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Birnbaum-Saunders spatial modelling and diagnostics applied to agricultural
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Abstract Applications of statistical models to describe spatial dependence in geo-referenced data are
widespread across many disciplines including the environmental sciences. Most of these applications as-
sume that the data follow a Gaussian distribution. However, in many of them the normality assumption,
and even a more general assumption of symmetry, are not appropriate. In non-spatial applications, where
the data are uni-modal and positively skewed, the Birnbaum-Saunders distribution has excelled. This paper
proposes a spatial log-linear model based on the Birnbaum-Saunders distribution. Model parameters are
estimated using the maximum likelihood method. Local influence diagnostics are derived to assess the sen-
sitivity of the estimators to perturbations in the response variable. As illustration, the proposed model and its
diagnostics are used to analyse a real-world agricultural data set, where the spatial variability of phosphorus
concentration in the soil is considered—which is extremely important for agricultural management.

Keywords asymmetric distributions - local influence - Matérn model - maximum likelihood methods -
Monte Carlo simulation - non-normality - R software - spatial data analysis

1 Introduction

Spatial statistical models take into account the dependence of a variable over space using geo-refer-
enced data. These models are essential in many fields; see, for example, Krige (1951), Mardia and Marshall
(1984), Waller and Gotway (2094) and Militino et al. (2006). Recent studies include Borssoi et al. (2011),
Uribe-Opazo et al. (2012) and Grzegozewski et al. (2013). All these papers make the assumption that a
normal (or Gaussian) distribution is appropriate for modelling the spatial variability. However, such an
assumption is not always appropriate; see Davis (1952) and Lange et al. (1989). One approach to deal
with non-normality is to transform the data to achieve at least approximate normality. Nevertheless, when
working with data transformations, problems, such as the difficulty of interpreting the results from the
analysis on the original scale, can be introduced into the modelling; see Azzalini and Capitanio (1999).
When the normality assumption is not valid, an alternative approach is to carry out the modelling with
some non-normal distribution to be suitable for the data under analysis. For example, Assumpcao et al.
(2011, 2014) conducted a geo-statistical study using the Student-t distribution, which has heavier tails than
the normal distribution. De Bastiani et al. (2015) studied spatial modelling and diagnostics based on the
family of elliptic (symmetric) distributions, which has as members the Gaussian and Student-t cases. With
all of this said, elliptic models are still not appropriate if the data follow a skew distribution.
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There has been little work in the literature that investigates the use of asymmetric distributions to analyse
spatial data. However, in non-spatial situations, many distributions have been proposed to model phenom-
ena that give rise to skew data, such as, the Birnbaum-Saunders (BS), exponential, gamma, log-normal and
Weibull distributions; see Johnson et al. (1994, 1995). In particular, the BS distribution was proposed for
modelling random variables describing processes of fatigue by Birnbaum and Saunders (1969). Applica-
tions in earth sciences of the BS distribution have been considered by, for example, Leiva et al. (2008, 2009,
2015a), Podlaski (2008), Vilca et al. (2010), Marchant et al. (2013) and Saulo et al. (2013). What makes this
distribution attractive for the analysis of skew data are its properties and its relationship with the normal dis-
tribution; see Johnson et al. (1995, pp. 651-663). In contrast to its original application to fatigue processes,
Leiva et al. (2015c¢) justified why the BS distribution is suitable for modelling earth and environmental data
using theoretical arguments based on the law of proportionate effects. Rieck and Nedelman (1991) defined
a relationship between the BS distribution and its logarithmic version, named the log-BS distribution. They
used this relationship to propose a BS fixed effect model; whereas Villegas et al. (2011) considered a BS
mixed effect model. A multivariate extension to the BS fixed effect model was studied by Marchant et al.
(2015). An approach to BS spatial modelling was provided by Xia et al. (2011), who presented a methodol-
ogy based on semi-Markov process to produce a spatio-temporal model for the movement of tourists. The
authors considered several distributions, including the BS model. To date, however, spatial models based
on the BS distribution have not been studied in practical examples.

The identification of cases that can produce substantial changes in the estimated parameters is an im-
portant step in any statistical investigation. The task of detecting possible atypical cases can be addressed
by eliminating cases one-by-one from the data set and measuring the effects on estimated parameters —this
is known as global influence; see Cook (1987). Another method for detecting cases that could potentially
be influential was proposed by Cook (1987), which is known as local influence. This method studies the
effect of small perturbations introduced into the models and/or the data on the maximum likelihood (ML)
estimates. Different perturbation schemes are often considered to evaluate the sensitivity of ML estimates
of the model parameters to such perturbations. The local influence method has at least two advantages over
the global influence method: it has a lower computational cost, especially when the number of cases is large,
and it allows us to detect groups of data exerting a joint influence. Zhu et al. (2007) proposed a methodology
for choosing a perturbation scheme that is appropriate for the particular model being considered. Gimenez
and Galea (2013) applied the method proposed by Zhu et al. (2007) to heteroscedastic models with func-
tional measurement errors. Galea et al. (2004) applied the local influence method in the BS fixed effect
model, whereas Leiva et al. (2014, 2015b) and Liu et al. (2015) derived diagnostic tools in accelerated life
models, in fixed effect models with stochastic restrictions and in the possibly heteroskedastic linear model
with exact restrictions. In spatial modelling, diagnostic techniques have been discussed for Gaussian models
by Militino et al. (2006) and Uribe-Opazo et al. (2012), for Student-t models by Assumpgao et al. (2014),
and for elliptic models by De Bastiani et al. (2015).

The main objective of this paper is to develop a spatial log-linear model based on the BS distribution
and to derive its corresponding diagnostics. This distribution can be more appropriate than the Gaussian
distribution in the analysis of spatial data with positive asymmetric behaviour. ML estimators of the model
parameters and local influence diagnostic tools are derived for the BS spatial model. A computational
framework in R code of the developed methodology is available from the authors under request. Specifically,
Section 2 provides a background on uni- and multi-variate BS and log-BS distributions and on spatial
modelling. Section 3 formulates the BS spatial log-linear model, estimates its parameters using the ML
method and derives an appropriate perturbation scheme for the response variable using the methodology
proposed by Zhu et al. (2007). Section 4 conducts two Monte Carlo (MC) simulation studies for evaluating
the performance of the corresponding ML estimators and diagnostic tools. Section 5 illustrates the potential
applications of the proposed model and its diagnostics with real-world data from agricultural engineering.
Section 6 discusses some conclusions and possible future work. Detailed algebra is presented in appendices.
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2 Background
2.1 The Birnbaum-Saunders distribution

If a random variable T follows a BS distribution with shape parameter «v and scale parameter 3, we use
the notation 7' ~ BS(«. /3). The distribution can be defined by its cumulative distribution function (CDF)

given by
Fr(t;o,8) =@ (% (\/t/ﬁ - \/6/15)) , t>0,a0>0,8>0, )]

where @(-) is the CDF of the standard normal distribution. Then, the probability density function (PDF) of
T obtained from (1) is expressed as

Fr(t:a, ) = % ( 1/6t + \/[3/153) ¢ (é (\/t/f - Mﬁ/t)) L t>0,0>0,3>0, (2

where ¢(-) is the standard normal PDF. Thus, in turn the PDF in (2) can be re-written as

—2 ‘

fr(t;a,B8) = %exp (—% (% +§>> t 8 t+28), t>0,aa>0,8>0. 3)
Also, it may be said that a continuous random variable 7" has a BS distribution with parameters «« > 0 and
B> 0,ifand only if Z = (1/a)(\/T/B8 — \/3/T) ~ N(0,1). Some properties of the BS distribution are
presented as follows. If T ~ BS(a, 3), then: (i) E(T) = A(1 + «?/2) and Var(T) = (a3)?(1 + 5a2); (ii)
if b > 0, then bT' ~ BS(«, bf7), which means that the BS distribution is closed under scalar multiplication;
(iii) 1/T ~ BS(a, 1/3), which means that the BS distribution is closed under reciprocity; (iv) the median of
the distribution of 7" is 3, which can be directly obtained when ¢ = 0.5 from its quantile function given by
t(g; e, 8) = Frl (g v, 3) = Blaz(q) /2 + /(vz(q)/2)2 + 1)2, for 0 < q < 1, where z(q) is the standard
normal quantile function; and (v) the BS distribution is positively skewed as « increases and approximately
symmetrical around 3 as o goes to zero; see Fig. 1(left).

2.2 The log-Birnbaum-Saunders distribution

A continuous random variable Y has a log-BS distribution with shape parameter o > 0 and location
parameter 42 € R, which is denoted by log-BS(a, 1), if and only if Z = (2/«)sinh((Y — p)/2) ~ N(0,1).
Then, the CDF of Y is given by

2. —p
Fy(y;a,p) =@ (—smh (y 5 ,u>> ,  —00 <y, < 4oo,a > 0. 4
[8%

Consequently, from (4), the PDF of Y is obtained as

Iy (y; o) = a\}ﬁ cosh (y 3 ,u,) exp (—%Sinh2 (%)) , oo <y, p < oo, >0. (5
Some properties of the log-BS distribution are presented as follows. If Y ~ log-BS(a, pt), then: (i) T =
exp(Y) ~ BS(«;,f3), which means that the log-BS PDF given in (5) can be obtained from the standard
normal PDF or from the BS PDF defined in (3); (ii) E(Y) = ; (iii) there is no closed form for the
variance of Y, but based upon an asymptotic approximation for the moment generating function of the
log-BS distribution, it follows that, if & — 0, then Var(T) = o? — a*/4, and if a — oo, then Var(T) =
4(log?(v2a) 4 2 — 2log(v2a)); (iv) if X = £Y + d, then X ~ log-BS(ar, +-1 + d); and (v) the log-BS
distribution is symmetric around p, unimodal for & < 2 and bimodal for o > 2; see Fig. 1(right).

If a random vector Y = (Y7,... 7Y,L)T follows an n-variate log-BS distribution, the notation ¥ ~
log-BS,, (v, pt, ) is used. Here, the vector of shape parameters is ¢ = (v1, ..., ) ", with cv; > 0, the
vector of location parameters is gt = (p1, - .., fin) ", With —oc < p; < 400, fori =1,...,n,and X is an

n x n positive definite (non-singular) matrix of scale parameters. The CDF of Y can be defined from (5) as

2 - 2 n ~— Hn
Fy(yio,p, ) =&, (- sinh (%) ..., = sinh (%) ;2) . yeR", (6
3]

G
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Fig. 1 PDF of (left) BS(a, 1) and (right) log-BS(ex, 0) distributions for the indicated value of the shape parameter a.
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where &, (-; X2) is the CDF of the n-variate normal distribution with mean vector equal to zero and variance-
covariance matrix X. Therefore, the PDF of Y can be obtained from (6) as

2 . Y1~ H1 2 . Yn — Hn e Yi = Hi
; X)=¢n | — —_ ..., — ;¥ — —_— ],
fyly;o,p, X)=¢ (01 sinh ( 3 - sinh 3 I | o cosh 5

i=1

(7

for y € R™, where ¢,,(-; X) is the n-variate normal PDF with mean vector equal to zero and variance-
covariance matrix X.

2.3 Spatial models

Consider a stochastic process {Y (s), s € D}, which is defined overa region D, with D ¢ R?, described

by the spatial linear model
Y(s) = p(s) +e(s), seD, 3)

where /() is a mean function and () is the model error. These errors have mean zero and common variance
o2, which means that E(Y (s)) = p(s) and Var(Y (s)) = o2, forall s € D.

If the spatial process {Y(s),s € D} is assumed to be stationary, then its mean function is constant,
that is, u(s) = p, forall s € D. If it is further assumed to be isotropic, then its covariance function only
depends on the distance between spatial locations, that is,

Cov(Y(si), Y (s;)) = C(si,s5) = C(hij), siysj €D, )

where h;; = ||s; — s;]| is the Euclidean distance between s; and s;.

2.4 Covariance and variogram models

Now suppose that n measurements are collected at a set of known spatial locations s = {s1,...,5,},
providing the n-variate random vector Y = (Y1,...,Y,)", where Y; = Y(s;), fori = 1,...,n. The
covariance between all pairs of random variables (Y3, Y;) is determined by an n x n scale matrix ¥ = [o5],
which must be symmetric and positive-definite, where o;; = C(h;;), with C(-) given in (9). Then, ¥
defines the spatial dependence structure for stationary and isotropic processes by a parameter vector ¢ =
(01,02, 03) ", where 1 > 0,2 > 0 are parameters known as nugget effect and partial sill, respectively,
whereas @3 > 0 is a parameter related to the effective range or spatial dependence radius a = g(p3); see
Mardia and Marshall (1984) and Uribe-Opazo et al. (2012). The nugget effect is related to an analytical
error, indicating an unexplained variability from one point of the sampling grid to another. This variability
may be attributed to measurement errors or to a variability not captured due to the sampling distance used;
see, for example, Cambardella et al. (1994). The nugget effect can also act as a regulatory tool in spatial
design for random fields making many designs feasible; see Miiller and Stehlik (2009, 2010). We assume a
particular parametric form for the scale matrix given by

Y=ol + 2R, (10)
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where I, is the n x n identity matrix and R = [r;;] is an n X n symmetric matrix with diagonal elements
ri = 1, fori = 1,...,n. Specific forms for r;; given by r;; = ;5 /2, with ¢ # j and @9 # 0, define the
model used to explain the spatial dependence, with the most common forms being those obtained from the
Matérn and power exponential families; see Isaaks and Srivastava (1989) and Diggle and Ribeiro (2007). In
the family of Matérn models, we have

1, =7
Tij = 1 hiy \ 0 hij ., (11)
W(T;) K6(¢;>7 i J,

where 9 is a shape parameter, I'(+) is the usual gamma function and K(-) is the modified Bessel function
of third kind of order 4. From (11), we get

©1 + Y2, 1= j7
o = hiy\° hij o, (12)
20—“5?(5) (m) Ks (E) v 1FT

In the family of power exponential models, for ¢ # j, we have r;; = exp(—(hi;/p3)P), where 0 < p < 2
is a shape parameter, which implies

o1 +p2, =17,
o = P (13)
prexp (= () ). i#

Although the models in (12) and (13) have no finite range, the effective range a can be defined as the smallest
distance between two locations, such that the covariance has dropped to 5% of the maximum covariance,
C'(0). The exponential and Gaussian models are members of the power exponential family when p = 1 and
p = 2, respectively, and also of the Matérn family when § = 0.5 and § — oo, respectively. In stationary
processes, from the covariance function given in (9), it is possible to define the variogram function by

where C'(0) = ¢1 + @2 and C(h) is specified from C(h;;) = 055, for h = h;;, with a suitable member of

the Matérn or power exponential families given in (12) and (13), respectively. The plot of points (k,v(h))
obtained from the variogram function given in (14) is a useful tool in spatial statistics.

2.5 Kriging interpolation

In geo-statistical analyses, a commonly used method for interpolation is Kriging; see Krige (1951). The

Kriging prediction is given by a linear combination of the observed data y = (y1,...,y,) " defined as
n
(s0) =Y Niwi, (15)
i=1
where y(sg) is the predicted value at a new location sp and A1, ..., )\, are weights chosen to define the

best linear unbiased predictor. This can be achieved by minimizing the variance of the error with respect
to the weights whilst requiring the predictor to be unbiased. It may be shown that, under the stationarity
assumption, the values A1, ..., A, are given by the solution to CX = T, where

C(s1,51) ... C(s1,8,) 1
C: aA:()\laa)‘n7g)T?T:(C(Sl7SO 77C(Sn750)71)Ta
C(Sny 1) -+ C(8n,8n) 1 )
1 1 0

and p is a Lagrange multiplier introduced to ensure unbiasedness when minimizing the error variance.
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2.6 Accuracy measures

To quantify the similarity between two maps, the global accuracy (GA) and kappa (%) indexes can be
used. Consider two maps (one called the reference map and the other the model map), both divided into the
same m class, denoted by M;, forz = 1,...,m. In addition, let N“, fore,57 =1,...,m, be the number of
pixels (a pixel is defined as a single point in an image; for example, in our dpphcatlon of Section 5, 1 pixel
~ 85m?) belonging to class M; of the model map and to class M of the reference map, and IV be the total
number of pixels in each map. The GA index is based on those plxels that belong to the same class in both
maps and is defined as GA = (3., N;;)/N. Model and reference maps have an acceptable similarity if
the GA index is greater than 0.85; see Anderson et al. (1976). The & index is based on all of the pixels
(those belonging to the same class or not) and is defined as x = (N > 1" Ny — >.7% NojNia)/(N? —
> NeiNje), where N;y = Z'" N;;j and N,; = Z'” Nj;. Model and reference maps have a low
similarity if # < 0.67, a medium 51m11ar1ty if 0.67 < & < 0.80, and a high similarity if > 0.80; see
Krippendorff (2004).

3 The Birnbaum-Saunders spatial model
3.1 Formulation of the model

Let {T'(s),s € D} be a stochastic process defined over a region D, with D < R?. Suppose that n

measurements T = (T1,...,T,) ", where T; = T'(s;), fori = 1,...,n, are collected at a set of known
spatial locations s = {s1, ..., $p }. Consider a spatial model of the form
T, = exp(pi)ni, i=1,...,n. (16)

Assume stationarity, such that p; = p(s;) = p, and the model error 7; = n(s;) ~ BS(«, 1), fori =
1,...,m. Then, exp(y) is the median of the model. Note that the shape parameter « is also assumed to be
constant across the spatial locations; see Marchant et al. (2015). Applying a logarithmic transformation to
(16), a BS spatial log-linear model is obtained as

Y =log(T;) =p+log(n) =p+ei, i=1,...,n, (17)

where ¢; = log(1;) ~ log-BS(«.0), fori = 1,...,n. Note that the BS spatial log-linear model defined in
(17) has a similar form to the model given in (8). For ease of notation, the model in (17) can be written in
matrix form as

Y =l +¢, (18)

with Y = (Y1,...,Y,)",1 = (1,...,1)T and e = (e1,...,6,) " being n x 1 vectors. Here, € is a
stationary spatial stochastic process with mean vector E(g) = 0. Suppose that the covariance between all
pairs (Y;,Y;) is determined by the n x n scale matrix X' satisfying the conditions given in (10), where the
elements of R can be modelled with the Matérn structure given in (11).

3.2 Parameter estimation

Let 0 = (o, .21, 92, <p3)T be the vector of unknown parameters of the spatial model formulated in
(18) to be estimated. Then, the likelihood function for @, based on the observations y = (y1,...,yn)" of
Y, obtained from (7) is given by

L) =L(8;y) = %exp (—%VT2‘1V> Hcosh<yi2”>, (19)
i=1

where V = (V,...,V,) T isan n x 1 vector with elements V; = sinh((y; — p)/2), fori = 1,...,n. The
corresponding log-likelihood function for € obtained from (19) is then

__n 1 - 2 Tl . Yi — b
o) = 210g(27r) 2log(|2|) nlog(«) Q2V X V—I—Zlog(cosh( 5 >> (20)

i=1
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The ML method defines the estimator 0 of @ as the vector which maximises £(8), or equivalently £(6),
over the parameter space of 6. Thus,

0= arg max ((6). 1)

When the value in (21) is associated with a stationary point, it can be obtained from the solution of a
homogeneous system of equations created from the score vector and given by

oLe) _ , 9LO) _  9L(0)

; . =0; 22
Ao C Odp T O ' 22)

see details of the score vector in Appendix I. Note that no analytical solution to the system of equations
given in (22) can be obtained. Then, the ML estimator 6 must be computed with an iterative procedure to
solve the non-linear system. Here the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton procedure
(see Nocedal and Wright, 1999; Lange, 2001) may be used through the functions optim and optimx
implemented in the software R; see www.R-project .org and R-Team (2015). The signs of the deter-
minants of the Hessian matrix and of its minors were also checked to ensure that a valid maximum had been
found. R

Under the usual regularity conditions, the ML estimator @ is consistent for € and has an asymptotic
normal distribution. Then, as n — oo,

Vi (8 - 6) > N5(0,J(8) 1), (23)

where J () = lim,,_,o I(8)/n, with I(0) being the expected Fisher information matrix given in Appendix
L and > denotes convergence in distribution. Asymptotic confidence intervals (CIs) of a 100 x 1<%

level for i1, o and ¢p;, with ¢ = 1,2, 3, can be obtained from the asymptotic normality property given in (23)
as

Cl(p,[1 = ] x 100%) = 7 - (1 - ¢/2)SE(@), i+ 2(1 - ¢/2)SE(@)] ,
CIB, [1 - ] < 100%) = [exp (6 — 2(1 — ¢/2)SE(F)) exp (6 + 2(1 — ¢/2)SE@))]

where 6* is the ML estimate of 6* = log(8), with & = a or 8 = ;, fori = 1,2, 3, and §I\E(0A*) is the
estimated asymptotic standard error (SE) of the ML estimator of #*; see Leiva et al. (2015d).

3.3 Local influence

Let £(0) be the log-likelihood function for the vector of model parameters 8 = (v, j1, @1, P2, ¢3)
given in (18), which is referred to as the non-perturbed log-likelihood. Then, let w = (w1, ..., wy)! €
£2 ¢ R™ be an n x 1 perturbation vector, where (2 is an open set of relevant perturbations. Let £(8|w)
be the log-likelihood function perturbed by w, called the perturbed log-likelihood, and 6., be the ML es-
timate of € obtained from ¢(8|w). In addition, let wy € §2 be an n x 1 non-perturbation vector, such that

{(8|wo) = £(0). Suppose that £(f|w) is twice continuously differentiable in a neighbourhood of (8, wp).
Now comparing the parameter estimates 6 and 0 using local influence, we are able to investigate how the
inference is affected by the perturbation. Consider the likelihood displacement (LD) given by

~ -~

LD(w) = 2(¢(6) - £(6.,)), 24)

which is used to assess the influence of the perturbation w. Large values of LD(w) in (24) indicate that 0
and @, differ considerably related to the contours of the non-perturbed log-likelihood function ¢(€). The
method studies the local behaviour of the influence plot a(w) = (w',LD(w)) " around wy. Cook (1987)
suggested invigilating the direction of maximum curvature, Cyax, of the surface a(w). For LD(w) in (24),
Chax = max; |d||=1 Cgq, where Cq = 2|dTBd|, with B being an n x n matrix and d a unit-length direction

vector. To find Cp,,x and the direction vector d,, we need to calculate B = —AI.Z.(GA)’IA, where £(§) is
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the Hessian matrix obtained from (19) evaluated at @ = 5; see details of the Hessian matrix in Appendix II.
Here, A is a 5 x n matrix obtained from the perturbed log-likelihood function and given by

9%4(8|w)
Sadw T A
0%0(8|w) 520 @
RN b ®lw) | —
A= 000w | FpowT | T Ay (25)
920(0|w) A,
080w

Note that (25) must be evaluated at § = 0andw = wo. Then, d.x is a unit-length eigenvector associated
with the maximum absolute eigenvalue Ci,x of B. A large absolute value of any element of dy,.x reveals
that the case is likely to be influential. Other important directions correspond to the canonical basis vectors
d=e; fori =1,...,n,where e; is a vector in R with a one (1) in its sth position and zeros (0) in the other
positions. In this case, the curvature is given by C; = 2|b;;|, where b;; is the (7, 7) element of the matrix B,
fori = 1,...,n. The plot of C; = Cq, versus the index ¢ can also be used to identify influential cases. We
use index plots of C; and |dmax, | as diagnostic measures of local influence in Section 5. Although there is no
consensus about a benchmark to determine an influential case, we use a value analogous to that proposed
by Zhu and Lee (2001), which indicates the case i as influential if C; > C + 2SE(C), fori = 1,...,n,
where C' and SE(C) denote, respectively, the mean normal curvature and the corresponding sample SE.
Similarly, in the index plot of |dmay, |, the case i is indicated as influential if |dyax; | > |dmax| + 2SE(|dmax|),
fori = 1,...,n, where |dmax| and SE(|dmax|) denote, respectively, the mean of the elements in absolute
value of the vector dp,x and the corresponding sample SE. We use these benchmark values in the simulation
study and in the agricultural application considered in Sections 4 and 5, respectively.

3.4 Selection of the appropriate perturbation scheme

Suppose that the perturbation of the response variable is of the form Y,,(s) = Y (s) + Aw, where A
is a symmetric and non-singular matrix. Hence, Y, (s) = Y (s) and Y, (s;) = Y (s;) + a; w, where a; is
the ith row of the matrix A. In this case, the perturbed log-likelihood function is given by

1 2 ~ P+ aiw —
(6lw) = ~Z log(2r) - 5 log (|¥]) ~nlog(a) - 5V Vi + ) log (cosh (w)) :
=1

2

(26)
where V, = (Vio,,..., Vi, )", with V,, = sinh((y; + a;w — p)/2), fori = 1,...,n. Then, the corre-
sponding score vector obtained from (26) is given by (see details in Appendix V)

0l(8|w) 2 1 1

Consider the variance of the score vector given in (27) as a function of the perturbation vector w, that is,
G(w) = Var(U(w)) = E(U(w)U " (w)), recalling that E (U(w)) = 0. For the BS spatial log-linear
model, we have that (again see details in Appendix V)

1 _1 o 1 2

According to Zhu et al. (2007), the perturbation w is appropriate if and only if G(wo) = ¢ I,,, for ¢ > 0,
with G(-) given in (28). In general, for an arbitrary symmetric and non-singular matrix A, G(w) # cI,.
Instead, for the perturbation to be appropriate, A must be found using the condition

2
A(lz-% ﬂ2%> A=cl,, (29)
1o 4

for some value of ¢ > 0. Given that c is non-negative, considering ¢ = 1 immediately shows that A =
(1/a) X2 — (a/4) %) ! satisfies the condition given in (29). Thus, for the BS spatial log-linear model,
an appropriate perturbation scheme for the response variable is given by

1

-1
Yo (s) = Y(s) + (éz‘a - %ﬁ) w. (30)
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Now consider the perturbation matrix A defined in (25), the perturbation given in (30), and

a£(6|w) o 2 T 1 ]. T o T 2 1 ].
S = SV XA SV A= Y] (—52 +§In>A. 31)
Then, the elements of A obtained from (31) are expressed as
*O|lw) v 1 o4 1
= PpowT L (=¥ 3m)A (32)
020(0|w) /-1 1
Aa = dadwT D (?2 + ZIn) 4,
4 2 1 1 1 1 .1
T( % s-1 AR e R B
+V] (asz A+ ( ST+ 2In>A<a22 +1% )4), (33)
0%0(0|w) 0%0(0|w) 0%(0|w) OL(Blw)\T
Ap = =3 T:< T T T) (34)
?pow dp10w !’ Opa0w '~ Op3dw

where D = (dy,...,d,)", with d; = lw, fori = 1,...,n, and I; being the ith row of the matrix
A((1/a®)X =2 + (1/4)X7)A. The elements of A, given in (34) are defined as

0%0(0|w) T 1 1 2 ox
— L M (-2 '+ LA+ V][ S22y A
OpiOwT ( o2 + 4 ) Ve (a2 Op; )
2 1 1, 10X 1 «adX:
(-S54 sn)a(-3 i34+ 22
+ ( o? + 2 ((1/ &pi + 4 6‘<pi ) ’
where M = (my,...,my) ", withm; = l;w, fori = 1,...,n, and I; being the ith row of the matrix

1 162% 1 0&82%
- » 42 )A
A( SIS 2+46%)A

Detailed algebra of the above expressions is presented in Appendix V.

4 Simulation study

In this section, we conduct two MC simulation studies based on n sampling points y = (y1,...,yn) "
generated from a log-BS distribution with shape parameter o € {0.3,1.0}, scale parameter # = 2 and
spatial structure described by the Matérn model with & = 0.5, 1 € {0.5,1.0}, @2 € {0.5,1.0} and
w3 € {1.0,1.5}. We consider a regular grid with a minimum distance between points of one unit. We
evaluate the performance of the estimators of the model parameters for small and large sample sizes. Then,
we assess the performance of the proposed diagnostic methodology on the detection of influential cases.

4.1 Study I: ML estimation

To assess the efficiency of the estimator 0; empirically, we use the absolute relative bias (ARB) and the
root mean squared error (RMSE) defined as the square root of the mean squared error given by
. 1 I~
x 100, MSE(d;) = 5 > (05 - 0:)°,

Jj=1

6; - 6;

4

ARB(0;) =

where 8; = (1/p) 1 §,J with §,J being the ML estimate of 8; € {«, 1, 1, p2, @3} for the jth MC
replication. Note that 6 = (@, [, P1, P2, P3) | is the ML estimate of @ = («, . @1, 2, ©3) . We consider
p = 500 MC replications in each case. Table 1 displays the empirical ARBs and RMSEs of the corre-
sponding ML estimators. Note that, for n = 100, all the ARBs are small. In particular, the ARBs of the
ML estimators of the parameter « are less than 10% in fifteen of sixteen cases studied, further in 50% of
these cases the ARBs are less than 2%. For the ML estimator of the parameter 4, the ARBs are less than
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1% in practically all cases. For the ML estimators of the parameters describing the spatial structure, the
ARBs are greater than 10% in a few cases with a maximum of 13%. However, for n = 36, this picture is
quite different, because only the ARBs of the ML estimator of the parameter ;+ remain low. For the other
parameters, in various scenarios, the ARBs are high. In general, the RMSEs are small for the estimators of
« and p, but are moderate for the spatial parameters. As expected the values increase for n = 36 compared
to those for n = 100. Such results show the sensitivity of the ML estimators of the BS spatial model to
small samples.

4.2 Study II: influence diagnostics

We evaluate the performance of the corresponding diagnostic tools in detecting influential cases. In
order to carry out this evaluation, we generate two data sets using a response variable as given in (18), with
scale matrix structure described by Matérn family model, considering the shape parameter § € {0.5,1.0}
and n = 100. After generating each data set y = (y1,...,%,) ', we contaminate its maximum value to
generate an outlier. This contamination is similar to that used in Ortega et al. (2003) to study the influence
of a perturbation in an explanatory variable for generalized log-gamma fixed effect models. Specifically, we
consider the contamination

Yrax = Ymax + 10/ y T y. (35)

For the first data set (& = 0.5, n = 100), the contaminated case according to (35) results to be case #59.
Fig. 2(left) shows the box-plot for this data set, which identifies case #59 as an outlier. Fig. 2(right) displays
the corresponding model map divided into quartiles, from which it is possible to identify where outliers are
located. After the contamination, the estimates of the parameters (obtained using the BFGS method) with
their estimated asymptotic SEs (in parenthesis) are: & = 4.828(3.414 x 10 1), i = 71.188(1.309 x 10),
P1 = 480.101(8.989 x 10%), 2 = 200.090(8.999 x 102) and p3 = 0.346(1.472 x 10~3), resulting in an
estimated spatial dependence radius @ = 1.038(4.416 x 10~3). Fig. 3 displays the index plot of C; (left)
and |dmax| (right) for the spatial structure described by the Matérn family model with 4 = 0.5, considering
the contaminated case according to (35). This study of local influence shows that case #59 is detected as
potential influential.
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Fig. 2 Box-plot (left) and model map (right) of the simulated data for Matérn model with § = 0.5 .
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Fig. 3 Index plots using (left) C; versus i and (right) |dmax, | versus 4 for the simulated data from the Matérn model with & = 0.5.

Similarly to the first data set, for the second data set (§ = 1.0, = 100), the contaminated case ac-
cording to (35) results to be case #59. Fig. 4(left) shows the box-plot for this second data set, whereas
Fig. 4(right) displays the corresponding model map divided by quartiles. In this second data set, after
the contamination, the estimates of the parameters (obtained with the BFGS method) with their SEs (in
parenthesis) are: & = 5.004(3.538 x 10 1), i = 71.250(1.253 % 10), p7 = 400.118(1.403 x 10%),
P2 = 200.097(1.404 x 10%) and 3 = 0.222(3.937 x 10~%), presenting an estimated maximum distance
of spatial dependence @ = 0.888(1.575 x 10~). Fig. 5 displays the index plots of influence local which,
such as in the first data set, indicate case #59 as potential influential.

Therefore, the proposed diagnostic methodology seems to be effective for detecting outlying and poten-
tial influential cases.
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Fig. 4 Box-plot (left) and model map (right) of the simulated data for Matérn model with d =1 .
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Fig. 5 Index plots using (left) C; versus Iz and (right) |dmax| versus i for the simulated data for Mlatérn model with § = 0.5.
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Table 1 ARB (in %) and RMSE of the ML estimator of the indicated parameter and n from simulated data with the BS spatial model.

Parameter Value ARB RMSE Value ARB RMSE Value ARB RMSE Value ARB RMSE

n = 36 n = 100
« 1.00 8501 0.211 0.30 38.932 0.175 1.00 8.683 0.170 0.30 6.526 0.058
m 2.00 0.377 0.425 2.00 1.010 0.339  2.00 0.48 0.245 2.00 0.102 0.070
©1 0.50 15.204 0.628 0.50 0.134 0.474 0.50 6.446 0.505 0.50 1.624 0.586
w2 1.00 2.879 0.549 1.00 12.064 0.546 1.00 3.702 0.492 1.00 9.129 0.200
©3 1.00 10.631 1.549 1.00 3.283 1.591 1.00 8.288 0.922 1.00 10.102 0.731
« 1.00 0.036 0.131 0.30 16.731 0.093 1.00 0.403 0.121 0.30 7.886 0.083
m 2.00 0.782 0.172 2.00 0.310 0.076  2.00 0.298 0.310 2.00 0.124 0.051
©1 0.50 16.061 0.407 0.50 37.419 0.362 0.50 12.548 0.424 0.50 9.748 0.448
©2 0.50 20.495 0.357 0.50 9.631 0.285  0.50 4.074 0.579 0.50 8.521 0.418
©3 1.00 19.786 1.406 1.00 31.122 0.598 1.00 12.092 1.000 1.00 3.368 0.840
o 1.00 5.018 0.180 0.30 0.713 0.052 1.00 1.543 0.122 0.30 0.969 0.049
" 2.00 0.569 0.196 2.00 0.128 0.088 2.00 0.094 0.308 2.00 0.056 0.054
©1 1.00 23.470 0.559 1.00 30.419 0.598 1.00 4.416 0.444 1.00 7.977 0.296
©2 0.50 69.708 0.812 0.50 72.644 1.077 0.50 3.011 0.712 0.50 12.575 0.594
©3 1.00 23.311 1.479 1.00 27.248 0.508 1.00 3.736 0.966 1.00 10.600 0.838
o 1.00 11.580 0.149 0.30 2.084 0.044 1.00 0.675 0.116 0.30 1.361 0.041
" 2.00 1.073 0.347 2.00 0.044 0.095 2.00 0.261 0.219 2.00 0.143 0.065
©1 0.50 13.250 0.417 0.50 10.198 0.392 0.50 3.457 0.380 0.50 1.860 0.226
w2 0.50 47.626 0.420 0.50 7.230 0.409 0.50 9.557 0.600 0.50 2.624 0.265
©3 1.50 4.095 1.365 1.50 28.613 0.875 1.50 7.062 0.999 1.50 7.850 1.048
« 1.00 9.409 0.182 0.30 34.818 0.127 1.00 6.615 0.131 0.30 9.041 0.050
1 2.00 0.832 0.424 2.00 0.135 0.112 2.00 0.351 0.262 2.00 0.141 0.071
©1 1.00 22.382 0.688 1.00 58.626 0.704 1.00 9.877 0.600 1.00 6.292 0.609
©2 1.00 16.801 0.698 1.00 32.248 0.494 1.00 11.614 0.649 1.00 10.743 0.399
©3 1.00 29.993 1.441 1.00 25.988 0.722 1.00 6.278 1.088 1.00 6.915 0.854
o 1.00 3.315 0.213 0.30 7.271 0.084 1.00 1.731 0.136 0.30 3.474 0.068
1 2.00 1.291 0.464 2.00 0.208 0.131 2.00 1.147 0.312 2.00 0.029 0.088
©1 0.50 13.031 0.513 0.50 0.375 0.799 0.50 6.876 0.406 0.50 4.700 0.419
©2 1.00 8.044 0.385 1.00 11.701 0.383 1.00 1.374 0.477 1.00 7.779 0.324
©3 1.50 11.971 1.455 1.50 26.713 0.862 1.50 11.409 1.010 1.50 1.422 1.048
o 1.00 2479 0.122 0.30 36.118 0.150 1.00 1.645 0.096 0.30 0.124 0.047
i 2.00 1.012 0.254 2.00 0.016 0.110 2.00 0.310 0.339 2.00 0.101 0.067
©1 1.00 12.815 0.434 1.00 49.457 0.593 1.00 2.893 0.401 1.00 8.174 0.312
w2 0.50 44.539 0.610 0.50 51.302 0.840 0.50 9.810 0.648 0.50 7.033 0.827
©3 1.50 19.714 1.927 1.50 10.903 0.570 1.50 2.042 1.105 1.50 0.266 1.052
« 1.00 7.312 0.159 0.30 21.1904 0.094 1.00 6.414 0.176 0.30 10.473 0.051
Y 2.00 0.318 0.456 2.00 0.335 0.136  2.00 0.622 0.331 2.00 0.207 0.093
©1 1.00 9.491 0.691 1.00 42.096 0.615 1.00 1.245 0.466 1.00 3.463 0.560
©2 1.00 8964 0.528 1.00 28.573 1.121 1.00 1951 0.910 1.00 9.094 0.328
©3 1.50 24.874 1.753 1.50 27.398 0.883 1.50 10.009 1.138 1.50 13.259 0.928

5 Numerical applications
5.1 Description of the experimental area and study variables

The experimental study was conducted during the crop year of 2012/2013 in a 167.35 ha commercial
area of grain production of Cascavel, a town in the western region of the state of Parand, Brazil. The area
has a geographic location of, approximately, 24.95° south/53.57° west, with an average altitude of 650 m.
The soil is classified as Red Haplortox Oxisol, with a clay texture; see EMBRAPA (2009). The climate of
the region is humid subtropical (Koeppen climatic type: Cfa) with an average annual temperature of 21°C.
Soil sampling locations were defined at points forming a regular square lattice with an inter-point distance
of about 140m. In addition, extra locations were chosen at random across the region. This leads to a total
of n = 102 locations, which were geo-referenced in UTM coordinates using a GPS device. To analyse the
chemical properties, four soil samples were collected at depths from 0.0 to 0.2m and mixed to produce a
single representative sample at each location. The mixed soil samples were analysed by the laboratory of the
Cooperativa Central de Desenvolvimento Tecnoldgico e Econdmico Ltda. (Coodetec, Brazil) to determine
the concentration of macro and micro-nutrients. Phosphorus concentration was chosen as the study variable,
because it has a positive effect on plant growth and nutrition. Furthermore, its spatial variability is extremely
important for agricultural management. According to the classification given by COAMO/COODETEC
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(2001), the phosphorus concentration in clayey soil is considered as follows. For soybean planting, it is: (i)
low for levels less than 3 mg/dm?; (ii) medium for levels between 3.1 and 6 mg/dm?3; (iii) high for levels
between 6.1 and 9 mg/dm?; and (iv) very high for levels greater than 9 mg/dm3. For corn planting, the
phosphorus concentration is: (i) low for levels less than 2 mg/dm?; (ii) medium for levels between 2.1 and
4.5 mg/dm?; (iii) high for levels between 4.6 and 11 mg/dm?; and (iv) very high for levels greater than 11
mg/dm3.

5.2 Exploratory and spatial dependence analysis

The exploratory data analysis (EDA) for the phosphorus concentration is divided in two: non-spatial
and spatial. From the non-spatial point of view, the sample mean of the phosphorus concentration in the soil
of the area under study is 18.11 mg/dm?®, whereas the corresponding sample coefficients of variation (CV),
skewness (CS) and kurtosis (CK) are CV = 0.41 (41%), CS = 1.787 and CK = 5.104. These descriptive
statistics indicate a reasonable degree of homogeneity around the mean, a positive skewness and a high
kurtosis level, such as visualized in the box-plot of Fig. 6(left). From this box-plot, note that four outliers,
identified as cases #32, #53, #57 and #59, are detected. The circled points in Fig. 6(right) identify these
outlying cases, which are located at the lower part of the studied region. The non-spatial EDA supports
the use of the BS distribution. From the spatial point of view, a standard analysis of sample variograms
(omitted here), using the directions 0°, 45°, 90° and 135°, shows that the directional variograms have similar
behaviour until a distance of about 900 m is attained. Therefore, we can assume that there is isotropy up
until that distance.
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Fig. 6 Box-plot (left) and model map (right) of the phosphorus concentration data.

5.3 Parameter estimation and Kriging

To choose the best model for describing the spatial dependence structure of the phosphorus concentra-
tion, the cross-validation criterion and the maximum value of the log-likelihood function are considered.
Note that the parameter d corresponds to the order of the variogram model in the Matérn family, which it is
not estimated to avoid identifiability problems in the estimation of covariance matrix parameters. Thus,
several variogram models based on the Matérn family are fitted and then the model with the smallest
cross-validation value is chosen. Once § is determined, the best Matérn model with parameter § is used
to estimate 6 by the ML method using a profile likelihood approach. Therefore, using this criterion, the
best model corresponds to the Matérn family with parameter § = 2.5. The estimated BS model and vari-
ogram parameters (with estimated asymptotic SE in parenthesis) are & = 0.997(3.521), n = 2.807(0.082),
©1 = 0.134(0.946), o2 = 0.020(0.142), p3 = 177.940(0.0000014), and @ = 1.053(0.0000083); see
Table 4. Then, we obtain the fitted spatial map shown in Fig. 8(left) for the soil phosphorus concentra-
tion by using the fitted BS spatial model obtained from (16) and the ordinary Kriging interpolation de-
scribed in (15). Observe that this is obtained from the ML estimates provided above, the fitted scale matrix
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> =0.1341I n+ 0.0QOﬁ, with R given from (11), and & = 2.5. According to the classification provided by
COAMO/COODETEC (2001) (see Subsection 5.1), note that the phosphorus concentration is considered
very high for both soybean and corn planting, which is suitable for planting both crops.

5.4 Model selection

We compare the spatial BS and Gaussian models using the Akaike (AIC) and Schwarz Bayesian (BIC)
information criteria. These are given by AIC = —2/(0) + 2d and BIC = —2/(4) + dlog(n), where £(4)
is the log-likelihood function for the parameter ¢ associated with the model evaluated at 6 = 6, d is the
dimension of the parameter space, and n the size of the data set. Both criteria are based on a penalized
log-likelihood function as the model becomes more complex, that is, with more parameters. Thus, a model
whose information criterion has a smaller value is better; see Ferreira et al. (2012), Leiva et al. (2015¢) and
references therein. Besides the AIC and BIC information criteria, the Bayes factor (BF) can also be used to
compare the BS and Gaussian spatial models. The BF, denoted by B2, allows us to compare M1 (model
considered as correct) to M2 (model to be contrasted with M1) by 2log(B12) ~ BICy, — BICy,, where
BICy, stands for the BIC associated with the model M;, for i = 1, 2. The BF provides an objective value
to quantify the degree of superiority of one model with respect to another. An interpretation of the BF is
displayed in the Table 2. Thus, according to Tables 2 and 3, we detect that the BS model is superior to the
Gaussian model with a very strong evidence in its favor when the data are not transformed by the logarithm.

Table 2 Interpretation of 2 log(B;12) associated with the BF.

2log(B12) Evidence in favor of My

<0 Negative (M3 is accepted)

[0,2) weak

[2,6) Positive

[6,10) Strong

> 10 very strong

Table 3

Model £(9) AIC BIC 2log(Bi2)
BS (transformed data) —44.577  99.154  112.279 -
Gaussian (transformed data) —43.890  95.780  106.280 -
BS —332.576 675.152 688.276 28.224
Gaussian —349.000 706.000 716.500 —

5.5 Influence diagnostics

To evaluate the effect of atypical cases on the fitted spatial map shown in Fig. 8(left), we carry out local
influence diagnostics. By using a response variable perturbation scheme for the detection of influential
cases, plots of C; versus i and |dmax| versus i are considered. It is clear to see from Fig. 7 that cases #2,
#48 and #94 are identified as influential by both techniques. Note that these three cases are different from
the outlying cases detected by the box-plot in Fig. 6(left), which indicates the relevance of using the local
influence method instead of a simple analysis using the box-plot.

Table 4 shows estimated model parameters and the corresponding estimated SEs in parenthesis, for var-
ious spatial models fitted with the complete data set and subsets of it when the influential cases are removed,
either individually or jointly. As usual in the local influence method, once one or more influential cases are
identified, the cases are removed from the data set to investigate how their removal affects the model selec-
tion, the estimation of parameters and the construction of maps. Note that removal of the influential cases
causes dramatic changes in the estimated spatial range, @, especially when cases #32 and #48 are removed
together. This is due to the considerable change in the estimate 3 and a change in the estimated variogram



Birnbaum-Saunders spatial modelling and diagnostics applied to agricultural engineering data 15

o
B o
@ | a2 S
o 48
=
o
] | e2
! 48
o S .
g8 | 94 94
o .16 92 e | o °
& 1 W I « e o
o H “w % e o . o o
g4 4, °" " S R LA Pt “ . oes :
L] = .
, . El . *, e e .
° Wt e et * S . -’ . . e *% '
B ey e R cerl, AT,
e L - oo . ey T e e - oo
N o oo 20 e g , . .
| . o u o w &P . ..
LA - R IR YN « %,
. . %, P .
o . . g | o
T T T T T T ° T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
ordem ordem

Fig. 7 Index plots using (left) C; versus 4 and (right) |dmax| versus ¢ for phosphorus concentration data.

model chosen to describe the spatial variability. Table 4 also shows the p-values for hypotheses of the form
Ho: 6; = 0 versus Hy: 6; # 0, where 6; is any of the parameters of the vector @ = (o, i, 1, P2, 93) |-
To test Hp, we can use the test statistic Z = HA, / SE(&A,), where 97 is the ML estimator of ¢; and SE(HA,)
the corresponding SE. The asymptotic distribution of Z is known to be normal; see results detailed in (23).
From the p-values shown in this table, it follows that, in all models, the hypothesis Hy is rejected at a 5%
significance level for the parameters . and 3, whereas Hy is not rejected in the tests for the parameters
a, @1 and ¢9. Note that no inferential changes are detected when removing the influential cases. Observe
that, in the cases when the parameter space is the set of the positive real numbers, we should restrict Hy to
this set, which was considered accordingly in the calculation of the corresponding p-value. Note also that,
for the Matérn model, the spatial dependence radius a is a function of 3, that is, a = cys, where c is a
constant that depends on d, so that @ = c@3 and then SE(a) = ¢SE({3).

Fig. 8 displays contour maps of the soil phosphorus concentration using the BS spatial model and or-
dinary Kriging interpolation. The maps were created based on two scenarios: (i) using the complete data
set (reference map) and (ii) removing the influential cases #2, #48 and #94, individually and jointly. To
construct the maps, we consider five classes of equal size obtained by dividing the range of estimated phos-
phorus concentration into five equal width intervals. Note that the removal of the cases individually does
not change the map significantly. However, the joint removal of the cases causes a dramatic change. A more
objective comparison of the maps is carried out using the GA and « indexes; see Table 4. Thus, according to
Anderson et al. (1976), when the influential cases are removed individually, the model maps are similar to
the reference map displayed in Fig. 6(right). Nevertheless, this does not occur when the cases are removed
jointly. Using the classification of Krippendorff (2004) for the « index, note the following: (i) the model
map created removing the influential case #48 has a high similarity compared to the reference map; (ii)
the map created removing cases #2 and #94 has a medium similarity; and (iii) the other maps have a low
similarity, which suggests that the cases are only jointly influential.

6 Conclusions and future work

We have proposed a novel spatial log-linear model based on the Birnbaum-Saunders distribution. This
is an alternative to the Gaussian spatial model for describing data with spatial dependency structure and,
most importantly, with a positive skew distribution. Maximum likelihood estimates of the model parameters
were calculated using an iterative approach. Local influence diagnostics for the new model were derived and
corresponding equations for the most appropriate perturbation obtained. We evaluated the performance of
the estimation procedure and diagnostic tools by simulation. For large samples, estimation and diagnostics
have a good performance. The proposed approach was also used to analyse real-world agricultural engi-
neering data. In this application, influential cases were detected, and their removal caused a considerable
change in the spatial dependence radius and on the spatial maps. Importantly, not all these influential cases
would have been identified as traditional outliers.

Some possible issues to be addressed in future studies are the following. First, because the Birnbaum-
Saunders distribution is based on the normal distribution, a heavy-tailed version based, for example, on the
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Fig. 8 Shaded contour plots showing the effects of removing the indicated case(s) for phosphorus concentration data.
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Table 4 ML estimates of the indicated model parameter with (estimated asymptotic SE in parenthesis) and [p-values in brackets], and
values of GA and  indexes for the phosphorus concentration data set with indicated dropped case(s).

Dropped case(s) Model I3 i P1 P2 P3 a GA =«
None Matérn § = 2.5 0.997 2.807 0.134 0.020 177.940 1053.405 - -
(3.521) (0.082)  (0.946) (0.142) (0.0000014) (0.0000083)
[0.389] [< 0.001] [0.444] [0.444] [< 0.001] [< 0.001]
#2 Matérn § = 2.5 0.993 2.831 0.125 0.016 108.655 643.238 0.90 0.72
4.097) (0.059)  (1.031) (0.132) (0.0000008) (0.0000047)
[0.404] [< 0.001] [0.452] [0.452] [<0.001] [< 0.001]
#48 Matérn § = 2.5 0.996 2.824 0.125 0.019 152.374 902.054 097 092
(3.417) (0.073)  (0.856) (0.133) (0.0000012) (0.0000071)
[0.386] [< 0.001] [0.442] [0.443] [< 0.001] [< 0.001]
#94 Matém § = 1 0.997 2.817 0.122 0.028 308.828 1235.312 0.84 0.69
(3.417) (0.073)  (0.856) (0.133) (0.0000012) (0.0009092)
[0.374] [< 0.001] [0.436] [0.437] [<0.001] [< 0.001]
#2, #48 Matérn § = 0.5 0.991 2.845 0.071 0.060 81.052 243.156 0.65 0.31
(exponential)  (6.149) (0.046)  (0.882) (0.746) (0.0000884) (0.0002652)
[0.436] [< 0.001] [0.468] [0.469] [< 0.001] [< 0.001]
#2, #94 Matérn 6 = 0.5 0.995 2.840 0.097 0.038 182.059 546.177 0.72 0.45
(exponential)  (3.308) (0.063)  (0.644) (0.254) (0.0002974) (0.0008922)
[0.382] [< 0.001] [0.440] [0.441] [<0.001] [< 0.001]
#48, #94 Matérn § = 2.5 0.994 2.834 0.114 0.024 144.768 856.737 0.80 0.60
(2.980) (0.077)  (0.683) (0.145) (0.0000010) (0.0000059)
[0.370] [< 0.001] [0.434] [0.435] [< 0.001] [< 0.001]
#2, #48, #94 Matérn § = 0.5 0.982  2.855 0.085 0.041 143.699 431.097 0.66 0.35
(exponential)  (3.442) (0.056)  (0.597) (0.287) (0.0002051) (0.0006153)
[0.388] [< 0.001] [0.444] [0.443] [< 0.001] [< 0.001]

Student-t distribution can be considered thereby reducing the influence of atypical data which can have an
adverse effect on spatial maps. Second, explanatory variables may be considered in the spatial modelling,
which can help to improve its predictive power. Third, other perturbation schemes could be considered to
assess the influence of atypical data. Fourth, we could consider more than one random variable in the spatial
modelling by means of multivariate structures for the Birnbaum-Saunders distribution. Work on these four
issues is currently under progress and we hope to report some findings in a future paper.
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Appendix I: The score vector of the BS log-linear spatial model

For the BS log-linear spatial model, the score vector is defined by
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Considering the Matérn model to describe the spatial variability given in (11), we have that OR/0p3 = [0r;; /03], where, for
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Appendix II: The observed information matrix for the BS log-linear spatial model

The observed Fisher information matrix for the BS log-linear spatial model is defined by 72(6) evaluated at 6 = @, where £| (8)
is the Hessian matrix given by
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given in Appendix L. Then, with £, = £y 0y Lapy = Lppa and Ly = Lpya, we have
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Appendix III: Expected information matrix for the BS log-linear spatial model

The expected Fisher information matrix is 1(8) = E[—&(8)]. For the BS log-linear spatial model, this matrix is given by

I0) = | Tuo Tup Iue | -
Too Ioy Tpy
Since the model error € ~ log-BS,, (a1, 0, X), we have that (2/a)V ~ N, (0, X), with V' given in (19). Then (see Muirhead,
1982), W = (2/0)V T X 1(2/a)V ~ x2, where x2 denotes the chi-squared distribution with n degrees of freedom, and then,
E[W] = n. Thus,
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Moreover, by using E [X T AX] = (E[X])T A (E[X]) + tr (AC), where C is the covariance matrix of X (see Kendrick, 2002),
Ipp = (I, ;) isasymmetric 3 X 3 matrix with elements
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where tr(A) denotes the trace of the matrix A. To obtain the elements I, I, and 1,4, for (y; — p)/2 expected to be small enough
with cosh(-) & 1 and using the expansion in Taylor series for the cosh(-), in a similar way to that used by Rieck and Nedelman (1991)
for the sinh(-), we have
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Appendix IV: Score vector U (w) and matrix G(w)

Score vector used in the local influence method is given by U (w) = (3Vw/(9u.:—r)T (22-1V,,) + (1/2)AT.,, where T, =

(Tsy s -+ Toy, ), With o, = tanh((y; + A;w — p)/2), and A; is the ¢th row of the matrix A. For cosh((y; + a;w — p)/2) = 1,
withi =1,...,n, we get
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where o;; is the (4, j) element of the matrix A, for 4,j = 1,...,n. Furthermore, for cosh((y; + a;w — )/2) ~ 1, with ¢ =
1,...,n, T., can be approximated by V,,, from which it follows that U (w) = (1/2) AV, — (2/a?)AX ~1V,,. Thus,
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Therefore, G(w) = E [U(w)U T (w)] = A (£X1/2) — (1/a) % ’(1/2))2 A. To find the appropriate perturbation, according to
the methodology proposed by Zhu et al. (2007), it is necessary to find A, such that G(w) = ¢I, for ¢ > 0. Considering ¢ = 1, then
A must satisfy ((o/4)X(1/2) — (1/a)X~ 5 )2 = (A~1)2. A solution of equation above is A = ((a/4)2% - (1/a)27%)*14
Then, @ = ((« /4)E% - (1/a) X~ 3 )~ 1w is an appropriate perturbation for the BS log-linear spatial model.
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Appendix V: The perturbation matrix

The perturbation matrix for the BS log-linear spatial model obtained from (20) is given by
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where Uy, = (Uwy, ..., Us, ), with Uy,; = cosh((y; + a;w — p)/2), fori = 1,...,n. Thus, the results presented in (32), (33)
and (34) are obtained, for cosh((y; + a;w — 11)/2) = 1, as

0L(8|w) - ( 1 4., 1 )
A, = =1 | =Y " —--I, ] A,
HT ubwT a2 4"

T —
A — 0L(8|w) _ WV, <*1271+%In>A+VJ§ {(_2271_’_%1”) A}
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dadwT dox o? a?
—1 1 4 2 1 1 1 11
=D" (=X '+, A+ (=24 <7_2*1 -1 )A(—E‘E _25) A),
(az +4n) +<a3 t(- s a( el
where D = (Dl,..‘,Dn)T,With D; = l;w and l; being the ith row of the matrix

L=A <i2*% + 32%) A.
a? 4
In addition,

A

0 T 2 1
0i = Dl0) _ OV <——2-1 + —In> A
OpiOw T Op; 2

a2
2 xz 2 1 A
+v) ( s 514y (— =t §In> 6—)

o? Op; el Op;
-1 1 2 ox
=M" (—2*1 + —In) A+ V] <—2*1—2*1) A
o2 4 a? Op;
1 1
— p ) o)
+<—22*1+EIH>A 153022 oy 00520
o? 2 et Op; 4 Op;
where M = (m, .. .,mn)T,with m; = l;w and l; being the ith row of matrix
1 Xz Xz
1 1 V.
L=A| 33 ot A A, j=1,...,ni=12,3.
fat Op; 4 9p;

Details about 0.3 3 /O¢p; can be found in De Bastiani et al. (2015).



