finite length washout becomes
even more negligible.

5.2 Washout From Lensed Photon
We next consider the case that the linearly polarized radiation received on the sky plane comes
from two discrete emission points. The separation in distance of these two points leads to a
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phase difference due to the axion cloud oscillation as well as the axion cloud spatial profile.
We assume the linearly polarized emissions at the two points are independent, and the source
of emission can be characterized as

jQ(s) + i jU (s) =
∑
p=1,2

ei2χpIpL δ(s− sp). (5.6)

Here IpL is the linear polarization intensity at each emission point, and the EVPA of the
emission is χp. Substituting this ansatz into Eq. (5.2), one gets

Q(sf ) + i U(sf ) =
∑
p=1,2

e−i2gaγγa(sp)+i2χpIpL. (5.7)

We take the axion field value at the first point as a(s1) = a0 cos (ωt). We further set the
axion field amplitude to be the same at these two emission points for simplicity. The axion
field at the second emission point can then be parametrized as a(s2) = a0 cos (ωt+ δ12), with
δ12 being the phase delay between these two points. In this case, the oscillation amplitude
of the EVPA can be written as

A
gaγγa0

=

√√√√cos2
(
δ12
2

)
+ sin2

(
δ12
2

) ∣∣∣∣∣I1
L − I2

Le
i2∆χ12

I1
L + I2

Le
i2∆χ12

∣∣∣∣∣
2

, (5.8)

with ∆χ12 = χ2 − χ1.
For optically thin RIAFs, some photons are nearly in bound states around the SMBH.

These photons can propagate around the BH for several times before exiting, and they make a
significant contribution to the photon ring observed on the sky plane [73–76]. If the emissions
happen dominantly around the equatorial plane, one gets a discrete sum of the radiation that
differs with each other by the times that propagates around the black hole. Since the emission
points of both the direct radiation and lensed photons have comparable radii from the black
hole, the axion field values are comparable. Thus Eq. (5.8) serves a good approximation for
studying the EVPA oscillation amplitude on the photon ring. The relative phase of the axion
oscillation δ12 in Eq. (5.8) is

δ12 = ω∆t−∆φ. (5.9)

The time delay ∆t and the azimuthal angle difference ∆φ are the critical parameters to
characterize the lensed photons, and these quantities can be properly calculated [76].

5.3 Landscape of Accretion Flows

Now let us adopt the analytic RIAF [79] as a benchmark model. We vary parameters for
several aspects, such as the magnetic field structure, velocity distribution, and thickness H,
in order to see how the birefringence signals are influenced. Three types of magnetic field
geometries, including a vertical field, a toroidal field, and a radial field, are considered [6].
Notice that the EHT observation for M87? favors the vertical one [6]. Velocity distributions
are characterized by a Keplerian, a sub-Keplerian, and a free-falling flow, respectively [80].

In Fig. 8, we show several examples of RIAFs. The impacts induced by the inclination
angle and the black hole spin are qualitatively the same as those of the NT thin disk model.
For illustration, we fix these quantities as 163◦ and aJ = 0.99, which are motivated by M87?.
We consider the EVPA distribution as a function of the azimuthal angle with a given radius
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ρ on the sky plane. In addition, motivated by the study in [5], we also calculate the intensity
weighted average (IWA) EVPAs,

〈χ(ϕ)〉 ≡ 1
2arg

(
〈Q× I〉+ i〈U × I 〉

)
. (5.10)

Here the IWA region covers the dominant emission on the sky plane [2].

0.4

0.2

0.0

0.2

0.4

(
)/(

2
)

VERTICAL
  sub-Kep

IWA, H = 0.3 , = 0.4
= 10 rg, H = 0.3 , = 0.4

IWA, H = 0.05 , = 0.4
IWA, H = 0.3 , = 0.2

0 /2 3/2 2
0.0

0.2

0.4

0.6

0.8

1.0

(
)/g

a
a m

ax

0.4

0.2

0.0

0.2

0.4

(
)/(

2
)

VERTICAL
  Kep

IWA, H = 0.3 , = 0.4
= 10 rg, H = 0.3 , = 0.4

IWA, H = 0.05 , = 0.4
IWA, H = 0.3 , = 0.2

0 /2 3/2 2
0.0

0.2

0.4

0.6

0.8

1.0

(
)/g

a
a m

ax

Figure 8: Left: Examples from the IPOLE simulation [53, 54] with different types of RIAFs are shown. The
magnetic field structure, velocity distribution, and thickness H are labelled in each panel. We take α = 0.4,
gaγγamax = 1 rad and aJ = 0.99 for the axion and black hole parameters. Inclination angle i is set to 163◦
motivated by M87?, and the spin points to −x on the sky plane. At each point, the white quiver represents
the EVPA without the axion correction. The rainbow color, from red to purple, shows the time variations
of EVPA in the presence of the axion cloud. Right: We demonstrate the EVPA oscillation in terms of the
relative phase, δ(ϕ)/2π, and amplitude, A(ϕ)/gaγγamax, as functions of the azimuthal angle on the sky plane.
Intensity weighted average (IWA) EVPAs and EVPAs at ρ = 10 rg are shown for comparison. Results with
various choices of H and α are also presented. We note that the direction of ϕ = 0 corresponds to the +x
direction on the left panel.
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Figure 8: (Cont.)

There are several features to be explained. First, let us study the impact of the thickness
of the accretion flow. As discussed in [5], a magnetically arrested disk (MAD) [6] has a strong
magnetic field which compresses the thickness parameter of the RIAF, H, to 0.05 in the inner
region, and extends it to about 0.3 in the outer region [81–84]. We take H = 0.3 and 0.05 for
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comparison as benchmarks in this study. As demonstrated in Fig. 8, the oscillation amplitude,
A, for H = 0.3 is typically smaller than that for H = 0.05 by a simple scaling factor. This
is consistent with the washout effect induced by the finite thickness of the accretion flow,
discussed previously.

Furthermore, lensed photons also contribute significantly to the washout effects. Such a
washout effect, led by lensed photons, can be reduced if one focuses on EVPAs away from the
neighbourhood of the black hole, e.g., ρ� 5 rg for M87?. Particularly, the EVPA variations
at ρ = 10 rg are shown as the black dashed lines in the right panel of Fig. 8. On the other
hand, when we consider IWA EVPAs, lensed photons may lead to a substantial impact. In
order to disentangle the washout effect from the finite thickness and that from the lensed
photons, we artificially remove the lensed photon and recalculate the EVPA variations. This
is done by a simple manipulation in IPOLE [53, 54]. We show the new results in Fig. 9. As
we can see, after artificially removing lensed photons, the variations of the IWA EVPA show
universal structures in both the relative phase δ and the amplitude A for various choices of
the accretion flow parameters. This indicates that more astrophysical model independent
analyses can be carried out if the future VLBI measurements provide detailed information
about the EVPA variations in the regions away from the SMBH, where lensed photons are
not important.
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Figure 9: Here we show the relative phase, δ(ϕ)/2π, and amplitude, A(ϕ)/gaγγamax of the EVPA oscillation
as functions of the azimuthal angle, with (left) and without (right) lensed photons. In the latter case, the
IWA EVPAs present universal features, in terms of various choices of the magnetic fields and the velocity
distributions.

It is also worth to mention that when we increase the axion Compton wavelength, i.e.,
decrease α from 0.4 to 0.2, both washout effects become less important. In this case, and the
amplitudes are mainly influenced by the radial wave-function of the axion cloud.

By comparing δ(ϕ)/2π distributions in Fig. 9, we find that most of them are fit well by
Eq. (4.7), except for the one with a radial magnetic field. It turns out that such a deviation
is caused by a significant contribution from lensed photons. In Fig. 10, we compare the linear
polarization intensity from lensed photons, I lp

L , with the total linear polarization intensity
IL. It is clear that, with a radial magnetic field, the lensed photons give a much larger
contribution, and they dominate in the region near ϕ ' π where the largest deviation from
Eq. (4.7) appears.

Notice that in more realistic cases, such as the accretion flows described by general
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Figure 10: Here we present the ratio between the linear polarization intensity from lensed photons and
that of the total emission. We choose various magnetic field configurations and velocity distributions of RIAF.
The last plot shows the ratio at a fixed radius, i.e., ρ = 5 rg, as a function of the azimuthal angle ϕ.

relativistic magnetohydrodynamic (GRMHD) simulations, lensed photons are typically less
polarized than the ones from direct emissions, due to the magnetic turbulence [85, 86].
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Consequently, our study in this section, based on the analytic RIAF, tends to overestimate
the washout effect from lensed photons.
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Figure 11: Here we compare IWA EVPAs for different spins, with α = 0.25 in the left panel and α = 0.12
in the right panel. The EVPA variations have slight difference with the case of aJ = 0.99.

In addition, we also study the effect of the black hole spin aJ . In Fig. 11, we show
the comparison of IWA EVPAs with various choices of spins. We find that, as long as the
superradiance can happen, the EVPA variations remain qualitatively the same as the ones
of aJ = 0.99.

6 Prospect for future VLBI observations

6.1 Statistics
6.1.1 Search for EVPA variations
In this section, we characterize the statistics method for the axion-induced birefringence
search. The EVPA data from observation can be parametrized as

χD = χastro
D + χaD(ϑa) + nD. (6.1)

Here χastro is the EVPA variation with an astrophysical origin, and χa(ϑa) is the EVPA
variation induced by the axion cloud. Further, ϑa represents the axion related parameters,
such as its mass and its coupling to photons, and nD is the measurement noise. The subscript
D labels the properties of the observation data, including the time of a measurement, the
coordinates on the sky plane and the photon frequency. For simplicity, we assume the
measurement noise follows a Gaussian distribution, thus nD has a probability distribution as

P (nD) = 1√
2πσD

exp
[
−1

2
n2
D

σ2
D

]
. (6.2)

We note that our following discussion can be easily generalized to include non-diagonal noise
correlations. Given a set of observation data χD, the likelihood function can be written as

L
[
χD|ϑa;χastro

D

]
=
∏
D

1√
2πσD

exp

−
(
χD − χastro

D − χaD(ϑa)
)2

2σ2
D

 . (6.3)
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In order to estimate the likelihood, one needs to properly model the astrophysical con-
tribution, χastro

D . The complexity of the accretion flow leads to the biggest technical obstacle.
Now let us introduce a method in order to characterize the behavior of χastro

D .
The dynamics of the accretion flow can be modeled by numerical simulations, e.g.,

based on GRMHD. There are many parameters, such as electron density and temperature,
velocity distribution, and magnetic field structure and strength, serving as the inputs. For
a specific SMBH, one can determine the range of these input parameters by comparing
the simulation results with the observation data, such as the photon ring morphology, the
luminosity distribution, etc. We label the input parameters as {pi}, and their allowed ranges
to describe such a SMBH as {∆pi}. Now one can perform the numerical simulations with
a scan of these parameters within their allowed region {∆pi}. For each choice of {pi}, we
obtain a distribution of EVPA, labeled as χastro

D ({pi}). This forms an ensemble of EVPA
with various choices on the astrophysical input parameters.

First, let us define the ensemble average of the EVPA for each D, which can be written
as

χ0
D = 1

Nens

∑
{pi}

χastro
D ({pi}), (6.4)

with Nens as the number of simulations carried out in this ensemble.
In order to characterize the uncertainties from the accretion flow modeling, let us assume

that χastro
D for various choices of {pi} follows a Gaussian distribution. More explicitly, we

define
MDD′ = 1

Nens

∑
{pi}

(χastro
D ({pi})− χ0

D)(χastro
D′ ({pi})− χ0

D′). (6.5)

Here we maintain the potential correlations in time, space and photon frequency. The Gaus-
sian approximation is exact if the following two requirements are met. First, we need the
parameters within {∆pi} follow a multivariate normal distribution. Further, χastro

D ({pi})
needs to respond linearly to all pi within {∆pi}, which can be approximately justified using
Taylor expansion. In practice, whether the Gaussian approximation is valid should be ex-
amined in the GRMHD simulation. If this is not satisfied, a more complicated probability
distribution of χastro

D ({pi}) can be numerically introduced and our analysis method can be
easily generalized. For now, let us stick with the Gaussian approximation for the simplicity.

After obtaining the probability distribution of χastro
D , one can convolute it with the like-

lihood calculation in Eq. (6.3) and integrate out χastro
D as nuisance parameters. The likelihood

distribution can be written as

L [χD|ϑa] = 1√
|2πM ′|

exp
[
−1

2
∑
DD′

(
χD − χ0

D − χaD(ϑa)
)
M ′−1
DD′

(
χD′ − χ0

D′ − χaD′(ϑa)
)]
,

(6.6)

where M ′DD′ ≡ MDD′ + σ2
DδDD′ . This gives a viable calculation to estimate the sensitivity

on the axion related parameters ϑa.
In order to perform a back-of-envelop estimation on the sensitivity in the parameter

space, let us assume that the uncertainties, for all values of D, are uncorrelated with each
other and they are approximately at the same order of magnitude. Under this assumption,
one can calculate the typical size of the uncertainty as

σ2 = 1
Tr[M ′−1

DD′ ]
. (6.7)
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Consequently, the signal to noise ratio (SNR) can be estimated by comparing the typical
size of the axion-induced birefringence signal with σ. By this simple approximation, the
sensitivity on the axion-photon coupling, i.e., c, scales as 1/

√
ND, where ND is the total

number of data points.

6.1.2 Search for differential EVPA variations
The statistical method considered above requires a systematic study of the accretion flow,
using GRMHD for example. Now let us consider an alternative analysis using the differential
EVPA. This method has been introduced in [27] to perform an axion search using the EHT
observation on M87?. Although we pay the price of a suppression factor, one does not need
a very comprehensive understanding on the accretion flow dynamics.

Remember that the index D labels the observation time, the coordinates on the sky
plane and the photon frequency. Let us single out the time information, using the index i,
and the other information is labeled by d, i.e., D ≡ {i, d}. We will compare the EVPA at
different times, with fixed coordinates and frequency. Let us define the differential EVPA as

∆χ̃i ≡
χi+1
σi+1

− χi
σi
, (6.8)

where all the indices d are dropped for convenience.
Let us focus on the axion parameter space where the following condition is met,∣∣∣∆χ̃astro

i

∣∣∣� |∆χ̃ai (ϑa)| . (6.9)

This condition implies that the change of the EVPA between two observation times is dom-
inated by the axion birefringence effect rather than an astrophysical origin.

Under this assumption, one can easily calculate the likelihood function for ∆χ̃ai as

L [∆χ̃i|ϑa] = 1√
|2πM̃ |

exp
[
−1

2
∑
ii′

(
∆χ̃i −∆χ̃ai (ϑa)

)
M̃−1
ii′

(
∆χ̃i′ −∆χ̃ai′(ϑa)

)]
. (6.10)

Here M̃ characterizes the measurement noise for the differential EVPA. Using the notation
in Eq. (6.1),

M̃ii′ =
〈(ni+1

σi+1
− ni
σi

)(
ni′+1
σi′+1

− ni′

σi′

)〉
. (6.11)

Assuming the measurement noise is uncorrelated, we obtain M̃ii = 2, M̃i (i±1) = 1 and 0 for
all other matrix elements.

Here we see that the benefit of using differential EVPA is to remove the non-trivial
dependence on χastro

i in the likelihood function. In order to justify the condition in Eq. (6.9),
one only need to understand the accretion flow at the level of orders of magnitude. This is
much easier to achieve than a comprehensive understanding required in the previous analysis
method.

On the other hand, the analysis based on the differential EVPA needs to pay the price
of a suppression factor. To demonstrate that, let us use the axion signal ansatz, presented
in Eq. (4.4), to calculate the differential EVPA.

Assuming σi ' σj , the axion contribution to the differential EVPA, defined in Eq. (6.8),
can be written as

∆χ̃ai = 2A sin
[
ω∆t

2

]
cos

[
ω(ti + tj)

2 + δ

]
/σi, (6.12)
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where ∆t ≡ tj − ti is the time interval of the sequential observations. Thus we see that the
axion signal in terms of the differential EVPA suffers from a suppression factor as 2 sin

[
ω∆t

2

]
.

This suppression is more severe for a smaller axion mass.

6.2 Data sets increase

In this subsection, we discuss the prospective improvements that can be achieved using the
EVPA data from the future VLBI observations, e.g., ngEHT [28, 29]. We focus on the
correlations among the axion induced birefringence signals, which can potentially increase
the sensitivity as well as discriminate against astrophysical background.
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Figure 12: Here we show the results from the IPOLE simulation based on RIAF model. We choose three
frequencies as benchmarks, 86 GHz, 230 GHz and 345 GHz. They are corresponding to the ones that ngEHT
[28, 29] plans to observe. The white quiver represents the EVPA without the axion contribution at each point.
The rainbow color, from red to purple, indicates the time variation of the EVPA in the presence of the axion
cloud. The inclination angle i = 163◦ is taken to be consistent with M87?, and the spin points to −x on the
sky plane. The last plot shows the relative phase, δ(ϕ)/2π, and the amplitude, A(ϕ)/gaγγamax, of the EVPAs
oscillation. We show the results for IWA and those at ρ = 10 rg. The features in signals are similar with each
other with various choices on the frequency, indicating a strong correlation among them. In this analysis, we
take α = 0.4, gaγγamax = 1 rad and aJ = 0.99 for the axion and the black hole. Further, we choose vertical
magnetic field, sub-Keplerian velocity distribution and H = 0.3 as the benchmark parameters for the RIAF
model.
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First, we study the axion signal correlations in various frequency bands. The ngEHT can
potentially observe at three different frequencies simultaneously, i.e., 86 GHz, 230 GHz and
345 GHz [28, 29]. Since the axion-induced birefringence is achromatic, the EVPA variations
at different frequencies are the same while propagating in the vacuum. After including the
plasma effects based on RIAF models, we show the comparison on the IWA EVPA oscillations
at these three frequencies in Fig. 12. There are slight differences, which are caused by the
washout effects induced by the finite thickness of the accretion flow and the lensed photons.
Notice that, for 86 GHz, the accretion flow is optically thicker compared to that at higher
frequencies. Thus the contribution from lensed photons is less important, which makes the
green solid line (IWA at 86 GHz) in Fig. 12 less asymmetric respect to ϕ = π. The correlations
among EVPA variations at different frequencies appear to be quite strong for this benchmark.
The Faraday rotation modifications on the EVPA, characterized by ρV in Eq. (3.27), has a
square dependence on the photon wave-length, while the axion-induced term is universal for
all frequencies. Thus this provides a powerful way to subtract the astrophysical contributions.

Furthermore, the future VLBI experiments have potentials to increase the spatial reso-
lution and improve the dynamic range. The EVPA variations at different radii from the black
hole can be measured. As mentioned in previous sections, the lensed photons contribute sig-
nificantly to the washout effects. However, since these lensed photons contribute dominantly
at small radii, such as ∼ 5.5rg for M87?, EVPA variations at the outer region are almost
free from such a washout, as demonstrated previously. In addition, for the parameter space
we are interested in this study, the axion wave-functions generically peak at a larger radius,
e.g., ∼ 10 rg on the sky plane. Therefore, correlating the EVPA variations at different radii
on the sky plane can be a powerful handle to reduce the lensed photon contamination.

21 20 19
log10(ma/[eV])

3

2

1

0

1

2

3

4

5

lo
g 1

0(
c)

Astrophysical
 Constraints on ga

M87
EHT 17' 4 days

ngEHT
c = EM

fa = 1015 [GeV]

0.1 0.25 0.45

aJ=0.99aJ=0.99
aJ=0.8aJ=0.8

18

17

16

15

14

13

12

11

lo
g 1

0(
g a

[G
eV

])

Figure 13: The comparison between constraints on dimensionless axion-photon coupling c ≡ 2πgaγγfa
in [27], other astrophysical constraints assuming fa = 1015 GeV, and prospect for ngEHT is shown. The red
dashed line corresponds to the minimal possible value of c = αEM.

In order to demonstrate the prospects of the axion search at ngEHT, we perform a
back-of-envelop estimation based on several potential improvements to be achieved on future
observation of M87?. The results are shown in Fig. 13. As a comparison, we also present the
existing constraint in the axion parameter space, using the recently published EHT results
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[27]. The improvements on the sensitivity mainly come from the following aspects:

• three different frequencies;

• five different radii between ρ = 5.5 rg and ρ = 9.5 rg;

• ten times the observation time (∼ 40 days span);

• the axion field values at different radii, according to the axion cloud wavefunction, are
taken into consideration;

• compared with the differential EVPA analysis carried in [27], we remove of the suppres-
sion factor sin [ωtint/2] assuming a better understanding on the accretion disk dynamics.

We note that, in this estimation, we assume that the uncertainty in each measurement is at
the same order of magnitude as that in [5], for simplicity. Here we emphasize that the ngEHT
observation on M87? can potentially probe cmin ∼ O(1)αEM. This serves as a well-motivated
theoretical benchmark, in which the axion-photon coupling is induced by O(1) numbers of
chiral fermions with O(1) units of the electric charge.

Finally, the future VLBI experiments [30] have the potential to observe more SMBHs
at the horizon scale [31, 87]. In this case, one can perform an axion search at a broader mass
window, potentially covering from 10−22 eV to 10−17 eV. In Table 1, we list some candidates
of SMBHs in [87] that can be observed by the future VLBI experiments. Such observations
require the photon rings of these SMBHs to have open angles larger than 2µas, and enough
flux at the radio frequency band can be received. In the table, we provide the axion mass
range corresponding to α between 0.1 and 0.5, which should be eventually determined by the
individual spin of each SMBH.

SMBH M/M� θring/µas µ/eV range Ta/s at α = 0.3
Sgr A? 4.3× 106 53 3.1× 10−18 ∼ 1.6× 10−17 4.4× 102

M87? 6.5× 109 42 2.1× 10−21 ∼ 1.0× 10−20 6.7× 105

IC 1459 2.8× 109 9.2 4.9× 10−21 ∼ 2.4× 10−20 2.8× 105

NGC 4374 1.5× 109 9.1 8.8× 10−21 ∼ 4.4× 10−20 1.6× 105

NGC 4594 5.8× 108 5.7 2.3× 10−20 ∼ 1.2× 10−19 6.0× 104

IC 4296 1.3× 109 2.5 9.9× 10−21 ∼ 5.0× 10−20 1.4× 105

NGC 3031 7.9× 107 2.0 1.7× 10−19 ∼ 8.4× 10−19 8.2× 103

Table 1: Here we provide a list of SMBHs. Two of them are already by measured by EHT, M87? and Sgr
A?. The rest are potential candidates to be resolved in the future [87]. We also provide the typical axion mass
window, corresponding to α between 0.1 and 0.5, as well as the typical axion oscillation timescale Ta for each
SMBH.

7 Conclusion

The polarimetric measurements of the horizon scale emissions from SMBHs open a new win-
dow to probe the existence of ultralight axion fields [24, 27]. An axion cloud can be generated
through the superradiance process, and the axion field can potentially reach the highest pos-
sible value. On the other hand, accretion flows generate large amount of linearly polarized
radiations from the neighborhood of rotating black holes, overlapping with the densest region
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of the axion cloud. Consequently the EVPA of these photons will oscillate periodically due
to the axion photon coupling. The current and next-generation VLBI polarimetric measure-
ments [5, 29] are powerful ways to search for axion clouds around SMBHs.

The strong gravity and medium effects highly influence the horizon scale observations.
Both the axion cloud and the accretion flow dynamics can lead to EVPA variations. In our
study, we show explicitly how the axion photon coupling can be embedded into the polarized
covariant radiative transfer equations where both the curved spacetime and plasma effects
are taken into consideration. The axion effect can be included by a simple modification on
the numerical radiative transfer simulation, such as IPOLE [53, 54].

The mapping from the SMBH coordinates to the sky plane for observation is non-trivial.
For a geometrically thin and optically thick disk, such as the NT model, one needs to follow
the photon geodesics which connects the sky plane to the surface of the accretion disk. We
study in detail on how such a mapping depends on the size of the black hole spin and its
inclination angle. This mapping is further used to generate the amplitude and the relative
phase of the axion induced EVPA signal on the sky plane.

For a more realistic model of the accretion flow, photons being observed at each point
on the sky plane may have different spatial and temporal origins along the line of sight. The
sum of these photons generically leads to a suppression on the EVPA oscillation amplitude.
We study such washout effects in two simple toy models. One is the constant radiation
source along a continuous and finite length, representing the thickness of the accretion flow.
The other one is the radiation from two spatially separated point sources, mocking the
contributions from lensed photons.

The future VLBI experiments, such as the next-generation Event Horizon Telescope [28,
29], will be able to perform better measurements and provide more detailed information about
the EVPA variations. The sensitivities of the axion searches can therefore be significantly
improved, especially by correlating the EVPA oscillations at different radii and frequencies.
In addition, a much larger axion mass window is expected to be explored since more SMBHs
will be observed.
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