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Abstract 

In steady flows at high Deborah numbers high polymer stresses are often 

concentrated within thin boundary layers along streamlines downstream of 

flow stagnation points where the polymer extension is large. The layers 

appear as birefringent lines in optical experiments. 

Detailed observations of the flow near a stagnation point have shown a 

complex sequence of birefringence structures, which appear as the flow 

rate increases, for polymer concentrations above some critical value. The 

first transition is from a solid birefringent line to a hollow birefringent 

cylinder or ‘pipe’. In this paper we calculate the modification of the flow 

due to the presence of polymer for a FENE (finitely extensible non-linear 

elastic) dumbbell model with non-linear hydrodynamic friction, and 

demonstrate that the associated reduction in strain rate at the stagnation 

point can be sufficient to produce a pipe structure. The polymer concentra- 

tions required to produce this transition are found to be in qualitative 

agreement with experiment. 

We determine also the thickness of birefringent strands as a function of 

polymer concentration, molecular weight, flow rate and inertia. These 

results too are found to be in qualitative agreement with experiment. 

We show finally that for a FENE model with constant hydrodynamic 

friction birefringent strands are produced, but we do not find pipes at 

realistic values of the parameters. 
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1. Introduction 

Even at dilute concentrations (c < c*> the presence of polymers can 

produce a large increase in the extensional viscosity of a solution [l]. At 

low Deborah numbers the polymer molecules adopt a randomly coiled 

configuration and at dilute concentrations produce only a small change in 

the viscosity of the solution. However, in steady extension at high Deborah 

numbers the polymer molecules can become highly extended by the flow, 

so that the effective volume fraction occupied by the polymer (which is 

given by the largest linear dimension of the molecule) becomes much 

larger. The polymer solution then behaves like a semidilute suspension of 

rods and has a greatly enhanced extensional viscosity [2]. 

Two criteria must be met for high polymer extension to take place in a 

flow. First, the extension rate of the flow must be sufficiently large to 

overcome the relaxation of the polymer (i.e. the Deborah number must 

exceed unity). Second, the polymer must remain within the region of 

extensional flow for sufficient time to experience a large strain. In a steady 

flow, this latter condition is met, in general, only by those molecules which 

pass close to a stagnation point. As a result, highly extended polymers are 

confined to narrow regions at, and downstream of, stagnation points. In 

optical birefringence experiments (e.g. ref. [3]), these regions of high 

polymer extension appear as bright birefringent lines and hence we called 

them ‘birefringent strands’ in an earlier paper [4]. This structure is also 

seen in the high Deborah number computations of Chilcott and Rallison zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[51. 
In two previous papers [4,6] we constructed an asymptotic method to 

analyse steady high-Deborah-number flows with stagnation points. The 

birefringent strands are regarded as force singularities within an otherwise 

Newtonian fluid and the consequent modification of the flow outside the 

stands is calculated. For planar flows only one parameter A is needed to 

characterise this non-Newtonian flow modification, namely the product of 

the widthA of the strand and its high extensional viscosity. An analogous 

quantity A may be defined for axisymmetric flows. Although these results 

came from a study using a FENE dumbbell model, we have noted also 161 

that any constitutive model (e.g. Phan-Thien-Tanner or Giesekus) exhibit- 

ing a high, but finite, Trouton ratio may be expected to give qualitatively 

similar results for the flow modification outside the strands. 

In this paper we consider the structure of the birefringent strand itself 

and attempt to calculate the parameter A as a function of the polymer 

concentration, molecular weight and the extension rate of the flow for a 

FENE model, For small values of A this task is straightforward: the flow is 

approximately Newtonian everywhere and A can then be determined by a 
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Fig. 1. Sketch of the opposed-jet device. 

purely kinematic calculation [4,6,7]. At higher values of A, however, the 

presence of the highly viscous fluid within the strand reduces the extension 

rate in the neighbourhood of the strand, and a self-consistent calculation of 

the flow modification is needed. Different constitutive models may not give 

similar results here. We choose to focus on a FENE model. 

In circumstances where flow modification occurs, birefringence experi- 

ments suggest that the form of the modification may be complex. In a 

series of experiments with several different monodisperse polymer solu- 

tions Keller, Ode11 and co-workers [8-131 and also Cathey and Fuller [14] 

have carefully studied the flow birefringence near an axisymmetric stagna- 

tion point using an opposed-jet device (see Fig. 1). Polymer solution is 

sucked simultaneously through both jets, creating a stagnation point at the 

centre point between the jets. An extension rate may be defined from the 

overall volumetric flow rate. 

At very low concentrations a thin birefringent strand is observed for all 

extension rates above the coil-stretch transition value but no flow modifi- 

cation is seen. At higher concentrations (though still at concentrations 

below the critical concentration for entanglements between neighbouring 

coiled molecules, c*) a more complex behaviour is found. Above a critical 

extension rate a thin birefringent strand appears. As the extension rate is 

increased, the region of birefringence becomes much broader and above a 

second critical extension rate a dark central line appears within the 

birefringent strand. This structure, in which the region of birefringence has 

a non-birefringent interior, is termed a pipe. Upon further increases in 

extension rate the dark interior widens and a second and occasionally even 

a third birefringent line may appear along the centre line. Ultimately the 

flow becomes unstable and rapidly fluctuating birefringence appears 

throughout the flow. This unstable state is termed the flare. 

A similar sequence is observed for planar flows by Cressely et al. [l&16] 

in two-roll mills. As the roller speed is increased, a thin birefringent line 

appears, this line then broadens before appearing to split into two. At still 

higher speeds the flow becomes unstable. 
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Fig. 2. Phase diagram of the birefringence behaviour of solutions of monodisperse 

polystyrene (taken from Keller et al. [9]). 

Figure 2 (taken from Keller et al. [93) shows a ‘phase diagram’ of the 

birefringence behaviour as a function of extension rate and polymer con- 

centration for solutions of monodisperse polystyrene. Pipes do not occur at 

concentrations below a critical value, c,. For c > c, pipes appear only at 

extension rates above a second critical extension rate (which depends 

strongly on c and is higher than the coil-stretch value). 

The structure of the birefringence in the pipe suggests (on the assump- 

tion that birefringence and high extension are equivalent) that polymer 

molecules are extended only in the outer part of the strand where the flow 

is birefringent and not in the interior where there is no birefringence. 

Thus, polymer molecules which were highly extended in the outer part of 

the strand appear to collapse back towards the coiled state as they enter 

the dark interior region. As noted by Keller et al. [9], this can occur only if 

the strain rate within the interior is lower than the critical strain rate at 

which extended polymers collapse (the stretch-coil transition). Outside the 
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strand the strain rate is above the coil-stretch value and so there must be a 

large decrease in strain rate within the strand. Velocity measurements by 

Gardner et al. [17] in a cross-slot device do indeed show a sharp decrease 

in extension rate at the position of the strand. 

Keller et al. suggests that this reduction in the strain rate arises from 

entanglements between polymer molecules, even though pipes occur at 

concentrations much smaller than c*. The presence of a critical concentra- 

tion for pipe formation would appear to support this theory. We suggest, 

however, that pipes can occur at dilute polymer concentrations without 

direct mechanical interactions between neighbouring molecules (i.e. no 

entanglements). We do, of course, include interactions mediated by the 

solvent which are vital to the cooperative effect. 

To test this hypothesis we construct a self-consistent model of the flow 

field near a stagnation point. An essential feature of this model is that it 

includes the modification of the flow due to the presence of the extended 

polymers. In order to obtain the correct behaviour for the stretch-coil 

transition, we use a dumbbell model incorporating non-linear friction [lS] 

to model the polymer. Using this model we are able to produce not only 

birefringent pipes, but also a phase diagram similar to Fig. 2. Perhaps 

surprisingly, we find also that without including a non-linear friction term 

we cannot produce the pipe behaviour at plausible parameter values. It 

remains to be determined whether other constitutive models can produce 

birefringent pipes. 

In most of the experiments performed by Keller’s group, low-viscosity 

solvents are used and consequently the Reynolds numbers are quite large 

(of the order of 100 in the experiments of Miiller et al. [ll]), despite the 

small scale of their apparatus. However, in more recent experiments 

[13,19], and in those of Cathey and Fuller [14], more viscous solvents are 

used for which the Reynolds numbers are less than one. Qualitatively, the 

phase diagram (Fig. 2) is found to be insensitive to Reynolds number. For a 

first’analysis we choose to neglect inertia in our model. However, inertia 

does appear to affect the width of the birefringent strand at high strain 

rates and this is discussed separately in Section 6. 

2. A model problem 

In order to investigate the effects of flow modification on the structure 

of the birefringent strand, we construct a model of the steady flow in the 

neighbourhood of the strand. This model is necessarily highly simplified, 

but does contain the physical mechanisms which we believe are important 

in determining the qualitative features of the flow. 
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Fig. 3. Sketch of flow geometry. 

2.1 Flow geometry 

There are two difficulties in providing a detailed analysis of the flows in 

the opposed-jet and cross-slot experiments. First, the velocity field and 

extent of the polymer deformation upstream of the stagnation point are 

poorly characterised; in consequence we shall employ upstream boundary 

conditions that are as simple as possible. Second, the flow near, but 

downstream of, the stagnation point is fully two-dimensional. We show 

below that, by means of a suitable choice for the external flow, lubrication 

methods can be used to simplify this calculation. More complex numerical 

solutions will be required to remedy these defects to provide a full solution 

for the cross-slot flow. 

2.1.1 Planar flow 

For two-dimensional flow 

coordinates (x”, y*> with 

near a stagnation point, we employ Cartesian 

the origin at the stagnation point and the 

direction of extension parallel to the x*-axis (see Fig. 3). We assume that 

the polymers are extended only within a distance a of the x*-axis, and we 

construct a model of the flow within a semi-infinite strip of width a, with 

some prescribed flow on the boundary y * = a. 

The tangential velocity on the boundary y * = a is determined by the 

external flow, and so we require that the x *-component of the velocity, u *, 

be equal to some prescribed function %*(x*1 on y * = a. In choosing a 

suitable form for Z!*(x *> we note that near the stagnation point YY* is 

proportional to x * but, as the region of extensional flow is finite in length, 

we require Z* to tend to a finite limit at large distances. As a model 

problem we take 

%*(x*) = U_[l - exp( -x*/b)], (1) 

where b is the length scale in the x* direction. 
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In analysing the cross-slot flow the most appropriate choice would 

perhaps be b = a, so that the prescribed flow would be small on the walls 

of the downstream tube zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( y * = a, x* > a). As indicated above, to make the 

calculation tractable we shall, however, assume that b B a so that the flow 

is almost unidirectional almost everywhere and lubrication methods can be 

employed. 

Additionally we take as a second convenient boundary condition that the 

normal force on the wall y = a vanishes. It follows that the pressure 

gradient associated with the flow vanishes at leading order in a/b and thus 

outside the birefringent strand itself the velocity profile is linear in y. The 

normal component of velocity on y = a will be determined from continuity, 

and will be necessarily small, but non-zero. 

The remaining boundary conditions on U” are that U* --) U, as x * + ~0 

and (from symmetry) that 

&.4* 

u*I~*=~=O and - 
ay* = 

0. (2) 
y*=o 

2.1.2 Axisymmetric flow 

For uniaxial extension, we can form the analogous model to that of 

Section (2.1.1) for a cylindrical geometry. We use cylindrical polar coordi- 

nates (r*, z *) with the origin at the stagnation point and the z *-axis along 

the centre line of the strand. As before, we calculate the fluid velocity 

u = (v *, w *> within a semi-infinite cylinder of radius a for an imposed 

velocity w* = %‘*(z*) = UJl - exp(-z*/b)] at r = a. Again we suppose 

that b z+ a, and that no pressure gradient is exerted. 

2.1.3 bob-dimensional~a tion 

It is convenient to rescale dimensions so that in planar flow 

X* u* v*b 
x=---  

b ’ 

y,y” 

a ’ 
u=--.-- 

K ’ ’ = U,a 

and in axisymmetric flow 

z” r* W* v*b 
z=- 

b ’ 
y-_- 

a ’ 
w=-.-- u=-.-...- 

K ’ U,a ’ 

2.2 Polymer model 

(3) 

(4) 

The distortion of the polymer is modelled as the extension of an elastic 

dumbbell that incorporates both a non-linear spring and non-linear friction 
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[@I. In the flow geometry described in Section 2.1 the extension of the 

dumbbells is predominantly in the direction parallel to the x-axis, and so 

we shall only consider the extension of dumbbells in this direction. The 

evolution of the dimensionless dumbbell extension, R, is given by 

dR 
a’ 

dt=R%- DR 
4f(R) (R _ 1). (5) 

where d/dt is a Lagrangian time derivative, D is the Deborah number, 

scaled so that the critical extension rate required to extend the dumbbells 

corresponds to a Deborah number of unity, and f(R) is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 
fcR) = 1 _ (R2/L2) ’ 

where L is the extensibility of the dumbbells, and we shall assume that 

L z== 1. 

The elastic stress is predominantly in the E-direction, and has magni- 

tude, aP where [7] 

4PC 
(T P = Ff(R)R2. 

While this model is an oversimplification it has the correct asymptotic 

features for a strong extensional flow. First, the length of a dumbbell tends 

to a finite limit L at high extension rates. Second, when fully extended the 

dumbbells behave like rigid rods, giving a viscous stress proportional to the 

extension rate, with an extensional viscosity 

PP = &ucL3. (7) 

There is also a hysteresis [18] between the coil-stretch and stretch-coil 

transitions, because the strain rate required to maintain the extension of a 

highly extended dumbbell is lower than that required to stretch an unex- 

tended dumbbell (see Fig. 4). 

2.3 Calculation of the flow 

2.3.1 The two-fluid approximation 

A full calculation of the flow near a stagnation point requires a numeri- 

cal solution of coupled partial differential equations for the fluid velocity 

and the polymeric stress (determined from the extension of the dumbbells). 

In view of the high stress gradients within the strand and the disparity of 

length scales (with a strand width small compared to a, but a strand length 

large compared to a) such a numerical calculation would be difficult. (In 
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Deborah number 

Fig. 4. Graph of the equilibrium dumbbell lengths in steady extensional flow for L = 36. 

Solid lines indicate stable solutions; dotted lines unstable solutions. Note the existence of 

multiple stable solutions in the range 0.3 to 1.0. 

simulations with a simpler FENE dumbbell model Chilcott and Rallison [5] 

were restricted to values of L of at most 10.) Fortunately for large values 

of L the system may be decoupled by means of a two-fluid approximation 

[7,20]. The flow is divided into two distinct regions. 

(1) Outside the strand, the extension of the polymers is not sufficient to 

produce high non-Newtonian stresses and so the dominant contribution to 

the stress comes from solvent. The fluid, therefore, behaves as a Newtonian 

fluid of approximately solvent viscosity (p). 

(2) Within the strand the polymers are highly extended and aligned in 

the direction of extension. The extended polymers behave like rigid rods 

and so the solution behaves as an anisotropic viscous fluid with a greatly 

enhanced extensional viscosity (p,). 

2.3.2 The incoming stagnation streamline 

Instead of solving eqn, (5) for the stretch of the polymer molecule along 

all the streamlines, we calculate the stretch only along one representative 

streamline, the incoming stagnation streamline. We show in the Appendix 

that while the strand is thin compared with the channel width, the stretch 

of the polymers near to the strand depends only on y, and so is identical to 

that on the incoming stagnation streamline. Substantial flow modification 

can be generated by a thin strand, but not enough to produce a pipe. Thus 

we find that pipes occur only when the strand occupies a significant 

fraction of the channel. Unfortunately, we are unable to prove that the 

stretch is independent of x in this case. Experiments do, however, find that 

the birefringence is quite uniform along the strand, and we shall assume 

that the strand width remains uniform in the analysis that follows. 
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Along the incoming stagnation streamline, eqn. (5) becomes 

with the initial condition that R = 1 at y = 1. The strand width 8 is then 

given as the value of y at which R becomes nearly equal to L. In our 

simplified numerical calculations we choose to define the outside edge of 

the strand, y = 8, to be at the point of the maximum extension, i.e. where 

aR/ay = 0. 

2.3.3 Thin strands and thick strands 

For values of the parameters c( +z l), L( z+ 1) and D for which S proves 

to be small and the variation in the fluid velocity across the strand is small, 

analytic progress is possible. For a thin strand the jump in the tangential 

stress (,uU/a>au/ay across the strand is balanced by the divergence of the 

extensional stress within the strand [4] and so, given that the polymers are 

fully stretched in this region 

where the non-Newtonian parameter A is equal to 

A= 
2pp8a2 

pb2 ’ 

For our chosen polymer model, p,, = $cL3. We find that the polymer 

concentration c only occurs in the combination 

c^ = ca2/b2 

and with this definition 

(11) 

A = ?L36, (12) 

so that the non-Newtonian parameter A used in ref. 4 is given as h = Ab*/a. 

In Section 3 we show by means of an analytical argument that there is a 

strong suggestion that a pipe will occur for suitably large values of A, but 

within the thin strand limit we are unable to predict the details of the flow 

within the pipe once it has formed. 

The case where the variation of the fluid velocity within the strand is 

significant requires a calculation of the flow both inside and outside the 

strand and, even with the two-fluid approximation, a numerical solution is 

needed (see Section 4). Note that in these numerical solutions we are 
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forced to assume that the stretch of the polymer, and hence 6 and A, are 

constant along the strand. 

3. Thin strands 

Outside the strand the fhnd is Newtonian and so with the lubrication 

approximation the fluid velocity satisfies 

a224 
-=o S<y<l. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a Y2 

(13) 

Hence if U(X) is the velocity within the strand (variations across the strand 

being supposed negligible) we have 

u(x, Y) = 
i 

U(x> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOsy16, 

U(x) -i- (y -S)(s- U) s <y 51; 

on continuity grounds u is then given by 

u(x,y)= -u’y-~(y-qZ(u9zq Sry<l. 

(14) 

(15) 
The jump in &~,@y across the strand is given by eqn. (9) and so 

AU” - U= -%. (16) 

The solution of this equation satisfying the boundary conditions (2) is 

A &exp(-x) - - x 
u=1+ 

A-l exp ( i - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg/2 f (17) 

and hence the strain rate at the origin, U’, and the velocity, U, along the 

incoming stagnation streamline are given as 

1 1 Al/2 
U” = 

1+g/25 O= - 1+py- 2(1 + P) Y2* 

This solution can be valid only if variations in the strain rate au/ax(= 

- &~/i!~y) are negligible in the region y < 6, and thus for consistency we 

require that Ar/‘S +z 1. 

We assume that I) is su~iciently large that polymers become stretched, 

and then eqn. (8) may be used to estimate the degree of stretch of the 

polymers as they approach the stagnation point. An analytic solution of (8) 

is not available, but we patch partial solutions together in what is some- 

times called the ‘linear-locked’ approximation by noting that near the 
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upstream boundary R is close to unity and thus 

dR 

“ey 
z-R;_ 

(19) 

The deformation is therefore affine and R a l/v. On the other hand when 

R becomes significantly larger than unity, but is still small compared with 

L, eqn. (8) can be approximated as 

3R 

“ay 
= -R; _ ;, 

(20) 

with solution 

4Y 
Rv = - 5 + constant. (21) 

Finally eqn. (21) itself breaks down as R approaches L and this value of y 

identifies the strand boundary y = 8. Patching together an approximate 

solution at the (arbitrary) choice y = i proves to give good agreement with 

the numerical solutions of Section 4, except for values of D close to unity, 

and is exactly correct in the limit D + ~0. Defining the edge of the strand 

y = 6 by where (21) gives R = L yields 

LS 2 2 + C2 
- 

l+Al/2 = j$ - 2(1 + A”‘) * 

Substituting for 6 = A/CL3 we obtain 

(22) 

This quadratic equation provides a self-consistent solution for A and hence 

for the strand width 6. A number of limiting cases can be recognised. 

Case 1: If CL2 -K 1 and D > 2 we obtain 

A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - k tL2 so that 6 = i 
( ) ( ) 

1-G. 

It follows that A is small and the flow modification due to the polymers is 

also small. The result 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa l/L was given in ref. [7] on the basis of 

Newtonian flow kinematics. The result A a c^ is a consequence of the 

diluteness of the solution. 

Case 2: If 1 -K ?L2 +z & and 2 <D < 4, we obtain 

D-2 2 1 
and 6 = 4 - - 

( ) 4-D i?L3’ 
(24) 
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For values of D in this range we predict, perhaps surprisingly, that the 

strand width falls as the polymer concentration rises. The flow modification 

is of order unity. 

Case 3: If 1 << CL2 CC a and D > 4, we obtain 

C2L4 
2 

A=- 
4 

In this limit we have the possibility of substantial flow modification even 

though the strand is thin. The result A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa C2 is remarkable for a dilute 

solution: in a genuinely dilute case (Case 1) no such result would be 

possible; but for a semi-dilute system of rods significant flow modification 

is permitted within the range of applicability of the theory and, although 

entanglement effects have been neglected, interactions mediated by the 

solvent can produce results that are non-linear in c^. 

Case 4: If 2L2 2 & our solution fails, for then variations in the strain rate 

within the strand become significant. 

Formation of birefringen t pipes 

In order to reduce the strain rate sufficiently that the polymers will 

collapse as they approach the origin it is necessary for the flow modifica- 

tion to be large, and thus only in Case 3 is there a possibility that a pipe 

will be formed. We may examine this possibility by imposing the require- 

ment that the strain-rate U’ is low enough at y = 0 for the stretch-coil 

transition to take place. From (5), this requires that 

In consequence we need Ali2 z+ 1. Substituting in our result (25) for A, we 

have 

D2 

‘L > 2( D - 4) ’ 
(27) 

This criterion is shown in the form of a phase diagram in Fig. 5. This 

analysis predicts the possibility of a pipe for sufficiently large concentra- 

tions provided that D exceeds 4, but is not too large. We note that in the 

opposed-jet experiment the critical value of D is rather lower than 4, and 

no upper limit on D is seen for pipe formation: it may be, however, that 

the flare instability occurs before this upper boundary can be reached (see 

Fig. 2). We see too that only for c^ > c^+= 8/L is it possible for a pipe to 

occur. 
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Fig. 5. Phase diagram showing the onset of pipe formation as a function of ?L and D. 

A difficulty with our analysis above is that the strands are no longer thin 

when the pipes are formed. Pipes occur according to eqn. (27) only when 

;L = O(1) and so eqn. (25) gives that the thickness S = O(1). As our 

solution for the flow (14) is based on the assumption that S +z 1, the 

criterion (27) must, therefore, be viewed as merely suggestive. A numerical 

solution for thick strands is needed. 

3.2. Axisymmetric flow for a thin strand 

A similar analysis to the above can be performed for axisymmetric flow. 

Again the thin strand approximation leads to a criterion that pipes are 

formed, but only when the strand is thick. Experimental results for the 

opposed-jet device suggest that birefringent pipes generally occur only in 

circumstances where the strand occupies a significant proportion of the 

tube. For this case it 

itself and a numerical 

4. Thick strands 

4.1 Planar flow 

is necessary to examine the flow within the strand 

solution is needed. 

For Stokes flow outside the strand we have noted that 

a*u 
-=o 6<y<l. 
W 
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Within the strand (which we assume is uniform in x-see Section 2.3.3) the 

high extensional viscosity pP gives rise to an additional term so that 

2/J., a2u /_& a2u 
--+---~O 

b2 ax2 a2 dy2 
v-9 

In this equation pP itself depends upon y because the degree of polymer 

stretch may vary across the strand, and in particular when a pipe is formed 

at the centre of the strand p,, = CL at y = 0. Fortuitously, however, the flow 

field is remarkably insensitive to the variation of pI, with y provided that 

the integrated force exerted by the strand is fixed (see Section 4.4). In 

consequence we make the further simplifying assumption in solving (28) 

that pP = p,, a constant across the strand. For convenience we define (Y as 

The flow within the strand is then given by a normal mode decomposition 

as 

U(X, y) = 1+ 
cos( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcry) exp( -x) 

cr( 1 - 6) sin( as) - cos( ~05) 

+ i A, COS(W,Y) ew(-w,x/4 
n=O 

1 
+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY> = -  

[ 

sin( ay) exp( -x) 

a  a ( 1 - S) sin( &) - cos( cy6) 

+ i A,, sin(o,y) exp( -w,x/a) , 

I n=O 
(29) 

for 0 <y I 6, where o, is the root of WS tan(&) = 6/(1 - S) which lies in 

the range n7r < o, < (n + l)~, and the constants A,, are chosen to satisfy 

the boundary condition ~(0, y) = 0. Outside the strand (6 <y < 1) the 

velocity is given by 

u(x, y>=U(x)+ l_s y _a [iv(x) - U(x)] 

u(x, y) = V(x) - U’(x)(y - 8) - 
(Y - 6)” 
2(1 _ q W’(x) - WX)l~ 

where [U(x), V(x)] is the velocity at y = 6. 
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4.2. Axkymmetric flow 

For ax&symmetric flow the governing equations become 

=o 6<r<l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2a2w  1 a aw  
a -ST-~ r; =0 O<r<6, 

az2 ( 1 

and 

2 + ic(ru) =O. 

Within the strand the flow is again given by a normal mode decomposition 

as 

1 
u(r, z) = ; 

[ 

J1( Qr) exp( -2) 

-as log 6 J1(cxS) -J&x8) 

+ i 44(&r) exp(-&z/a) 9 

n=O 1 

w(r, z) = 1+ 
Jo( ar) exp( -4 

--(YCY log s J@) -Jo(&) 

+ i 4Jo(P,r) 4 -&z/4, 
n=O 

where .I,,( z) and J1( z) are Bessel functions of the first kind and p, are the 

roots of the equation 

-ps log s J#S) =Jo(&3). 

The constants A, are chosen to satisfy the boundary condition w = 0 on 

z = 0. The velocity (u, w) outside the strand is given by 

w(r, z) = Z(z) -  
%9 - Jw4 

log 6 
log r 

u(r, z) = V(z) -  qqr-q 

+ 
W ’(z) -  W ’(z) 

4 log 8 
(2r log r-r -  28 log S + a), 

PO’) 

where [V(z), W(z)] is the velocity on r = 6. 
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4.3 Method of solution 

The aim of our calculation, as in the thin strand case, is to determine FP 

(and hence cy) and 6 as functions of c, L, D and a/b. It proves more 

convenient to fix (Y, L, D and a/b, then to calculate the corresponding 

value of S iteratively; and finally to determine c. 

We suppose first that Q and 6 are given. We then adjust 6 iteratively for 

a given value of (Y until aR/ay = 0 at y = 6. We may now determine R and 

&L/&C as functions of y throughout the strand. The local effective viscosity 

is given by eqn. (6) as 

2P.c NV2 
P&Y) = - 

D au/&x ’ 

and self-consistency for the integrated force requires that 

(31) 

(32) 

For chosen values of (Y, D and L this equation provides a solution for c^ 

J 

sf(R)R2 -’ 

o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAau/ ax 
dy . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (33) 

For axisymmetric flow we must average pI, over the area of the strand, and 

then c^ is given as 

/ 

sf(R)R2 - ’ 

o aw la 
rdr , 1 

In the limit of high extensibility (L z+ 1) with the strain rate exceeding 

the stretch-coil critical value au/ax z+ l/DL, the extensional viscosity, pP, 

is given by eqn. (7) in which case eqns. (33) and (34) reduce to the simpler 

form 

4.4. Consistency of the jlow model 

The flow solutions (30) and (301’ in Sections 4.1 and 4.2 assume that pI, 

has the constant value jZP over the cross-section of the strand. We shall 

find, however, that, with certain combinations of c, L and D, the dumb- 

bells are highly extended only in the outer part of the strand and not along 
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Fig. 6. Comparison between values of R calculated for c^ = 0.2, L = 100 and D = 4 using the 

two different flow models: ( ->, constant viscosity model; (* . . * 1 .), ‘pipe’ model. 

the centre line (i.e. there is a pipe). We have tested the accuracy of our 

constant strand viscosity approximation by considering an alternative model 

for axisymmetric flow for which a normal mode structure is available. In 

this model we take P&Y) = /2,r/6, so that pP is equal to zero along the 

centre line. In Fig. 6 we compare the values of R calculated with this ‘pipe 

model’ and the constant strand viscosity model of Section 4.2 in a case 

where a pipe is formed. We find that there is little difference in the results. 

It appears, therefore, that it is the total force exerted on the dumbbells 

rather than its radial distribution which is important in determining the 

flow field. This gives us reasonable confidence in our results even for flows 

where the profiles of ,uup are poorly fitted. 

4.5. Planar flow: results for thick strands 

For concentrations below c, (the critical concentration for pipe forma- 

tion), the polymer remains fully stretched throughout the strand, in which 

case 

(y= = (5,3 . 

We can now compare the results of the thick-strand calculations with the 

asymptotic formulae derived in Section 3 for thin strands. Figure 7 shows 

the strand width S as a function of D for values of 2L2 of 1, 10, 100 and 

300 (with L = 100). Formally only the two lowest values of 2L2 lie within 

the range of applicability of the thin-strand theory. Below a Deborah 

number of approximately 5 the strand width decreases with 2L2, while for 

Deborah numbers greater than 5, the strand width increases with concen- 

tration. This is qualitatively the behaviour predicted from the thin-strand 

theory where for tL2 z-  1 the strand width 6 was found to be proportional 
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Deborah number 

Fig. 7. Strand width as a function of Deborah number for planar flow with L = 100 at 

various values of ?L2: ( -), tL2 = 1; (. . . . . .), tLZ=lo; (-- - -_), ~L2=100; 

(-- * -_), tL2 = 300. 

to tL2 for D > 4, but proportional to (2L2>-’ for D < 4. The difference in 

the value of the critical Deborah number for this transition from 4 to 5 

results from the approximation (eqns. (19) and (20)) for the polymer 

evolution equation (8). 

The physical explanation for the two types of behaviour is that the 

presence of the polymer reduces the strain rate near the strand and a 

reduction in the strain rate has two opposing effects on the stretching of 

the polymer. First, the reduction in the strain rate reduces the rate at 

which the polymers stretch, which reduces the width of the strand. How- 

ever, the reduction in the strain rate also reduces the magnitude of u via 

the continuity equation, and so the polymers move more slowly towards the 

x-axis, which tends to increase the strand width. At moderate Deborah 

numbers the first effect is the more important because the extension rate of 

the polymer is the difference between au/ax and 4(R - 1>/OR2 and if the 

strain rate only just exceeds the relaxation rate of the polymer a small 

change in the strain rate will have a large effect on the strand width. At 

high Deborah numbers, however, the polymers deform affinely (provided 

R < L) and so R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa - l/v. Initially both -U and R have values of order 

unity and so S will be the point at which u is of order - l/L. The presence 

of the strand causes u to decrease near the strand and so the value of S 

increases with 2L2. 

Figure 8 shows the value of A as a function of i?L2 for L = 100 and 

L = 10000 in the limit D + 03. The values of A coincide for the two 

different values of L except at large values of 2L2, where the strand width 

is no longer small. The asymptotic results from eqns. (23) and (25) 

A = tL2 2L2 c< 1 

A = $2L4 CL2 >> 1 
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Fig. 8. Plot of A as a function of ?L* in the limit D +W  (* * . . 

L = 10000. 

are shown in this figure and agree with the calculated 

value of L (though this value is certainly unphysical). 

4.6 Axisymmetric flow: results for thick strands 

. .I, L = 100; (- - -_), 

results for the larger 

Qualitatively, our results for axisymmetric flow are similar to those for 

planar flow, except that the variation in the strand thickness with concen- 

tration is much smaller. This is because the velocity disturbance caused by 

the strand is proportional to log(l/r) rather than r, and so the flow 

modification is more localised. Figure 9 shows the variation in the strand 

radius with Deborah number for the same range of values of eL2 as Fig. 7. 

0Z5 I 
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z 

s 0.15 - 
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E 

% 
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s 
VI 
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Fig. 9. Strand width as a function of Deborah number for axisymmetric flow with L = 100 at 

various values of ?L*: ( _), ;L*=l; (. . * . . .), ?L2=10; (---), ?L*=loo; 

(- * -), ;L* = 300. 
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Experimental measurements of the width of the birefringent strand have 

been performed by Miiller et al. [ll] using the opposed-jet device described 

in Section 1. They observe an approximately four-fold increase in the width 

of the birefringent line between a 0.02% and a 0.35% solution of monodis- 

perse polystyrene, which correlates with, but is rather larger than, our 

calculated increase shown in Fig. 9. On the other hand, in the experiments 

the strand radius increases with polymer concentration at all flow rates at 

which strands are observed, whereas in our calculations the strand radius 

decreases with concentration for Deborah numbers between 1 and 1.8, 

though there can be difficulties of numerical resolution when the strand 

width becomes very small. We do not understand this discrepancy. 

In the experiments the strand radius initially increases with strain rate, 

as found in our simulations. However, at higher strain rates the strand 

width decreases again. We believe that this subsequent decrease is due to 

inertia (the Reynolds number for these experiments is of the order of 100) 

as similar experiments with more viscous solvents do not show this be- 

haviour (see Section 7). For very low concentrations the strand radius 

asymptotes to about ith of the jet radius at high strain rates. The strand 

width at low concentrations and high Deborah numbers is approximately 

a/ & (if the polymer deforms affinely R a - l/ru and so for u = -r/2 

this gives 6 * = a/ a) which suggests that an approximate value for L is 

36. 

Cathey and Fuller [14] have also measured the width of the birefringent 

strand using similar experimental apparatus to that used by Miiller et al. 

[ll]. The solvents used in these experiments were more viscous than those 

used by Miiller and the strand width is observed to increase with strain rate 

towards a finite limit with no subsequent decrease. 

5. Birefringent pipes 

The analytical thin-strand model of Section 3 is able to suggest that 

pipes may form but becomes inconsistent once the pipe has formed. The 

numerical finite strand width model, however, allows us to investigate the 

structure of the pipe. 

5.1 Planar flow 

Figure 10 shows the phase diagram for the onset of a pipe as a function 

of c^ and D for L = 100 from the numerical calculations for a strand of 

finite width. Comparing this with Fig. 5, the phase diagram for the 

thin-strand model, we see that the dependence of pipe formation on 

concentration and Deborah number is approximately the same. 



250 0. G. Harlen et al. /J. Non-Newtonian Fluid Mech., 44 (1992) 229 -  26.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

No strand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

I 1 I f 

0 1000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2000 3000 4000 

EL8 

Fig. 10. Phase diagram of the formation of a pipe in planar flow as a function of EL2 and D 

with L = 100. 

Pipes do not occur below a critical concentration, c^.+. The thin-strand 

model predicted this to be 8/L (from eqn. (27)) and at this value a pipe 

will form at D = 8. In Fig. 10 we see that for L = 100 the value of P, is 

appro~mately 0.11 ~slightly larger than the estimate of 0.081, and the 

corresponding value of I) is approximately equal to 8. 

Even at concentrations above c^+ pipes do not form for Deborah 

numbers less than about 5. In the thin-strand analysis we found for D < 4 

that the strand width decreased with c^ and that A was always of order 

unity. The formation of a pipe requires a large value of A, At Deborah 

numbers above 8 the minimum concentration required to form a pipe 

increases with D because a larger value of A is required to produce the 

necessary reduction in strain rate. 

Although pipes are seen in planar flows (e.g. by Cressely et al. [15,16]) 

there are no quantitative measurements with which to compare our results. 

For this reason we concentrate on a~s~metric flow where we can com- 

pare our results with observations from suction-jet experiments [8-131. 

5.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAxisymmetric flow 

Figures 11 and 12 show phase diagrams for pipe formation in axisymmet- 

ric flow for L = 36 and L = 100 respectively. Changing the value of L has 
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Fig. 11. Phase diagram of the formation of a pipe in axisymmetric flow as a function of ?LL2 

and D with L = 36. 

little effect on the form of the phase diagram apart from changing the scale 

of the concentration dependence. The phase diagram for axisymmetric flow 

has approximately the same form as that for planar flow except that the 

Strand 
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0 

Fig. 12. Phase diagram of the formation of a pipe in axisymmetric flow as a function of tLz 

and D with L = 100. 
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minimum Deborah number required to form a pipe is smaller (approxi- 

mately 1.8 compared to 5 for planar flow). 

Comparing Figs. 11 and 12 with the experimental phase diagram for 

monodisperse poly(styrene) from Keller et al. [9] in Fig. 2, we see that the 

shape of the lower branch of the strand-pipe transition is essentially the 

same. In both the experiments and theory there is a critical concentration 

c^+ below which pipes are not found at any Deborah number. At concentra- 

tions, c^, above I?+ p p i es are observed only at Deborah numbers greater 

than a critical value that depends strongly on c^. For Deborah numbers 

below this critical value but greater than unity a thin strand is present, but 

its thickness is too small to produce a sufficiently large modification to the 

flow. The predicted value of the critical Deborah number is somewhat 

greater than the experimental value. The difference between the experi- 

mental and theoretical phase diagrams at large D may be entirely due to 

the flare instability which we have not studied. 

The slight decrease with concentration seen in Fig. 2 for the coil-stretch 

transition may result from the small increase in the shear viscosity of the 

solution due to the addition of polymer. This effect is easily incorporated in 

the analysis but is neglected for the dilute theory presented here. 

5.3 The structure of the pipe 

Figures 13(a)-13(b) show the dumbbell extension, R, as a function of 

radius for two different concentrations (X2 = 130 and 2L2 = 390 respec- 

tively) at a Deborah number of 4. A pipe is formed only for the higher 

concentration. The dashed curve on each graph shows the extension rate, 

&V/&Z, as a function of r and the horizontal dotted line indicates the 

critical extension rate for the stretch-coil transition. In Fig. 13(a) the 

extension rate always remains above the critical level and so, although the 

dumbbells do decrease in length within the strand, they ultimately attain an 

equilibrium length on the upper solution branch of the hysteresis curve (see 

Fig. 4). In Fig. 13(b) the extension rate falls below the stretch-coil 

transition value in the centre of the strand and so the dumbbells collapse 

forming a pipe. Note that there is only a small variation in the extension 

rate within the strand (as assumed in the thin-strand approximation). 

As the dumbbells reduce in length, their rate of collapse (which is 

proportional to l/R) increases. Also, the velocity of the dumbbells towards 

the axis decreases, and so the final stage of collapse occurs rapidly in space. 

This produces a sharp interface between the regions of extended and 

unextended dumbbells, as is observed experimentally where there is an 

abrupt change between birefringent and non-birefringent regions of the 

flow. 
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Fig. 13. Dumbbell extension, R, ( ------I and strain rate, aw/az, (- - ---I for L = 36 and 

13 = 4 at concentration: (a> ZL2 = 130; (b) Z2 = 390. Dotted lines indicates critical strain 

rate for stretch-coil transition. 
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Fig, 14. The structure of the birefringeut strand in ~is~metric flow as a function of 

Deborah number, for L = 100 and c^ = 0.5: (*I, outer radius at which R = I. /2; Co), inner 

radius at which R = L/2; CD strand radius (8). 
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The variation of the flow birefringence with increasing Deborah number 

is shown in Fig. 14. Here, we have chosen (somewhat arbitrarily) to define 

the region of birefringence to be where the dumbbells are extended to at 

least half of their maximum possible length (i.e. R > $). In this figure the 

open and closed circles are respectively the inner and outer radii of the 

birefringent region. The intermediate points (denoted by circles with a 

central cross) are the positions of the strand radius 6 (defined to be where 

the extension is greatest). 

Above a Deborah number of unity a very thin birefringent strand 

appears. The width of this strand increases with Deborah number until at 

about D = 1.8 a pipe is formed. Both the outer and inner pipe radii expand 

with increasing Deborah number up to around 5, when the inner radius 

begins to contract. Apart from the final stage, this sequence corresponds 

directly to the observations of Keller et al. [9]. The reason why the 

contraction of the inner radius of the pipe is not seen in the experiment 

may be that the flow is unstable at these Deborah numbers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.4 Other birefringent structures 

With the simplified models introduced in Section 2 we have been able to 

reproduce the birefringent pipe structure and to explain the form of the 

phase diagram for the strand-pipe transition. However, we do not see the 

other more complex structures which are also observed in experiments. For 

example, in order for a second birefringent line to appear the extension 

rate near the centre line must increase again after it has dropped below the 

stretch-coil transition value. This cannot happen in our model as the 

extension rate will always decrease with decreasing distance from the 

centre line x = 0, owing to the absence of a pressure gradient. It should be 

noted that the second line appears only when the pipe radius is comparable 

with the radius of the jet, and so the lubrication approximation made in 

deriving the flow model is no longer valid. A more sophisticated flow model 

is needed which takes account of this and of the more complex polymer 

stress distribution. 

The flare instability has also not been investigated. The pipe-flare 

interface shown in Fig. 2 roughly follows a line of constant A. This suggests 

that the instability may arise from the modification of the flow by the 

birefringent strand, but this requires further investigation. One method of 

testing this hypothesis would be to compare the phase diagrams for 

polymers of different molecular weights (i.e. different values of L). If the 

flare instability is caused by flow modification then it should occur at the 

same value of A for different L, whereas the values of A necessary to 

produce the pipe increase with increasing molecular weight. 
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6. FENE dumb~lls with linear friction 

The polymer model of previous sections incorporates non-linear friction 

(or hydrodynamic drag). FENE dumbbell models with linear friction are 

easier to handle numerically (see e.g. ref. [5]). Do they also produce pipes? 

With linear friction, (5) is replaced by 

but the additional stress exerted by the dumbbells is unchanged. 

There are two important differences in the resulting rheology. First, in 

steady extension at high Deborah numbers the polymer stress is propor- 

tional to L2 and not L3, This consequently reduces the degree of flow 

modification. Second, there is no hysteresis between the coil-stretch and 

stretch-coil transitions, and so the strain-rate need be reduced only by a 

factor of l/D (rather than l/DL) to generate a pipe. 

For planar flow we can use the thin-strand model of Section 3 to 

determine the values of the parameters c^, L and D that lead to pipe 

formation. The velocity along the incoming stagnation streamline is still 

given by eqn. (18) as 

1 Al/2 

u= 
1 + AV2Y - 2(1 + Al,“) y27 

provided that .A’/2S K 1, but now A is equal to 2L26 and not i?L36. 

For large values of D and L the degree of stretching of the polymer 

along this streamline can be calculated. For small values of R the polymer 

deforms affinely and R a l/v, while for 1 +z R ez L eqn. (36) can be 

approximated as 

8R au R 

v-=-R--D. aY aY 
(37) 

Once again we match these two appro~mations at y = i, and then by 

imposing the condition that R = L at y = 6 we obtain 

L6(2 + A”“S) 

(2+A1’7 = 

with A = EL'& In order for a pipe to form, the strain rate at the origin 

must be below the critical strain rate for the stretch-coil transition, (i.e. 

U’ < l/D at y = 0). This requires that 

A1’2+1>D 9 (39 



256 0. G. Harlen et al. /J. Non-Newtonian Fluid Mech., 44 (1992) 229 -  265 

1.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Fig. 15. Dumbbell length, R as a function of radius for the linear friction model in 

axisymmetric flow with c^ = 0.5 and L = 100, at various values of D: (-  ), D = 1.5; 
(. . . . . e), D=3;(-  - - -_), D=6;(-a---_), D=12. 

with equality when a pipe is just formed. At this point eqn. (38) gives 

L(2 + A1W)2 = (A”” + 4)(A”” + 2). (40) 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL x=- 1 (with A112S -C 1) 

A = 4L so D = 2L112 with 6 = -&. (41) 

Thus pipes occur only at Deborah numbers higher than 2& and since 

A112S -K 1 we require additionally that c^a z+ 1. Solving eqns. (39) and 

(40) numerically, we find that for c^ < 1 pipes occur only for L 2 3000 and 

D 2 140. Such high values of D are well beyond the range of the suction-jet 

experiments. 

Figure 15 shows the dumbbell length, R, as a function of radial distance 

in axisymmetric flow at various values of D for c^ = 0.5 and L = 100. These 

results were calculated using the method described in Section 4. Even at 

this high concentration a pipe is not seen at any value of D. 

These results show that pipes of the kind found earlier do not occur for 

dilute concentrations of dumbbells with linear friction at experimentally 

achievable Deborah numbers. This is because the linear dumbbells are 

unable to affect the flow when the local strain rate drops below the 

coil-stretch transition: linear dumbbells do not have the hysteresis seen in 

Fig. 4. Thus although the linear friction model does produce a birefringent 

strand [4] it cannot reproduce the birefringent pipe. 

This calculation shows that this strongly non-Newtonian flow can provide 

a subtle discrimination between models. As already noted [6] many models 

(e.g. Giesekus, Phan-Thien-Tanner) with high Trouton ratios will produce 
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birefringent strands; however, only a smaller class produce birefringent 

pipes at plausible parameter values. 

7. The effect of inertia 

The calculations in the previous sections neglected fluid inertia. In many 

of the experiments the Reynolds numbers (Re = pU,b/p.) are quite large 

(typically of the order of 100). However, there is little qualitative difference 

between the birefringence behaviour of these experiments and others with 

more viscous solvents for which the Reynolds numbers are small. There is, 

however, a difference in the behaviour of the strand width at high strain 

rates. In both our results and the low Reynolds number experiments of 

Cathey and Fuller [14] the strand width increases monotonically towards a 

finite limit. On the other hand, Miiller et al. [ll] (who used low viscosity 

solutions, for which Re is of the order of 100) observe that the strand width 

increases with strain rate at low strain rates but then decreases again at 

higher strain rates. In this section we show that inertia is responsible for 

this decrease in strand width. 

At high Reynolds number, Re, an inertial boundary layer is generated at 

the margin of the birefringent strand. Moving radially outward from the 

axis there are now three different regions of flow. 

(1) The birefringent strand where the polymer molecules are highly 

extended and the extensional viscosity of the solution is high. 

(2) The inertial boundary layer; a region outside the strand of thickness 

of order l/ 6 where the effect of the polymer can be neglected, but the 

fluid viscosity is important. 

(3) The outer region, where both non-Newtonian stresses and viscosity 

can be neglected. In this region we have a potential flow and for small 

values of z the fluid velocity is given by 

v= -$, W’Z. 

7.1 The birefringent strand 

Within the strand the fluid inertia is negligible (see below) so the 

momentum equation remains (eqn. (8)) 

Provided that the strand thickness is small, w is approximately uniform 
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across the strand and across the strand we obtain 

tlW ck!z62 a2w 

7 

z --- 

2 az2 
at r=6. (42) 

Near the stagnation point 

w=Ez, 

for some unknown strain 

z-direction is l/E, and so 

a2W 

- = E3z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a22 

w is approximately linear in z, so that 

rate E. The length scale for variations in the 

for small values of 2 

arbitrarily assigning the multiplicative constant to unity. With these approx- 

imations, the boundary conditions at r = 6 for the inertial boundary layer 

calculation are 

aw  Cr2E3S 

F=2Z’ w = Ez and by continuity u = - ;Er. (43) 

Finally we note that fluid inertia is negligible compared to the extensional 

stress gradient in the strand provided that 

(44) 

Substituting our expressions for w and a2w/at2 from eqn. (43), this 

requires that 

Re 
(Y2>> - , 

E 

which is satisfied for sufficiently large values of CL 

7.2 The inertial boundary layer 

To obtain the flow within this boundary layer we adapt the solution of 

Hiemenz (see, for example, Ref. 21) for flow near a stagnation point on a 

rigid boundary. Outside the strand the fluid is Newtonian and so in 

dimensionless variables the vorticity (o = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV A u) satisfies 

am 1 

dt 
+U~vcr,=cl,~vU+ Revzw (45) 

For steady axisymmetric 

equation becomes 

aw  aw  ov 1 

v--$+wJ-g=-+- 
r Re 

flow with velocity (v, w> and vorticity o this 

P-9 
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For small values of z, w is proportional to z and so we seek a solution to 

eqn. (46) of the form 

* = f(r) Zf’W 

( 

-- --), _=_;($2)‘, 
Y’ r 

for some function f(r) to be determined. The vorticity equation (46) gives 

(47) 

which is the axisymmetric analogue of the Hiemenz equation. At the strand 

boundary both the velocity and the shear rate are continuous, and so the 

boundary conditions on f(r) are (from eqn. (43)) 

f(8) = ;Ea2, 
Ct2E3iS2 

f’(8) = E6, f”(8) = E + 2 

1 
and f= ir2 for Y B - 

&’ 

This equation can be solved numerically by a shooting technique to find the 

unknown parameter E. 

7.3 Calculating the strand width 

In the high Deborah 

R <L and therefore R 

Since the dumbbells are 

! 

s= g, 
i 

number limit the dumbbells deform affinely for 

is inversely proportional to YU (see Section 4.6). 

fully extended at r = 6, S must satisfy 

(49 

The value of 6 in the boundary layer calculation is then varied until it 

satisfies eqn. (49). 

7.4 Numerical results 

The variation in the strand width with Reynolds number for various 

values of (Y is shown in Fig. 16. The strand width decreases with Reynolds 

number towards a value of l/ \/zT. This occurs because the strand affects 

the flow only within the inertial boundary layer. In the outer region the 

polymers behave exactly as they would in a very dilute solution where there 

is no flow modification. As the Reynolds number increases, the inertial 

boundary layer reduces in thickness and so the strand width tends towards 
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Fig. 16. Strand width as a function of Reynolds number for L = 100 at various values of 2L2: 

(-  ), tL2 = 1; (. . . . . .), CCL2 = 10; (-  -  -), 2L2 = 100; (-  . -_), tLz = 1000. 

its value in the limit of zero concentration. This variation is observed in the 

birefringence experiments of Miiller et al. [9]. At a strain rate of 6000 s-l 

the strand width is approximately 100 pm for a concentration of 0.02% and 

approximately 300 pm for a concentration of 0.125%. When the strain rate 

is increased to about 24000 s-i the strand widths at these concentrations 

are respectively about 70 pm and 100 pm. Thus the strand widths decrease 

with strain rate and the difference between the strand widths at different 

concentrations is much smaller at higher strain rates. 

8. Conclusions 

We have examined the steady flow of a dilute polymer solution near a 

stagnation point. In the limit of large extensibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, the polymer is highly 

extended only within a narrow strand of width 8. By considering a simpli- 

fied model of the flow outside the strand, analytic expressions for 6 (and 

hence for A) can be obtained in terms of the fundamental parameters c^, L 

and D. 

For values of CL greater than 8 we find a range of Deborah numbers for 

which the extension rate within the strand is less than the stretch-coil 

transition value and so the polymers collapse back to their coiled state. 

This provides a mechanism for the formation of birefringent pipes observed 

in suction-jet experiments. 

The predicted variation in birefringence behaviour obtained from these 

models is in good agreement with phase diagrams obtained from experi- 

mental observations by Keller et al. [9]. This enables us to explain the 

observed variation in the birefringence behaviour with concentration and 

extension rate. Our results also demonstrate that pipes can occur in dilute 

solutions without the need for entanglements between polymer molecules. 
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However, interactions mediated by the solvent are crucial to the production 

of a large polymeric stress. 

The deformation of a polymer molecule is here modelled as the exten- 

sion of an elastic dumbbell incorporating both a non-linear spring and 

non-linear hydrodynamic drag. We show that the results cannot be repro- 

duced using a simpler dumbbell model with linear friction, as it is not 

possible to obtain the required degree of flow modification. The effective- 

ness of other models having a high but finite extensional viscosity at 

producing a pipe phenomenon has yet to be established. 

Further work is needed to examine the variation of the stretch of the 

polymers along the length of the strand, and to examine the onset of 

instabilities. 
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Appendix: Variation of strand width with distance from the stagnation 

point 

In the body of the text and in refs. [4] and [6] we have assumed that the 

width, 6, of the birefringent strand produced by an isolated stagnation 
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point is uniform in X. This is consistent with both birefringence observa- 

tions [8-131 and the numerical solutions of Chilcott and Rallison [5]. In this 

Appendix we prove that this assumption is valid asymptotically in the limit 

of small S at points along the strand where the local extension rate is large 

compared to the stretch-coil transition value. The proof given here is valid 

for thin strands that can produce large flow modifications. Unfortunately, 

as noted in Section 2.3, the generation of pipes requires very large flow 

modification that falls outside the formal range of validity of this proof. 

For simplicity, we consider planar flow with a straight strand. The 

extension of this proof to a curved strand (see e.g. ref. [4]) is straightfor- 

ward, provided that the radius of curvature of the strand is large compared 

to the strand width, and the necessary modifications are indicated at the 

end of this Appendix. The same procedure may be used for axisymmetric 

flow. 

In order to become highly extended a polymer molecule must reside 

within the flow for a time of order log L, and for large values of L (with 

CL c 1) it must pass close to the stagnation point. Therefore, throughout 

its history it remains close to either the incoming stagnation streamline or 

the birefringent strand. By forming asymptotic expressions for the fluid 

velocity in the region near the incoming streamline and in the region near 

the birefringent strand, we shall show that the distance from the down- 

stream stagnation streamline at which the polymers become fully extended 

is independent of the distance from the stagnation point. 

Consider a planar flow with a stagnation point at the origin. Cartesian 

coordinates are defined such that the birefringent strand lies along the 

x-axis, with the incoming stagnation streamline along the y-axis (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y 

Fig. 17. Sketch showing the path of a polymer molecule which intersects the strand, and 

regions (1) and (2). 
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17). For convenience we use the dimensionless variables defined in Section 

2. 

Region (1): small x 

For suitably small values of x the velocity component in the y-direction 

is approximately independent of x so the velocity, u = (u, u) is given by 

u = -XV’(Y), u = V(y), (Al) 

where V(y) is the velocity along the y-axis. For small values of A the 

length scale of the flow in the x-direction is equal to unity and so this 

approximation is valid for the region x < E where E +z 1 is a constant to be 

determined. For large values of A, the presence of the strand reduces the 

extension rate near the x-axis (the extension rate along the strand will be 

of order A- ‘12). This increases the length scale of the flow (to AlI2 along 

the strand) and so increases the range of values of x for which the 

approximation is valid. The x length scale will be approximately inversely 

proportional to the extension rate, - V’(y), and so in general eqn. (Al) is 

valid in the region 

with E-=z~. WI 

Region (2): small y 

In the region close to the strand, u is approximately independent of y, 

and so for small values of y the velocity is given by 

u = U(X), u = -yU’(x), 643) 

where U(x) is the velocity along the x-axis. If A is small, the y length scale 

of the flow is equal to unity, and so this approximation is valid in the region 

y < 77 for some constant ‘I, with 77 -=z 1. If A is large the extension rate 

along the strand is smaller than that of the outer flow, producing a shear 

rate near the strand of magnitude unity for 1 <x < Ali2 and so for small 

values of y 

u=U(x)+yy=xU’(O)+yy l<x-~A”~, 

where y is of magnitude unity. Therefore the approximation in eqn. (A3) is 

valid only for y +z U’(O), i.e. within the region 

x > 0, y>O, y<q, withv<U’(O). 

The path of the polymer 

644) 

We now show that the path taken by a polymer which becomes fully 

extended at the point (x,, 8) is confined throughout its history within the 

union of regions (1) and (2) and that suitably small choices of YJ and E can 

be made. Provided 6 is small compared to U’(O), we can choose 77 to be 

large compared with S so that the strand lies within region (2). 
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Following the path of the polymer backwards in time, its position (x, y) 

satisfies 

dy u -YU’( x> 

dx=u= U(x) 

provided that it remains within region (2), and so 

~u(xcl) 
y= U(x) * W) 

This path intersects the boundary of region (1) at the point 

(X, = E/l V’(O) I, Y 11, ( i.e. at the point where U(X) = -XV’(O) = E). Within 

region Cl), x is inversely proportional to - V(y) and so the position of the 

polymer is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EYl 

x= -V(y)' 

W) 

the path of the polymer will have been entirely within region (1) prior to 

reaching the position (xi, yi). Near the strand V(y) is linear and so (A7) is 

satisfied. Furthermore, for y of order unity both V(y) and V’(y) will be 

also of order unity, and so the condition (A7) holds because y , is small. 

Hence, the path of the polymer lies entirely within the union of regions 

(1) and (2) if 

E?7 > au,, with E K 1, 17 -=z U’(O), 648) 

where U, is the maximum value of U(x). In the worst case U, is of order 

unity, and hence provided U’(0) z+ 8, we can choose E = 2/m, 

q=/m. In th e extreme case when 6 2 O(U’(O)), the x length scale 

along the strand will be of order l/U’(O) z+ 1 and so for x < AlI2 the 

strand lies within region (1). 

Polymer extension 

We now calculate the polymer extension along this path. Within region 

(l), both au/ax (equal to - V’(y)> and v are independent of X. Further 

R = 1 at y = 1 independent of X. Hence, the extension, R, of a polymer 

molecule in this region will be independent of X. 

In region (2), we consider first the high Deborah number limit. If the 

polymer is assumed to deform affinely, then the extension, R, satisfies 

u.VR=R; +0(1/D), (A91 
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and so from eqn. (A3) 

u *VR = RU’(x). 

The y coordinate of the position of the polymer satisfies 

(AlO) 

dy 
- = u = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-yU'(x), 
dt 

(fw 

and on any trajectory we find that R is inversely proportional to y within 

this region. In the intersection of regions (1) and (2) we have shown that R 

is independent of X, and so the constant of proportionality on all paths is 

the same. Therefore, R is independent of x on all paths which intersect 

the strand, and so in the high Deborah number limit S is asymptotically 

constant. 

At moderate Deborah numbers there is an additional term in eqn. (AlO) 

arising from the elastic restoring force (see eqn. (5)). The magnitude of this 

term, relative to the extension of the polymer by the flow, is of order 

l/DRU’(x), and so the above result remains valid provided DRU’(x) z=- 1 

in region (2). In this region R is inversely proportional to y, and it suffices 

to impose the additional constraint that 77 -=zDLU’(x)S. Thus the strand 

width will be asymptotically constant provided that U’(x) z+ l/DL. 

The analysis above can be generalised to flows where either the strand 

or the incoming stagnation streamline are curved, by replacing by Cartesian 

coordinates (x, y) with streamline coordinates. The approximations within 

regions (1) and (2) remain valid provided that the widths of these regions 

are small in comparison to the radius of curvature of the streamlines. 


